experiment 1 synthesis of “copper carbonate”:...

11
Experiment 1 Synthesis of “Copper Carbonate”: What is it? Chemistry 132 Spring 2013 Background A careful reading of an advanced inorganic chemistry text will convince you that CuCO3 can only be made under a high pressure of CO2. What we call copper carbonate is a complex salt referred to as a basic copper carbonate, basic because the material has hydroxide groups as well as carbonate groups. There is more than one basic copper carbonate and several have been known since ancient times. These include the following: name color formula malachite green Cu(OH)2Cu(CO3) azurite blue Cu(OH)2Cu2(CO3)2 Synthesis Your synthesis is on the surface a straightforward metathesis (double displacement) reaction: CuSO4(aq) + Na2CO3(aq) CuCO3(s) + Na2SO4(aq) The isolation step succeeds because only the desired product “CuCO3” is insoluble and can be isolated by filtration. Chemical Analysis As you will discover when you complete the Preparation page for this experiment, “CuCO3”, malachite and azurite all have different mass percent Cu. This difference is the basis for your analysis of the material you make in the lab. Copper carbonates, hydroxides, and oxides can all be converted to metallic copper by treatment with H2(g) or CH4(g) at elevated temperatures. The laboratory gas tap serves as a convenient source of natural gas, which is chiefly CH4. You will construct an apparatus for the reduction of copper salts. By weighing the material put in the reactor and weighing the copper present after reduction, you will be able to determine the mass percent copper of the original sample. commons.wikimedia.org (Ra'ike )

Upload: lykhanh

Post on 10-Mar-2018

218 views

Category:

Documents


2 download

TRANSCRIPT

Experiment 1Synthesis of “Copper Carbonate”: What is it?

Chemistry 132Spring 2013

BackgroundA careful reading of an advanced inorganic chemistry text will convince you that

CuCO3 can only be made under a high pressure of CO2. What we call copper carbonate is a complex salt referred to as a basic copper carbonate, basic because the material has hydroxide groups as well as carbonate groups. There is more than one basic copper carbonate and several have been known since ancient times. These include the following:

name color formula

malachite green Cu(OH)2Cu(CO3)azurite blue Cu(OH)2Cu2(CO3)2

Synthesis Your synthesis is on the surface a straightforward metathesis (double displacement) reaction:

CuSO4(aq) + Na2CO3(aq) → CuCO3(s) + Na2SO4(aq)

The isolation step succeeds because only the desired product “CuCO3” is insoluble and can be isolated by filtration.

Chemical AnalysisAs you will discover when you complete the Preparation page for this experiment,

“CuCO3”, malachite and azurite all have different mass percent Cu. This difference is the basis for your analysis of the material you make in the lab. Copper carbonates, hydroxides, and oxides can all be converted to metallic copper by treatment with H2(g) or CH4(g) at elevated temperatures. The laboratory gas tap serves as a convenient source of natural gas, which is chiefly CH4. You will construct an apparatus for the reduction of copper salts. By weighing the material put in the reactor and weighing the copper present after reduction, you will be able to determine the mass percent copper of the original sample.

com

mon

s.w

ikim

edia

.org

(Ra'

ike)

Statistical AnalysisHow accurate is the value you obtain for % Cu? This is a difficult question to answer

with just your data alone, but statistical treatment of the class data will allow you to make a good estimate of the accuracy of the average of the class data.

ReferencesC. Zidick, T. Weismann: “The Reduction of CuO with Burner Gas and without a Fume Hood.” J. Chem. Ed. 1973, 50, 717-718.A. B. Hoffman, A. J. Hoffman: “Reduction of Copper(II) Oxide by Alkanes of Low Molecular Weight.” J. Chem. Ed. 1974, 51, 418-420.D. Sheeran: “Copper Content in Synthetic Copper Carbonate: A Statistical Comparison of Experimental and Expected Results.” J. Chem. Ed. 1998, 75, 453-456.

Experimental Procedure

Weigh all reactants and products accurately on the analytical balances! Always record all the digits of the mass reading from the balance.

Synthesis of “CuCO3.” Prepare a solution of copper sulfate by adding 3.8 g (0.015 mol) CuSO4·5H2O to 40 mL of H2O. Prepare a solution of Na2CO3 (2.0 g, 0.019 mol) in 60 mL H2O. Slowly add the copper solution to the sodium carbonate solution. Note any observations.

Warm the resulting mixture to 55-60 °C on a hot plate. Stir gently. Note any color change or other observations. Cool the reaction mixture by immersing the beaker in a room temperature water bath.

Once the mixture has reached room temperature, collect the product by filtration with a Büchner funnel. When the product looks dry, carefully disconnect the vacuum hose. The product has the consistency of modeling clay at this point and is difficult to get off of the filter paper. Slowly, pour 20 mL acetone onto the precipitate, disturbing the precipitate as little as possible. Wait about 30 seconds, then reconnect the aspirator hose and allow all the acetone to be pulled through the product. Repeat with another 20 mL portion of acetone. Continue to apply suction. The layer of product should begin to crack irregularly, like a dry lake bed. After a minute or so, disconnect vacuum and collect your product. Pulverize any clumps in your product and dry under a heat lamp for 5 minutes. Weigh your product. Assuming the product to be CuCO3, what is your percent yield?

Caution: Acetone is highly flammable. Keep it well away from open flames.

Analysis of “CuCO3.” Construct an apparatus for reduction of the product similar to the diagram below. Determine the weight of a clean dry 18 × 150 mm test tube. To this tube, add approximately 0.4 g of product, weighed with milligram precision. Take care to concentrate the material at the bottom of the tube—keep the walls of the tube clean! Weigh the tube and copper carbonate together to determine the exact mass of copper carbonate. Once the copper carbonate

2

has been reduced to metallic copper some of the copper will adhere to the test tube walls, which makes it necessary to weigh by difference.

Once the test tube is loaded with material, reassemble the reduction apparatus. Begin a gentle flow of gas through the test tube, being careful not to disturb the solid with the flow of gas. Attempt to light the gas exiting the test tube. If it does not light, slowly increase the gas flow. When it does light, adjust the gas flow so that the flame height is 5–7 cm tall. This flame serves to burn off the excess methane not used to reduce the copper carbonate and will also oxidize any carbon monoxide formed in the reduction to carbon dioxide.

Now, light a Bunsen burner and, using the hottest part of the flame, heat the area of the test tube that contains the copper carbonate. Heat for at least 5 minutes and be sure to note any color changes or other changes that occur during the reduction. After reduction is complete remove the Bunsen burner but allow the flame to burn from the mouth of the test tube for 5 minutes or until the copper in the test tube is cool. Next, turn off the burner gas to extinguish the flame and, once the entire test tube is at room temperature, disassemble the apparatus. Weigh the tube to determine how much copper it contains. Tap the tube and scrape the inside with a spatula to remove some copper. Does it have metallic properties?

Chemical Analysis! Report your results as directed by the lab instructor. You might write them on an erasable marker board or enter them into a spreadsheet program on a computer in the laboratory. The instructor will inform you how to retrieve the class data.

From the class data, obtain an average, a standard deviation (SD), and a 95 % confidence interval. Use the Q-test to discard outliers (see Appendix).

3

Use Student's t-test (Appendix) to decide, at the 95 % confidence level, whether or not the formulation CuCO3 can be ruled out. Can one of the formulas for basic copper carbonate also be ruled out?

4

Laboratory Report Instructions1. Write your name and Slayter box number at the top of the first page of your report.2. Write a balanced equation for the reaction of CuSO4 and Na2CO3 based upon the

knowledge you gained from this experiment. Your equation should have water as a reactant (both reactants are aqueous after all!).

3. (a) Write a balanced equation for the reaction of basic copper carbonate to give copper oxide (CuO). (b) Write a balanced equation for the reaction of CuO with methane to give Cu. Assume for reactions (a) and (b) that the only carbon containing product formed is CO2.

4. Do you have any experimental observations to suggest that the reduction you performed occurred in two steps as described in question (2)? If so, state them.

5. Report your percent yield for the synthesis of “CuCO3” (assume product is malachite or azurite based on your % Cu data)

6. Your observed mass % Cu in basic copper carbonate and the class average mass % Cu in basic copper carbonate (with standard deviation and 95% CI)

7. Apply Student’s t-test to the class data and judge which (if any) of the formulae for (basic) copper carbonate can be ruled out based on the t-value and the 95% confidence level.

5

6Ap

pen

dix

B

B-1

EV

AL

UA

TIO

N O

F E

XP

ER

IME

NT

AL

UN

CE

RT

AIN

TY

A.

Rep

eate

d M

easu

rem

ents

Do

No

t L

ead

to

Id

enti

cal

Ob

serv

ati

on

s

Ex

per

imen

tal

chem

ists

are

co

nti

nu

ally

fac

ed w

ith

th

e fa

ct t

hat

rep

eate

d m

easu

rem

ents

do

no

t le

ad t

o a

set

of

iden

tica

l o

bse

rvat

ion

s. N

o c

hem

istr

y s

tuden

t w

ou

ld b

e su

rpri

sed

to

ob

tain

th

e fo

llo

win

g d

ata

in T

able

1:

Ta

ble

1.

Th

ree

con

secu

tiv

e m

easu

rem

ents

of

a N

i sa

mp

le

usi

ng

a t

op

lo

adin

g b

alan

ce.

Tri

al

Ma

ss o

f N

i S

am

ple

1

5.0

18

g

2

5.0

14

g

3

5.0

19

g

Wh

y i

s a

dif

fere

nt

resu

lt o

bta

ined

up

on

eac

h w

eig

hin

g o

f th

e N

i sa

mp

le?

Wh

at i

s th

e m

ass

of

the

Ni

sam

ple

?

Ho

w d

o w

e ta

lk a

bo

ut

and

rep

ort

th

ese

exp

erim

enta

l re

sult

s?

B.

Ra

nd

om

an

d S

yst

ema

tic

Err

or

(wh

y d

iffe

ren

t re

sult

s a

re o

bta

ined

)

Th

ese

resu

lts

sho

w t

hat

ev

ery

ex

per

imen

tal

mea

sure

men

t is

su

bje

ct t

o a

cer

tain

am

ou

nt

of

erro

r.

Th

is e

rro

r ca

n b

e sy

stem

atic

an

d/o

r ra

nd

om

in

nat

ure

.

Sys

tem

ati

c er

ror

resu

lts

fro

m a

co

nsi

sten

t o

ffse

t in

a m

easu

rem

ent

dev

ice

or

a co

nsi

sten

t

mis

tak

e in

pro

ced

ure

. F

or

exam

ple

, in

mak

ing

th

e m

easu

rem

ent

des

crib

ed a

bo

ve,

syst

emat

ic e

rro

r ca

n b

e in

tro

du

ced

if

the

bal

ance

zer

o s

hif

ts i

n b

etw

een

mea

sure

men

ts.

Dif

fere

nt

resu

lts

wil

l b

e o

bta

ined

if

the

Ni

sam

ple

is

han

dle

d w

ith

wet

fin

ger

s in

bet

wee

n

sub

seq

uen

t m

easu

rem

ents

. I

n t

heo

ry,

syst

emat

ic e

rro

r ca

n (

and

sh

ou

ld!)

be

avo

ided

.

Ra

nd

om

err

or

aris

es f

rom

co

mp

lete

ly r

and

om

flu

ctu

atio

ns

in t

he

mea

sure

men

t p

roce

ss.

Th

is t

yp

e o

f er

ror

is u

nav

oid

able

: A

ll m

easu

rem

ents

, n

o m

atte

r h

ow

"g

oo

d"

are

sub

ject

to s

om

e ra

nd

om

err

or.

T

his

is

wh

y,

even

wit

h a

dev

ice

such

as

the

elec

tro

nic

an

aly

tica

l

bal

ance

an

d e

ven

hav

ing

eli

min

ated

all

so

urc

es o

f sy

stem

atic

err

or,

we

wil

l o

bta

in

dif

fere

nt

(alb

eit

on

ly s

lig

htl

y)

resu

lts

up

on

rew

eig

hin

g t

he

Ni

sam

ple

. F

ort

un

atel

y t

his

typ

e o

f ra

nd

om

flu

ctu

atio

n i

s, i

n g

ener

al,

pre

dic

tab

le,

and

can

be

des

crib

ed

mat

hem

atic

ally

. T

her

efo

re,

we

can

arr

ive

at a

sin

gle

"b

est"

val

ue

wh

ich

rep

rese

nts

th

e

mas

s o

f th

e N

i sa

mp

le.

We

are

equ

all

y co

nce

rned

wit

h h

ow

"g

oo

d"

that

val

ue

is a

nd

ran

do

m e

rro

r th

eory

all

ow

s u

s to

det

erm

ine

this

as

wel

l.

Ap

pen

dix

B

B-2

C.

Pre

cisi

on

an

d A

ccu

racy

(th

e tr

ue

ma

ss o

f th

e N

i sa

mp

le)

Th

e am

ou

nt

of

ran

do

m e

rro

r is

ex

pre

ssed

as

the

pre

cisi

on o

f th

e m

easu

rem

ent.

PR

EC

ISIO

N i

s th

e q

ual

ity

of

agre

emen

t am

on

g t

he

mem

ber

s o

f a

set

of

mea

sure

men

ts.

It i

s im

po

rtan

t to

rea

lize

th

at p

reci

sio

n i

s n

ot

the

sam

e as

acc

ura

cy.

We

can

(an

d o

ften

do

!) o

bta

in a

pre

cise

bu

t in

accu

rate

res

ult

. T

he

"clo

ser"

th

e v

alu

es,

the

mo

re p

reci

se t

he

dat

a. A

CC

UR

AC

Y i

s th

e q

ual

ity

of

agre

emen

t b

etw

een

th

e ex

per

imen

tal

resu

lt a

nd

th

e

tru

e v

alu

e.

Th

e co

mm

on

sen

se m

ean

ing

s o

f th

ese

term

s ar

e sh

ow

n i

n t

he

foll

ow

ing

ill

ust

rati

on

:

Acc

ura

te a

nd

pre

cise

A

ccu

rate

bu

t n

ot

pre

cise

Pre

cise

bu

t n

ot

accu

rate

Nei

ther

acc

ura

te n

or

pre

cise

D.

Rep

ort

ing

Mea

sure

men

ts (

ho

w w

e ta

lk a

bo

ut

ou

r ex

per

imen

tal

resu

lts)

W

e u

se t

he

foll

ow

ing

co

nce

pts

to

rep

ort

ou

r ex

per

imen

tal

resu

lts

wh

en w

e h

ave

mu

ltip

le

mea

sure

men

ts o

f th

e sa

me

qu

anti

ty.

Eac

h c

on

cep

t w

ill

be

dis

cuss

ed i

n d

etai

l in

th

e

rem

ain

der

of

this

Ap

pen

dix

.

T

he

Av

era

ge

of

the

mea

sure

men

ts i

s th

e b

est

way

to

sim

ply

rep

ort

yo

ur

dat

a.

W

hen

we

wan

t to

pro

vid

e in

form

atio

n o

n t

he

var

iab

ilit

y o

f o

ur

dat

a, w

e u

se t

he

Sta

nd

ard

Dev

iati

on

of

ou

r m

easu

rem

ents

. W

e al

so c

alcu

late

th

e C

on

fid

ence

In

terv

al

to i

nd

icat

e

the

var

iab

ilit

y w

e ex

pec

t if

we

mea

sure

d t

he

qu

anti

ty a

gai

n.

W

e u

se t

he

Q T

est

to d

eter

min

e if

we

hav

e an

err

on

eou

s re

sult

an

d t

he

t te

st t

o d

eter

min

e

if o

ur

mea

sure

d v

alu

e if

sta

tist

ical

ly d

iffe

ren

t th

an t

he

tru

e v

alu

e.

7Appen

dix

B

B-3

E.

Aver

age

G

iven

that

we

get

dif

fere

nt

exper

imen

tal

val

ues

when

we

repea

t a

mea

sure

men

t, a

s

illu

stra

ted i

n T

able

1, w

hat

is

the

bes

t w

ay t

o r

eport

our

resu

lts?

In

gen

eral

, th

e "b

est"

val

ue

is s

imply

the

ave

rage

of

a se

t of

dat

a. F

or

the

dat

a in

Tab

le 1

, th

e av

erag

e m

ass

of

the

Ni

sam

ple

is

F.

Sta

nd

ard

Dev

iati

on

An i

ndic

atio

n o

f how

“good”

or

repro

duci

ble

or

pre

cise

the

exper

imen

tal

resu

lt i

s ca

n b

e

obta

ined

by f

indin

g t

he

standard

dev

iati

on, s,

of

the

dat

a se

t. T

he

stan

dar

d d

evia

tion i

s a

mea

sure

of

pre

cisi

on a

nd i

s ty

pic

ally

use

d t

o s

how

how

clo

sely

dat

a fa

ll a

round t

he

aver

age

val

ue

of

a m

easu

rem

ent.

The

foll

ow

ing f

orm

ula

is

use

d t

o c

alcu

late

the

stan

dar

d

dev

iati

on o

f sm

all

sets

of

dat

a, l

ike

those

we

ord

inar

ily d

eal

wit

h i

n t

his

lab

ora

tory

:

in t

his

equat

ion, x i

is

each

indiv

idual

dat

a poin

t,

is t

he

aver

age

of

the

dat

a se

t, !

is

the

sum

mat

ion s

ym

bol,

and n

is

the

num

ber

of

indiv

idual

mea

sure

men

ts m

ade.

F

or

rela

tivel

y

smal

l dat

a se

ts (

10 o

r fe

wer

mea

sure

men

ts),

this

cal

cula

tion c

an b

e per

form

ed u

sing a

n

ord

inar

y c

alcu

lato

r. O

rgan

izin

g t

he

calc

ula

tions

in a

tab

le c

an h

elp a

void

confu

sion (

and

mis

takes

!):

x i

5.0

18

g

5.0

17

g

0.0

01

g

1 x

10

-6 g

2

5.0

14

g

5.0

17

g

-0.0

03

g

9 x

10

-6 g

2

5.0

19

g

5.0

17

g

0.0

02

g

4 x

10

-6 g

2

1

4.

x 1

0-6

g2

So

s =

2.6

x 1

0-3

g.

Roundin

g o

ff g

ives

a f

inal

val

ue

of

3 x

10

-3g.

Man

y c

alcu

lato

rs a

re p

repro

gra

mm

ed t

o p

erfo

rm t

his

cal

cula

tion. C

hec

k y

ours

to s

ee i

f

this

is

the

case

: I

t ca

n s

ave

you a

lit

tle

num

ber

cru

nch

ing. M

ost

com

pute

r sp

read

shee

ts

can b

e use

d t

o f

ind t

he

stan

dar

d d

evia

tion o

f a

dat

a se

t as

wel

l. W

e w

ill

show

you h

ow

to

use

Exce

l, b

ut

you a

re w

elco

me

to u

se a

ny s

pre

adsh

eet

you h

ave

avai

lable

.

Appen

dix

B

B-4

Ad

dit

ion

al

illu

stra

tion

of

aver

age

an

d s

tan

dard

dev

iati

on

.

An a

nal

ysi

s w

as c

arri

ed o

ut

to d

eter

min

e th

e num

ber

of

pie

ces

of

pep

per

oni

on a

typic

al

slic

e of

piz

za f

rom

tw

o d

iffe

rent

piz

za d

eliv

ery p

lace

s (A

and B

). T

wo p

izza

s, h

avin

g t

en

slic

es e

ach, w

ere

exam

ined

and t

he

dat

a ar

e sh

ow

n b

elow

.

Rem

ember

in g

ener

al, th

e bes

t w

ay t

o r

eport

dat

a co

nta

inin

g m

easu

rem

ents

rep

eate

d

mult

iple

tim

es i

s to

rep

ort

the

ave

rage,

or

mea

n o

f a

set

of

dat

a. T

he

aver

age

den

ote

s a

val

ue

that

we

regar

d a

s ty

pic

al f

or

the

mea

sure

men

t. I

n t

his

anal

ysi

s, w

e dis

cover

that

the

aver

age

num

ber

of

pep

per

oni

pie

ces

per

sli

ce, fi

ve,

is

the

sam

e fo

r both

piz

zas.

B

oth

del

iver

y p

lace

s w

ould

see

m l

ike

a good p

lace

to o

rder

fro

m.

Now

let

’s a

sk a

ques

tion. I

f you w

ere

to s

har

e a

piz

za w

ith y

our

frie

nds

and w

ante

d t

o

ensu

re t

hat

ever

yone

get

s th

eir

fair

shar

e of

pep

per

oni,

whic

h p

izza

would

you f

eel

bet

ter

about

ord

erin

g, piz

za A

or

B?

You w

ould

pro

bab

ly c

hoose

A, but

why?

Wel

l, i

f w

e lo

ok

a bit

clo

ser

at t

he

gra

phs,

we

see

that

the

dat

a fo

r piz

za A

are

more

clo

sely

clu

ster

ed

around t

he

aver

age

val

ue.

T

his

mea

ns

the

slic

es i

n p

izza

A a

re m

ore

lik

ely t

o b

e si

mil

ar

than

the

slic

es i

n p

izza

B. T

he

dis

trib

uti

on o

f pep

per

oni

on t

he

gra

phs

above

illu

stra

tes

a

term

we

call

the

stan

dar

d d

evia

tion.

The

standard

dev

iati

on o

f a

mea

sure

men

t in

dic

ates

the

repro

duci

bil

ity o

f a

resu

lt.

It i

s ea

sy t

o s

ee t

hat

the

stan

dar

d d

evia

tion f

or

piz

za A

is

much

sm

alle

r th

an t

hat

for

piz

za

B. T

he

smal

ler

the

dev

iati

on o

f poin

ts a

bout

the

aver

age

val

ue,

the

more

cer

tain

we

tend

to b

e ab

out

the

val

ue

of

our

mea

sure

men

t. F

or

piz

za B

, th

e dev

iati

on i

s la

rge

(com

par

ed

to A

) w

hic

h l

eads

to a

deg

ree

of

unce

rtain

ty a

bout

the

piz

za. I

f you s

har

e piz

za B

, you

may

or

may

not

get

an e

qual

shar

e of

pep

per

oni.

Pie

ces

per

sli

ce

Piz

za A

5

4

4

6

6

4

5

5

5

6

Av

erag

e =

5

Std

Dev

= 0

.8

Pie

ces

per

sli

ce

Piz

za B

2

6

9

5

5

8

7

1

3

4

Av

erag

e =

5

Std

Dev

= 2

.5

Nu

mb

er o

f p

epp

ero

ni

pie

ces

per

sli

ce o

f p

izza

Data Point

All

sli

ces

hav

e b

etw

een

0 a

nd

10

pie

ces

of

pep

per

on

i

Nu

mb

er o

f p

epp

ero

ni

pie

ces

per

sli

ce o

f p

izza

Data Point

8Appen

dix

B

B-5

Exam

ple

: U

sing t

he

dat

a fo

r piz

za B

Aver

age:

= 5

Sta

ndar

d D

evia

tion:

Rev

iew

:

The

aver

age

of

a m

easu

rem

ent

pro

vid

es u

s th

e “b

est”

or

most

typic

al v

alue.

The

stan

dard

dev

iati

on

tel

ls u

s how

clo

se m

ult

iple

mea

sure

men

ts f

it t

hat

aver

age

val

ue.

G.

Con

fid

ence

In

terv

als

Whil

e th

e st

andar

d d

evia

tion p

rovid

es a

mea

sure

of

the

var

iabil

ity i

n t

he

indiv

idual

mea

sure

men

ts a

nd t

hus

the

pre

cisi

on o

f th

e ex

per

imen

t, a

n e

ven

more

use

ful

quan

tity

is

the

confi

den

ce i

nte

rval.

T

he

confi

den

ce i

nte

rval

(C

.I.)

pro

vid

es a

mea

sure

of

how

much

var

iabil

ity w

e w

ould

expec

t in

mea

suri

ng t

he

aver

age

val

ue

of

the

sam

e quan

tity

agai

n. I

t

is r

elat

ed t

o s

but

is n

ot

equal

to s

. T

he

mat

hem

atic

al f

orm

ula

is

In t

his

equat

ion, s

is t

he

stan

dar

d d

evia

tion, n i

s th

e num

ber

of

indep

enden

t m

easu

rem

ents

use

d t

o c

alcu

late

the

aver

age

and t

is

the

appro

pri

ate

choic

e fr

om

a r

efer

ence

tab

le (

see

the

nex

t pag

e). B

e ca

refu

l th

at t

he

table

you u

se i

s w

ritt

en i

n t

erm

s of

n t

he

num

ber

of

mea

sure

men

ts a

nd n

ot

the

var

iable

know

n a

s deg

rees

of

free

dom

.

So, fo

r th

e N

i ex

ample

, t

(fro

m t

he

table

) =

4.3

03 a

nd

x i

2

5

-3

9

9

5

4

16

5

5

0

0

4

5

-1

1

Appen

dix

B

B-6

Sig

nif

ican

t F

igu

res

an

d t

he

Con

fid

ence

In

terv

al

To e

xpre

ss t

he

num

ber

of

signif

ican

t fi

gure

s in

the

aver

age

corr

ectl

y, th

e co

nfi

den

ce

inte

rval

should

alw

ays

be

rounded

to o

ne

signif

ican

t dig

it a

nd t

hen

aver

age

val

ue

rounded

to a

gre

e w

ith t

he

confi

den

ce l

imit

. (

One

exce

pti

on i

s w

hen

the

signif

ican

t dig

it i

n t

he

C.I

.

is o

ne,

then

a s

econd d

igit

may

be

reta

ined

and t

he

aver

age

rounded

acc

ord

ingly

.) F

or

our

exam

ple

the

appro

pri

ate

way

to r

eport

the

exper

imen

tal

wei

ght

of

a nic

kel

is:

5.0

17 ±

0.0

07 g

Note

a c

ouple

of

thin

gs

about

the

size

of

the

C.I

.

a.

As

s dec

reas

es, so

does

C.I

.

b.

As

n i

ncr

ease

s, t

dec

reas

es, yie

ldin

g a

sm

alle

r C

.I. T

he

den

om

inat

or

incr

ease

s w

ith n

so C

.I. get

s sm

alle

r due

to t

his

too.

A

sm

all

er v

alu

e fo

r th

e C

.I. in

dic

ate

s m

ore

pre

cisi

on i

n t

he

data

.

For

the

nic

kel

dat

a you w

ould

expre

ss t

he

exper

imen

tal

resu

lt a

s 5.0

17 ±

0.0

07 g

. T

his

tell

s us

that

the

act

ual

wei

ght

of

this

par

ticu

lar

nic

kel

sam

ple

has

a 9

5%

pro

bab

ilit

y o

f

bei

ng i

n t

he

inte

rval

fro

m 5

.010 g

to 5

.024 g

. N

oti

ce t

wo t

hin

gs:

F

irst

, th

ere

is s

till

a 5

%

chan

ce t

hat

the

actu

al w

eight

of

the

sam

ple

is

outs

ide

this

ran

ge.

T

his

lev

el o

f

unce

rtai

nty

is

consi

der

ed a

ccep

table

for

most

sci

enti

fic

work

. S

econd, th

e poss

ibil

ity o

f

syst

emati

c er

ror

has

not

bee

n a

ccounte

d f

or.

Tab

le 2

. V

alues

of

Stu

den

t’s

t at

var

ious

confi

den

ce l

evel

s fo

r n (

num

ber

of

mea

sure

men

ts)

C

onfi

den

ce L

evel

n

t (5

0%

) t

(90%

) t

(95%

) t

(99%

)

2

1.0

00

6.3

14

12.7

06

63.6

57

3

0.8

16

2.9

20

4.3

03

9.9

25

4

0.7

65

2.3

53

3.1

82

5.8

41

5

0.7

41

2.1

32

2.7

76

4.6

04

6

0.7

27

2.0

15

2.5

71

4.0

32

7

0.7

18

1.9

43

2.4

47

3.7

07

8

0.7

11

1.8

95

2.3

65

3.5

00

9

0.7

06

1.8

60

2.3

06

3.3

55

10

0.7

03

1.8

33

2.2

62

3.2

50

11

0.7

00

1.8

12

2.2

28

3.1

69

12

0.6

97

1.7

96

2.2

01

3.1

06

!

0.6

74

1.6

45

1.9

60

2.5

76

9Ap

pen

dix

B

B-7

Th

e p

izza

ex

am

ple

als

o i

llu

stra

tes

con

fid

ence

in

terv

als

Usi

ng

ag

ain t

he

dat

a fo

r o

ur

two

piz

zas,

we

kn

ow

th

at t

he

aver

age

nu

mb

er o

f p

epp

ero

ni

pie

ces

per

sli

ce o

f p

izza

is

5.

Bu

t is

th

at t

he

real

or

tru

e v

alu

e fo

r al

l o

f th

e p

epp

ero

ni

piz

zas?

A

re t

her

e re

ally

5-p

iece

s o

f p

epp

ero

ni

per

sli

ce?

Th

e av

erag

e p

rov

ides

th

e

typ

ical

or

bes

t v

alu

e th

at w

e ca

n d

eter

min

e u

sin

g o

ur

met

ho

d o

f m

easu

rem

ent.

T

he

on

ly

way

to

kn

ow

th

e tr

ue

or

exac

t n

um

ber

of

pep

per

on

i p

er s

lice

wo

uld

be

to m

easu

re e

ach

and

ev

ery

pie

ce o

f p

epp

ero

ni,

on

eac

h a

nd

ev

ery

sli

ce,

for

ever

y p

izza

th

at i

s m

ade.

N

ot

even

co

lleg

e st

ud

ents

can

eat

th

at m

uch

piz

za!

In r

eali

ty,

the

bes

t w

e ca

n d

o i

s to

pro

vid

e an

est

imat

e b

ased

on

th

e m

easu

rem

ents

we

ob

tain

.

Th

e tr

ick

is,

ho

w d

o w

e co

nv

ince

oth

ers

that

ou

r es

tim

ate,

ou

r av

erag

e v

alu

e, i

s

rep

rese

nta

tiv

e o

f al

l p

izza

s?

We

had

dec

ided

th

at w

e w

ere

fair

ly c

on

fid

ent

that

if

yo

u a

te

a sl

ice

fro

m p

izza

A,

ther

e w

as a

go

od

ch

ance

yo

u w

ere

go

ing

to

hav

e 5

pie

ces

of

pep

per

on

i.

Wh

y?

Bec

ause

, th

e st

and

ard

dev

iati

on

of

the

dat

a fo

r p

izza

A i

s sm

all

and

all

dat

a fa

ll c

lose

ly a

bo

ut

the

aver

age

nu

mb

er o

f 5

. O

n t

he

oth

er h

and

, o

ur

con

fid

ence

fo

r

the

sam

e m

easu

rem

ent

for

piz

za B

is

pre

tty

lo

w b

ecau

se o

f th

e la

rge

dev

iati

on

. F

or

piz

za

A y

ou

wo

uld

sta

te t

hat

yo

u a

re c

on

fid

ent

that

th

e tr

ue

valu

e (a

bso

lute

rea

l n

um

ber

of

pie

ces

per

sli

ce f

or

all

piz

zas)

is

clo

se t

o t

he

ave

rag

e va

lue

of

5.

Co

nfi

den

ce I

nte

rva

l:

Pro

vid

es a

mea

sure

of

ho

w m

uch

var

iab

ilit

y w

e ex

pec

t in

th

e

aver

age

val

ue

wh

en m

easu

rin

g a

qu

anti

ty m

ult

iple

tim

es.

Wh

ile

we

may

be

con

fid

ent

in o

ur

mea

sure

men

ts f

or

piz

za A

an

d n

ot

so c

on

fid

ent

for

piz

za B

, h

ow

co

nfi

den

t ar

e w

e?

Ho

w c

lose

is

ou

r m

easu

red

av

erag

e to

th

e tr

ue

(an

d

un

kn

ow

n)

val

ue?

L

et’s

co

mb

ine

the

gra

ph

ical

dat

a fo

r p

izza

s A

an

d B

an

d u

se t

his

fo

r an

exam

ple

.

Fo

r p

izza

B,

in u

nit

s o

f p

erce

nt

(%),

ho

w c

on

fid

ent

are

yo

u t

hat

th

e n

um

ber

of

pep

per

on

i

pie

ces

per

an

y “

mea

sure

d”

slic

e fa

lls

bet

wee

n 1

an

d 9

? (b

ar (

a))

Yo

ur

esti

mat

e m

igh

t b

e

clo

se t

o 9

0 -

95

% b

ecau

se t

he

dat

a sh

ow

th

at a

ll o

ur

slic

es h

ave

a n

um

ber

in

th

is r

ang

e.

(We

can

nev

er b

e 1

00

% s

ure

!)

(a)

*C

on

fid

ence

Piz

za B

– 9

5%

(b)

*C

on

fid

ence

Piz

za A

– 9

5%

*

Co

nfi

den

ce P

izza

B –

50

%

Nu

mb

er o

f p

epp

ero

ni

pie

ces

per

sli

ce o

f p

izza

Fig

ure

1

Co

mb

ined

Dat

a

Piz

za A

Piz

za B

* e

stim

ates

on

ly

Av

erag

e

Data Point

Ap

pen

dix

B

B-8

An

oth

er w

ay o

f as

kin

g t

he

abo

ve

qu

esti

on

is

ho

w c

on

fid

ent

are

yo

u t

hat

th

e re

al o

r tr

ue

nu

mb

er o

f p

iece

s p

er s

lice

fal

ls i

n t

he

ran

ge:

5

±

4 p

iece

s

Ag

ain

, if

yo

ur

esti

mat

e is

aro

un

d 9

5%

, th

is i

mp

lies

th

at y

ou

are

95

% c

on

fid

ent

tha

t th

e

tru

e va

lue

fall

s w

ith

in +

4 a

nd

-4

un

its

of

the

ave

rag

e va

lue

of

5 p

iece

s p

er s

lice

.

Co

mp

are

this

wit

h b

ar (

b)

on

th

e g

rap

h.

Fo

r p

izza

B,

ho

w c

erta

in a

re y

ou

th

at t

he

tru

e

val

ue

fall

s in

th

e ra

ng

e o

f 4

to

6 (

5 ±

1)?

Y

ou

r es

tim

ate

sho

uld

no

w b

e m

uch

lo

wer

, 4

0%

may

be

50

%?

Wh

at y

ou

sh

ou

ld n

oti

ce i

s th

at b

y d

ecre

asin

g t

he

inte

rval

, th

e ce

rtai

nty

th

at

the

tru

e v

alu

e fa

lls

in t

hat

ran

ge

of

val

ues

bec

om

es l

ess.

Y

ou

r co

nfi

den

ce i

n t

he

mea

sure

men

t is

sm

alle

r.

Wh

at i

f b

ar (

b)

was

ap

pli

ed t

o t

he

dat

a fo

r p

izza

A?

F

or

piz

za A

, h

ow

cer

tain

are

yo

u t

hat

the

tru

e n

um

ber

of

pep

per

on

i p

iece

s fa

lls

in t

he

inte

rval

bet

wee

n 4

an

d 6

?

Yo

ur

esti

mat

e

in t

his

in

stan

ce m

igh

t b

e as

hig

h a

s 9

0 o

r 9

5%

. M

uch

hig

her

th

an t

he

esti

mat

e fo

r p

izza

B.

(* s

ee F

igu

re 1

)

Bu

t w

hy

is

this

so

?

Wh

at i

nfo

rmat

ion

do

we

hav

e th

at m

akes

us

mo

re c

on

fid

ent

the

tru

e v

alu

e fa

lls

in t

he

ran

ge

of

5 ±

1,

for

piz

za A

, b

ut

no

t so

co

nfi

den

t it

fal

ls i

n t

his

ran

ge

for

piz

za B

?

Her

e is

wh

ere

stan

dar

d d

evia

tio

n a

nd

co

nfi

den

ce i

nte

rval

s co

me

into

pla

y.

Let

’s g

o b

ack

to

ou

r fo

rmu

la f

or

the

con

fid

ence

in

terv

al (

C.I

.):

t

= t

val

ue,

s =

sta

nd

ard

dev

iati

on

, an

d n

= n

um

ber

of

mea

sure

men

ts

If w

e lo

ok

at

the

equ

atio

n w

e se

e th

at t

he

con

fid

ence

in

terv

al i

s d

irec

tly

pro

po

rtio

nal

to

the

stan

dar

d d

evia

tio

n.

Th

is i

mp

lies

th

at a

s th

e st

an

da

rd d

evia

tio

n o

f a

mea

sure

men

t

bec

om

es s

ma

ller

, th

e co

nfi

den

ce i

nte

rva

l a

lso

bec

om

es s

ma

ller

. U

sin

g o

ur

esti

mat

es i

n

Fig

ure

1,

we

see

that

we

are

95

% c

on

fid

ent

that

th

ere

wil

l b

e 5

± 4

pie

ces

of

pep

per

on

i

per

sli

ce o

n p

izza

B.

Bu

t fo

r p

izza

A,

we

are

95

% c

on

fid

ent

that

th

ere

wil

l b

e 5

± 1

pie

ces

of

pep

per

on

i p

er s

lice

. T

his

is

so b

ecau

se t

he

dev

iati

on

of

po

ints

is

so m

uch

smal

ler

for

piz

za A

. W

ith

a s

mal

ler

stan

dar

d d

evia

tio

n,

we

can

rep

ort

, w

ith

th

e sa

me

con

fid

ence

, th

at t

he

tru

e v

alu

e w

ill

be

actu

ally

clo

ser

to t

he

aver

age

val

ue

for

piz

za A

than

fo

r p

izza

B.

Th

e se

con

d i

mp

ort

ant

fact

or

in d

eter

min

ing

co

nfi

den

ce i

nte

rval

is

the

nu

mb

er o

f

ind

ivid

ual

mea

sure

men

ts m

ade

(n).

It

is

log

ical

to

th

ink

th

at t

he

mo

re t

imes

we

mak

e a

mea

sure

men

t, t

he

bet

ter

ou

r re

po

rted

av

erag

e w

ill

be,

an

d t

he

mo

re c

on

fid

ent

we

wil

l b

e

in o

ur

mea

sure

d v

alu

e.

Fro

m t

he

equ

atio

n w

e o

bse

rve

that

th

e co

nfi

den

ce i

nte

rval

is

inv

erse

ly p

rop

ort

ion

al t

o t

he

nu

mb

er o

f m

easu

rem

ents

. A

s n

in

crea

ses,

th

e C

.I.

bec

om

es

sma

ller

an

d t

he

cert

ain

ty t

ha

t th

e tr

ue

valu

e is

clo

se t

o t

he

ave

rag

e in

crea

ses.

Av

erag

e

Inte

rval

10

Appen

dix

B

B-9

The

thir

d v

aria

ble

is

call

ed t

he

t val

ue.

T

he

t val

ue

is a

const

ant

found i

n a

tab

le o

f val

ues

and h

elps

us

def

ine

the

range

of

the

inte

rval

. N

oti

ce t

hat

the

t val

ue

dep

ends

on t

he

num

ber

of

mea

sure

men

ts m

ade.

L

et’s

exam

ine

piz

za B

agai

n, use

the

t val

ues

in T

able

2, an

d c

alc

ula

te t

he

act

ual

confi

den

ce i

nte

rvals

.

Dat

a fo

r piz

za B

: n

= 1

0 s

= 2

.5 p

iece

s a

ver

age

= 5

pie

ces

For

n =

10 a

t 50%

confi

den

ce:

"

0.5

5

5.0

± 0

.6 p

iece

s at

the

50%

C.I

.

For

n =

10 a

t 95%

confi

den

ce:

"

1.8

5.0

± 1

.8 p

iece

s at

the

95%

C.I

.

What

do t

he

above

resu

lts

tell

us

and d

o t

hey

mak

e se

nse

? T

he

resu

lts

say t

hat

we

are

50%

confi

den

t th

at t

he

true

val

ue

fall

s w

ithin

± 0

.6 p

iece

s of

the

aver

age

val

ue

of

5.0

, an

d 9

5%

confi

den

t th

e tr

ue

val

ue

fall

s w

ithin

± 1

.8 p

iece

s of

the

aver

age.

A

s bef

ore

, if

we

hav

e a

larg

er r

ange

of

val

ues

, our

cert

ainty

(C

.I.)

bec

om

es l

arger

(hen

ce a

lar

ger

t v

alue)

. T

his

is

exac

tly w

hat

we

should

expec

t.

The

calc

ula

tion f

oll

ow

s th

e sa

me

tren

d a

s our

earl

ier

esti

mat

e of

the

95%

and 5

0%

confi

den

ce i

nte

rval

s fo

r piz

za B

. I

n o

ur

esti

mat

e, w

e w

ere

95%

confi

den

t th

at t

he

num

ber

of

pie

ces

of

pep

per

oni

on a

noth

er s

lice

of

piz

za f

rom

del

iver

y p

lace

B w

ould

be

in t

he

range

of

5 ±

4 p

iece

s. H

ow

ever

, fo

r th

e ex

act

sam

e dat

a, o

ur

esti

mat

e w

as t

hat

we

wer

e only

50%

confi

den

t th

at t

he

num

ber

of

pie

ces

of

pep

per

oni

would

be

in t

he

range

of

5 ±

1 p

iece

s. F

or

thes

e dat

a th

e val

ue

of

n a

nd s

are

const

ant

and h

ave

not

chan

ged

, but

the

range

of

num

ber

of

pie

ces

of

pep

per

oni

has

chan

ged

. F

rom

the

equat

ion w

e ca

n s

ee t

hat

if

s an

d n

are

const

ant,

then

the

t val

ue

must

be

dif

fere

nt

for

dif

fere

nt

confi

den

ce i

nte

rval

s.

Aver

age

50%

Confi

den

ce i

nte

rval

95%

Confi

den

ce i

nte

rval

Fig

ure

2

Act

ual

Confi

den

ce

Inte

rval

s

for

Piz

za B

Nu

mb

er o

f p

epp

ero

ni

pie

ces

per

sli

ce o

f p

izza

Data Point

Appen

dix

B

B-1

0

H.

Pre

sen

tin

g Y

ou

r E

xp

erim

enta

l R

esu

lts

You s

hould

routi

nel

y p

rese

nt

your

exper

imen

tal

dat

a in

ter

ms

of

the

aver

age

± C

.I.

EX

PE

RIM

EN

TA

L R

ES

UL

T =

AV

ER

AG

E ±

CO

NF

IDE

NC

E I

NT

ER

VA

L

Rem

ember

: T

he

confi

den

ce i

nte

rval

should

alw

ays

be

rounded

to o

ne

signif

ican

t dig

it

(unle

ss t

he

signif

ican

t dig

it i

n t

he

C.I

. is

one,

then

kee

p t

he

seco

nd d

igit

as

wel

l) a

nd t

he

aver

age

val

ue

should

be

rounded

to a

gre

e w

ith t

he

confi

den

ce l

imit

. In

oth

er w

ord

s, t

he

pre

cisi

on o

f your

aver

age

val

ue

and C

.I. m

ust

be

the

sam

e (r

eport

ed t

o t

he

sam

e num

ber

of

dec

imal

pla

ces)

.

For

the

Ni

dat

a in

Tab

le 1

, you w

ould

expre

ss t

he

exper

imen

tal

resu

lt a

s 5.0

17 ±

0.0

07 g

.

For

the

piz

za B

dat

a, y

ou w

ould

expre

ss t

he

exper

imen

tal

resu

lt a

s 5.0

± 1

.8 p

iece

s.

I.

Usi

ng C

on

fid

ence

In

terv

als

Yo

u w

ill

most

oft

en u

se c

onfi

den

ce i

nte

rval

s to

det

erm

ine

if y

our

exper

imen

tal

resu

lts

agre

e w

ith t

he

expec

ted o

r "t

rue"

res

ult

. Y

our

val

ue

for

the

aver

age

wil

l ra

rely

be

iden

tica

lly t

he

sam

e as

the

"tru

e" r

esult

. H

ow

ever

, w

e d

o e

xpec

t th

e co

nfi

den

ce i

nte

rval

to i

ncl

ude

the

"tru

e" r

esult

. I

f th

is i

s so

we

say t

hat

the

two "

agre

e."

Conver

sely

, if

the

"tru

e" r

esult

lie

s ou

tsid

e th

e co

nfi

den

ce i

nte

rval

, you s

hould

concl

ude

that

the

exper

imen

tal

and "

true"

res

ult

s ar

e si

gnif

ican

tly d

iffe

ren

t. In

the

conte

xt

of

our

labora

tory

, th

is u

sual

ly i

ndic

ates

a s

yst

emati

c er

ror

in m

easu

rem

ent

dev

ice

or

pro

cedure

.

In t

he

larg

er c

onte

xt

of

scie

nti

fic

exper

imen

tati

on, it

can

mea

n t

hat

your

hypoth

esis

nee

ds

som

e ti

nker

ing o

r ev

en a

maj

or

over

hau

l.

J.

Th

e S

ingle

Exp

erim

enta

l R

esu

lt

Ther

e is

an i

ntu

itiv

e noti

on, su

pport

ed b

y s

tati

stic

al t

heo

ry, th

at t

he

qual

ity o

f an

exper

imen

tal

resu

lt w

ill

impro

ve

as t

he

num

ber

of

exper

imen

tal

tria

ls i

s in

crea

sed.

Unfo

rtunat

ely, it

is

not

alw

ays

pra

ctic

al t

o m

ake

repea

t obse

rvat

ions.

A m

easu

rem

ent

may

tak

e to

o l

ong t

o b

e re

pea

ted, or

the

obse

rved

par

amet

er m

ay b

e ch

angin

g w

ith t

ime.

Conse

quen

tly, m

any C

hem

122 l

abora

tory

com

puta

tions

wil

l be

bas

ed o

n s

ingle

tri

al

obse

rvat

ions.

The

single

obse

rved

val

ue

is c

lear

ly t

he

"bes

t" v

alue

for

a si

ngle

tri

al o

bse

rvat

ion (

The

resu

lt s

hould

be

expre

ssed

as

this

val

ue

± e

stim

ated

err

or)

. T

he

esti

mate

d e

rror

must

be

bas

ed o

n t

he

exper

imen

tali

st's

subje

ctiv

e "g

ues

stim

atio

n"

of

the

unce

rtai

nty

in t

he

mea

sure

men

t. T

he

esti

mat

ed e

rror

can b

e no s

mal

ler

than

the

least

cou

nt

of

the

mea

suri

ng d

evic

e (1

/10 t

he

smal

lest

rea

dab

le s

cale

div

isio

n),

but

it m

ay b

e la

rger

if

ther

e

is a

flu

ctuat

ion i

n t

he

obse

rved

val

ue

or

if t

he

mea

suri

ng d

evic

e is

dif

ficu

lt t

o r

ead. It

should

be

obvio

us

that

no s

tati

stic

al

infe

rence

can b

e dra

wn f

rom

a s

ingle

tri

al

exper

imen

tal

resu

lt o

r fr

om

any

com

puta

tion b

ase

d o

n t

hat

resu

lt.

11

Appen

dix

B

B-1

1

K.

Th

e Q

Tes

t fo

r R

ejec

tin

g a

Su

spec

t O

bse

rvati

on

Suppose

we

atte

mpte

d t

o i

mpro

ve

the

Tab

le 1

res

ult

by a

ddin

g a

fourt

h m

easu

rem

ent,

obta

inin

g v

alues

of

5.0

18, 5.0

14, 5.0

19 a

nd 5

.045 g

for

the

mas

s of

our

nic

kel

. O

ur

intu

itio

n l

eads

us

to s

usp

ect

the

5.0

45 g

val

ue.

Per

hap

s th

e bal

ance

zer

o s

hif

ted. P

erhap

s a

read

ing e

rror

was

mad

e. P

erhap

s th

e nic

kel

was

han

dle

d w

ith w

et f

inger

s.

Cle

ar e

vid

ence

of

a non-r

andom

err

or

is s

uff

icie

nt

cause

to e

lim

inat

e a

susp

ect

val

ue.

Sin

ce t

he

oth

er v

alues

are

so c

lose

to o

ne

anoth

er, it

is

tem

pti

ng s

imply

to t

hro

w o

ut

the

5.0

45 g

res

ult

. H

ow

ever

, th

e hig

h v

alue

could

be

the

resu

lt o

f an

im

pro

bab

le, but

not

imposs

ible

, co

mbin

atio

n o

f ra

ndom

err

ors

. If

this

is

the

case

, th

e m

easu

rem

ent

is v

alid

and s

hould

be

inco

rpora

ted i

n t

he

exper

imen

tal

resu

lt. A

sta

tist

ical

tes

t ca

lled

the

Q

TE

ST

is

oft

en u

sed t

o e

stab

lish

a c

rite

rion f

or

dis

tinguis

hin

g b

etw

een a

n e

rroneo

us

resu

lt

and a

n i

mpro

bab

le c

om

bin

atio

n o

f ra

ndom

err

ors

.

The

Q F

AC

TO

R i

s co

mpute

d a

s fo

llow

s:

The

gap

is

the

dif

fere

nce

bet

wee

n t

he

susp

ect

val

ue

and t

he

nea

rest

val

ue.

T

he

ran

ge

is

the

dif

fere

nce

bet

wee

n t

he

hig

hes

t an

d l

ow

est

val

ues

incl

udin

g t

he

susp

ect

resu

lt. I

n o

ur

four

tria

l ex

per

imen

t,

Tab

le 3

. V

alues

of

Q f

or

90%

Rej

ecti

on Q

uoti

ent

The

com

pute

d Q

fac

tor

is n

ow

com

par

ed w

ith t

he

90%

rej

ecti

on q

uoti

ent

in T

able

3. W

e co

ncl

ude

that

the

5.0

45 g

res

ult

is

not

val

id, si

nce

its

ran

ge

quoti

ent

of

0.8

4 i

s G

RE

AT

ER

than

the

0.7

6

reje

ctio

n q

uoti

ent

for

a fo

ur

tria

l ex

per

imen

t. S

ince

we

are

dea

ling w

ith a

90%

rej

ecti

on q

uoti

ent,

we

say t

hat

ther

e is

a 9

0%

pro

bab

ilit

y t

hat

the

5.0

45 g

tria

l w

ould

not

resu

lt f

rom

any c

om

bin

atio

n o

f

ran

dom

err

ors

. T

her

efore

, w

e ca

n c

oncl

ude

that

a

syst

emati

c er

ror

was

inad

ver

tentl

y i

ntr

oduce

d a

nd

we

rem

ove

the

5.0

45 g

val

ue

from

the

dat

a se

t

bef

ore

the

aver

age

is c

om

pute

d.

TH

E Q

TE

ST

MA

Y B

E A

PP

LIE

D O

NL

Y O

NC

E T

O

A G

IVE

N S

ET

OF

DA

TA

n

Q (

Rej

ecti

on Q

uoti

ent,

90%

)

2

----

3

0.9

4

4

0.7

6

5

0.6

4

6

0.5

6

7

0.5

1

8

0.4

7

9

0.4

4

10

0.4

1

11

0.3

9

12

0.3

8

!

----

Appen

dix

B

B-1

2

L.

Th

e t

Tes

t

The

t te

st i

s use

d t

o d

eter

min

e w

het

her

an e

xper

imen

tall

y d

eter

min

ed v

alue

is s

tati

stic

all

y

dif

fere

nt

than

the

know

n t

rue

val

ue.

Suppose

you a

re g

iven

a s

ample

of

man

gan

ese-

conta

inin

g s

teel

. T

he

label

rea

ds

11.0

0 %

Mn. B

eing a

n e

xper

imen

tal

chem

ist,

you c

hoose

to d

eter

min

e th

e %

Mn f

or

yours

elf.

You t

ake

5 s

ample

s an

d d

eter

min

e %

Mn o

f ea

ch s

ample

. Y

our

resu

lts

are

sum

mar

ized

bel

ow

:

ex

perim

en

t #

% M

n

1

9

.95

2

1

0.1

7

3

1

0.2

2

4

1

0.4

8

5

1

0.3

1

Intu

itiv

ely, it

sure

looks

like

this

bott

le i

s m

isla

bel

ed. H

ow

sure

are

you?

The

t te

st

allo

ws

you t

o p

ote

nti

ally

rule

out

this

bott

le a

s th

e 11.0

0 %

Mn s

ample

. Y

ou’l

l se

ek t

o

reje

ct t

he

foll

ow

ing h

ypoth

esis

:

This

bott

le c

onta

ins

stee

l w

ith 1

1.0

0 %

Mn. T

he

dif

fere

nce

bet

wee

n t

his

tru

e va

lue

and

the

exper

imen

tal

resu

lt i

s pure

ly d

ue

to r

andom

err

or.

Fir

st, get

the

stat

isti

cal

info

rmat

ion a

lrea

dy d

escr

ibed

in t

his

appen

dix

. Y

ou s

hould

fin

d:

Aver

age

()

Sta

ndar

d d

evia

tion (

s)

95%

C.I

.

10.2

3

0.1

94

0.2

41

Acc

ord

ing t

o t

he

rule

s fo

r si

gnif

ican

t fi

gure

s, t

he

resu

lt i

s re

port

ed %

Mn =

10.2

± 0

.2 %

.

Now

, you t

est

the

hypoth

esis

by c

alcu

lati

ng t

he

t st

atis

tic

(tca

lc)

and c

om

par

ing i

t to

the

crit

ical

val

ue

of

t (t

crit)

in T

able

2 (

n =

5, 95%

, t

= 2

.776).

If

tca

lc >

tcrit t

hen

th

e

hyp

oth

esis

is

reje

cted

. S

tep b

y s

tep:

1.

Cal

cula

te t

:

wher

e

=

av

erag

e %

Mn =

10.2

3

µ =

tr

ue

val

ue

of

% M

n =

11.0

0 (

assu

med

for

this

tes

t)

s =

s

tandar

d d

evia

tion =

0.1

94

2.

Com

par

e t c

alc

wit

h t

crit. H

ere

t cal

c(8.8

7)

> t

crit(2

.776).

3.

Concl

ude

that

the

hypoth

esis

can

be

reje

cted

wit

h a

t le

ast

95%

cer

tain

ty.