experiment in ps g. franchetti, gsi cern, 20-21/5/2014 21/05/14g. franchetti1

38
Experiment in PS G. Franchetti, GSI CERN, 20-21/5/2014 21/05/14 G. Franchetti 1

Upload: magdalene-douglas

Post on 05-Jan-2016

215 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Experiment in PS G. Franchetti, GSI CERN, 20-21/5/2014 21/05/14G. Franchetti1

G. Franchetti 1

Experiment in PS

G. Franchetti, GSICERN, 20-21/5/2014

21/05/14

Page 2: Experiment in PS G. Franchetti, GSI CERN, 20-21/5/2014 21/05/14G. Franchetti1

G. Franchetti 2

PS measurements 2012

21/05/14

R. Wasef, A. Huschauer, F. Schmidt, S. Gilardoni, G.Franchetti

qy0 = 6.471.1s

Resonance: qx+2 qy = 19

I = 2ADqx = -0.046Dqy = -0.068

Measurement

Qx0 SPACE CHARGE 2013

Page 3: Experiment in PS G. Franchetti, GSI CERN, 20-21/5/2014 21/05/14G. Franchetti1

G. Franchetti 3

Presence of natural resonance was not included, then we tried by enhancing the resonance strength

21/05/14

I=4ASimulation

qy0 = 6.47

Page 4: Experiment in PS G. Franchetti, GSI CERN, 20-21/5/2014 21/05/14G. Franchetti1

G. Franchetti 4

For a stronger resonance excitationbut this is an artificial enhancement

21/05/14

I=6ASimulation

qy0 = 6.47

Page 5: Experiment in PS G. Franchetti, GSI CERN, 20-21/5/2014 21/05/14G. Franchetti1

G. Franchetti 5

Modeling was still incomplete

21/05/14

I=2A

qy0=6.47

Simulation

new simulationsperformed after the visit of Frank Schmidt at GSI. Correcting the PS model in computer code.

Page 6: Experiment in PS G. Franchetti, GSI CERN, 20-21/5/2014 21/05/14G. Franchetti1

G. Franchetti 6

Adding random errors

21/05/14

sigma = 10%

sigma = 10% but distribution of errorswith inverted sign, same seed (“inverted seed”)

Page 7: Experiment in PS G. Franchetti, GSI CERN, 20-21/5/2014 21/05/14G. Franchetti1

G. Franchetti 7

For larger random errors of the same seed

21/05/14

sigma = 20% inverted seed sigma = 40 % inverted seed

Page 8: Experiment in PS G. Franchetti, GSI CERN, 20-21/5/2014 21/05/14G. Franchetti1

G. Franchetti 8

Emittance evolution

21/05/14

qx0 = 6.1

qx0 = 6.1

1.5 sec

qy0 = 6.47

Measurement Simulation “inverted seed” 10%

Page 9: Experiment in PS G. Franchetti, GSI CERN, 20-21/5/2014 21/05/14G. Franchetti1

G. Franchetti 9

Final/Initial distribution for the “inverted seed” 10%, I=2A

21/05/14

initialfinal

initialfinalqy0 = 6.47

qx0 = 6.11qy0 = 6.47qx0 = 6.11

Page 10: Experiment in PS G. Franchetti, GSI CERN, 20-21/5/2014 21/05/14G. Franchetti1

G. Franchetti 10

With a stronger current I=4A, to include artificially a pre-existing resonance

21/05/14

coregrowth thick

halo

initialfinal

initialfinal

Y [mm]X [mm]

qy0 = 6.47qx0 = 6.11

qy0 = 6.47qx0 = 6.11

SimulationSimulation

“inverted seed” 10% “inverted seed” 10%

Page 11: Experiment in PS G. Franchetti, GSI CERN, 20-21/5/2014 21/05/14G. Franchetti1

G. Franchetti 11

Halo formation: experiment

21/05/14

qy0 = 6.47qx0 = 6.11

Measurement Measurement

YX

Page 12: Experiment in PS G. Franchetti, GSI CERN, 20-21/5/2014 21/05/14G. Franchetti1

G. Franchetti 12

Challenges

21/05/14

The main challenges are 2

1) Reliable modeling of the nonlinear lattice

2) Understanding the coupled dynamics in the resonance crossing + space charge

Page 13: Experiment in PS G. Franchetti, GSI CERN, 20-21/5/2014 21/05/14G. Franchetti1

G. Franchetti 13

1D dynamics well understood

21/05/14

The asymmetric beam response is mainly attributed to the resonance crossing of a coupled resonance.

Third order resonance 1D

Page 14: Experiment in PS G. Franchetti, GSI CERN, 20-21/5/2014 21/05/14G. Franchetti1

G. Franchetti 14

Halo formation/core formation

21/05/14

If the island of the frozen system go far out, than an halo is expected

If the islands of the frozen system remain inside the beam edge core growth

Page 15: Experiment in PS G. Franchetti, GSI CERN, 20-21/5/2014 21/05/14G. Franchetti1

G. Franchetti 15

Halo formation through non adiabatic resonance crossing

21/05/14

Third order resonance 1D

Halo

Page 16: Experiment in PS G. Franchetti, GSI CERN, 20-21/5/2014 21/05/14G. Franchetti1

G. Franchetti 16

Coupled dynamics much more difficult

21/05/14

What is it an island ?What is it a fix point ?

Resonance

Page 17: Experiment in PS G. Franchetti, GSI CERN, 20-21/5/2014 21/05/14G. Franchetti1

G. Franchetti 17

Fix-lines

21/05/14

Fix points are points in phase space that after 3 turns go back to their initial position

In 4D this dos not happen, but in 4D after 3 turns a point does not return back on the same point. However there are points that after each turn remains on a special curved line. This line is closed and it span in the 4D phase space.

3 Qx = N

Qx + 2Qy = N

Page 18: Experiment in PS G. Franchetti, GSI CERN, 20-21/5/2014 21/05/14G. Franchetti1

G. Franchetti 18

Fix-line projections

22/5/2014

Frank Schmidt

PhD

Page 19: Experiment in PS G. Franchetti, GSI CERN, 20-21/5/2014 21/05/14G. Franchetti1

G. Franchetti 19

Properties

22/5/2014

What are the parametersthat fix these sizes ?

Δr K2 (driving term)Stabilizing detuning(space charge, octupole, sextupole-themself)

Page 20: Experiment in PS G. Franchetti, GSI CERN, 20-21/5/2014 21/05/14G. Franchetti1

G. Franchetti 20

What happen to the islands ?

21/05/14

Page 21: Experiment in PS G. Franchetti, GSI CERN, 20-21/5/2014 21/05/14G. Franchetti1

G. Franchetti 21

What happen to the islands ?

21/05/14

fix- line “island”

Page 22: Experiment in PS G. Franchetti, GSI CERN, 20-21/5/2014 21/05/14G. Franchetti1

G. Franchetti 22

For sextupoles alone fix-lines set DA !

21/05/14

From tracking From theory

axax

ayay

Page 23: Experiment in PS G. Franchetti, GSI CERN, 20-21/5/2014 21/05/14G. Franchetti1

G. Franchetti 23

What do the stable fix-lines do to the beam ?

21/05/14

After 10000 turns

Here we change the distance of the resonance. Stabilization with an octupole

Page 24: Experiment in PS G. Franchetti, GSI CERN, 20-21/5/2014 21/05/14G. Franchetti1

G. Franchetti 2421/05/14

Page 25: Experiment in PS G. Franchetti, GSI CERN, 20-21/5/2014 21/05/14G. Franchetti1

G. Franchetti 2521/05/14

Page 26: Experiment in PS G. Franchetti, GSI CERN, 20-21/5/2014 21/05/14G. Franchetti1

G. Franchetti 2621/05/14

Halo

Core growth

y

x

Page 27: Experiment in PS G. Franchetti, GSI CERN, 20-21/5/2014 21/05/14G. Franchetti1

G. Franchetti 2721/05/14

Page 28: Experiment in PS G. Franchetti, GSI CERN, 20-21/5/2014 21/05/14G. Franchetti1

G. Franchetti 2821/05/14

Page 29: Experiment in PS G. Franchetti, GSI CERN, 20-21/5/2014 21/05/14G. Franchetti1

G. Franchetti 2921/05/14

Page 30: Experiment in PS G. Franchetti, GSI CERN, 20-21/5/2014 21/05/14G. Franchetti1

G. Franchetti 30

Effect of space charge: Gaussian round beam

21/05/14

Qx + 2 Qy = N

DQy

DQsc

Page 31: Experiment in PS G. Franchetti, GSI CERN, 20-21/5/2014 21/05/14G. Franchetti1

G. Franchetti 31

3rd order fix-line controlled by the space charge of a Gaussian CB

21/05/14

DQsc = -0.048

DQy = 0.08

Page 32: Experiment in PS G. Franchetti, GSI CERN, 20-21/5/2014 21/05/14G. Franchetti1

G. Franchetti 3221/05/14

DQsc = -0.093

DQy = 0.08

Page 33: Experiment in PS G. Franchetti, GSI CERN, 20-21/5/2014 21/05/14G. Franchetti1

G. Franchetti 3321/05/14

DQsc = -0.3

DQy = 0.08

x [1]

y [1

]

Page 34: Experiment in PS G. Franchetti, GSI CERN, 20-21/5/2014 21/05/14G. Franchetti1

G. Franchetti 34

trapping/non trapping

21/05/14

Resonance crossing without trapping Resonance crossing with trapping

FAST (10000 turns) SLOW (10000 turns)

Page 35: Experiment in PS G. Franchetti, GSI CERN, 20-21/5/2014 21/05/14G. Franchetti1

G. Franchetti 3521/05/14

Resonance crossing with trapping + larger fix-line

Page 36: Experiment in PS G. Franchetti, GSI CERN, 20-21/5/2014 21/05/14G. Franchetti1

G. Franchetti 36

time evolution fast crossing

21/05/14

Page 37: Experiment in PS G. Franchetti, GSI CERN, 20-21/5/2014 21/05/14G. Franchetti1

G. Franchetti 37

time evolution slow crossing

21/05/14

Page 38: Experiment in PS G. Franchetti, GSI CERN, 20-21/5/2014 21/05/14G. Franchetti1

G. Franchetti 38

Summary

21/05/14

After the lattice model is improved the simulation shows an emittanceincrease ratio of 2

Beam distribution from simulations have the same pattern as for the measured

Theory of the fix-lines with detuning (space charge or octupoles) is essential to understand the extension and population of the halo/core growth hence to control the negative effects: impact on effective resonance compensation in SIS100…. but it would be nice to measure it!

Random errors have a significant effect and may bring the emittance growthratio to 2.5

A pre-existing resonance is not properly included

The asymmetric beam response is explained in terms of the periodic crossing of fix-lines with the beam