experimental fracture and mechanical properties of … \'ariety of methods i nel ud i ng sa...

9
Annals Glaciolog)l 23 1996 © Internation al Gl acio logica l Society Experimental fracture and mechanical properties of Antarctic ice: preliminary results M. A. Rl ST, P. R . SA. \E'lONDS, S. A. F. MuRRELL, P. G. MEREDITH , Rock and l ee Ph ysics Lab omtm), Departm e nt if Geologiwl Sciences, Uni ver sity College London, L ondon rvCI E 6BT, England H. OERTER , Polar- und Nleere,iforsc /zWlg, D- 27515 Bremerltaven, Germall)1 C. S. M. DOAKE Briti sh Antarctic SUl' v,!-Jl, Nalural En v ironmen t Research CoullciL, Cambridge, CB3 OET, England ABSTRACT , An ex perim e nt a l s tud y of the fractur e me c hani cs and rh eology of ice from the R onne Ice Shelf, Antarctica, is c urrentl y bein g undertaken. The apparent criti ca l s tr ess-in tensi ty factor (or apparen t fractu re toughn ess, K Q) for c ra ck prop aga tion ba s been meas ur ed using a thr ee- poin t be nd me thod for ind ucing c rack g rowth pe rp e ndi c ular to the axis of cyl indri ca l ice- core specim ens. Ten sile c rack nucl ea tion und er a pp lied uniaxi al com pr essive s tr ess ha s also been eva luat ed. Both method s ha\'e a llowed a profile of ice elast ic and fracture prop e rtie s with de pth through th e ice shelf to be constructed. Pr eliminary r es ult s indi ca te that the meas ur ed elastic modulu s incr eases with de pth through the firn a nd upp er met eoric ice before r eac hin g a cons tant value in the deeper, den se meteoric a nd ba sa l marine ice. The resistance to fr ac tur e, as meas ur ed by chan ges in a pparent fractur e tou g hne ss and c rack-nucl ea tion s tr ess, incr eases with depth ri g ht through the Urn and met eo ri e ice la yers. A simpl e fi'acture mec hanic s mod el applied to the Ronne Ice She lf indicate s th at crevasses fo rm from small s urfa ce c rack s, less th an 40 em deep, which quick ly grow to de pth s of 40-60 m a nd th en r ema in st ab l e. INTRODUCTION Th ere has been mu eh rece nt fi eld and la borator y research that h as ga thered s ub sta ntial data on the Filchner- Ronne Ic e Shelf Ice velocit y, str a in rate , s urf ace elevation , thi ckn ess and int e rn al s tru c tur e h ave been inv es ti gated by a \'a riet y of met hods i nel ud i ng sa telli te al time tr y, radio- echo so undin g an d seism ic s ur veying. Shallow pits and cores h a\ 'e im'estigated the upper rirn la ye rs and d eep hot-water an d mc chani ca l drills h a\'e pene tr ated the e ntir e ice-s helf thickness. Analysis of retrieved cores has i ncl ucl ed ch emica l, iso t op ic an d co nd ucti\·i ty measure- me nt s. Un lil now, howe\,er, no labora t ory study has inv es ti ga ted ice-mechani ca l properties. 1 n th e main, this has been due lO the s hortage of sufIici ent quantities of ice cor es f or a systema ti c im'esti gat ion to be und ert aken. Now the dee p-h ole co rin g exped ition s of the Alfred- W egene r-In s titut (A \VI) to the R onne Ice Shelf in 1990 and 1992 h a\ 'e made a \'a il a ble su Oi c ien t qu an ti ties of large-di ame ter ice corcs to the examina ti on or the fracture and sh ort -term rheology of Antarctic ice. The a im is to app ly the deri\'Cd material parameters to help exp la in the mechanics of specific ice-shelf processes s Ll ch as crevasse forma ti on a nd tidal fl ex ur e. \\ 'e are c urr ently developing a number of techniques for im'est i ga ting the fracture and mechanical prop ert ies of 284 cy lindri ca l ic e cores using uniqu e cold-room facilities a nd lesling a pp a ratu s at University Co ll ege London (UCL ). A three-point bend method ( Fi g. la ) allows th e inves ti ga tion of c ra ck grow th from an artificial n otc h in a direction perp e ndi cular to the ice-core ax is. On e-half of this specimen ca n s ub seq uently be used for unia xial com pr ession testing (Fi g. Ib ), in which it is possible to det e rmin e crac k nucl eat ion a nd ice -rh eolog ic al para- meters. \V e d esc rib e both of these methods in this paper a nd present o ur first results on Antarctic ice cores along with some pr eliminarv analys is ol'how fi 'ac tur e-mechani cs res ult s may be ap plied to ice sheh 'es. Our cu rr e nt work is on go ing and we h el\,(, a lso designed ap paratu s to im'es ti gate crac k grow th parallel to the ice-core aX Is using a notched sh or t-rod specimen (Fig. lc). FRAC TURE MECHANICS Ce nlr al to the development of o ur experimen ta l approach has becn the nced to meas ur e accura lel y a material parameter ca ll ed th e }i'actllre tOllghness [or natural ice. In lin ea r elas ti c fracture mechani cs , the tensil e, or lHode I, s tr ess-in tensi ty f actol', written J(" describes the magni- tude of the s tre sses aro und a crac k tip and de pend s simpl y on the a pplied load a nd crac k geome tr y. Thi s stress-

Upload: duongkhuong

Post on 18-Mar-2018

215 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Experimental fracture and mechanical properties of … \'ariety of methods i nel ud i ng sa telli te al timetry, radio echo sounding and seismic surveying. Shallow pits and cores ha\'e

Annals ~f Glaciolog)l 23 1996 © International Glaciological Society

Experimental fracture and mechanical properties of Antarctic ice: preliminary results

M . A. RlST, P. R . SA.\E'lONDS, S. A. F. MuRRELL, P. G. MEREDITH,

Rock and lee Physics Labomtm), Department if Geologiwl Sciences, University College London, London rvCI E 6BT, England

H . OERTER , Alfred-~Vegener-lnstiLutJiir P olar- und Nleere,iforsc/zWlg, D-27515 Bremerltaven, Germall)1

C. S. M. DOAKE

British Antarctic SUl'v,!-Jl, Nalural Environment Research CoullciL, Cambridge, CB3 OET, England

ABSTRACT, An ex perimenta l stud y of the fracture mechanics and rh eology of ice from the R onne I ce Shelf, Antarctica, is currentl y being undertaken. The apparent criti ca l stress-in tensi ty factor (or apparen t fra ctu re toughn ess, K Q) for crack propaga tion bas been m eas ured using a three-poin t bend method for ind ucing crack growth perpendicular to the axis of cylindrica l ice-core specimens. Tensile crack nuclea tion und er a pplied uniaxi a l com press ive stress has a lso been eva luated. Both methods ha\'e a llowed a profile of ice elastic and fracture properties with d epth through the ice shelf to be constructed. Prelimina ry res ults indica te that the m easured elastic modulus increases with d epth through the firn a nd upper meteori c ice before reaching a constant value in the d eeper, dense meteori c a nd basa l marine ice . The resistance to frac ture, as measured by changes in a pparent fracture toughness and crack-nucl ea tion stress, increases with depth right through the Urn and meteo ri e ice layers. A simple fi'acture mechanics mod el applied to the Ronne Ice Shelf indicates that crevasses fo rm from sma ll surface cracks, less than 40 em deep, which quick ly grow to depths of 40-60 m a nd then remain stable.

INTRODUCTION

Th ere has been mueh recent fi eld and la boratory research that has ga th ered substa ntial d a ta on th e Filchner- Ronne

Ice Shelf I ce ve loc ity, stra in rate, surface elevation, thi ckn ess and internal structure have been inves ti gated by a \'a riety of methods i nel ud i ng sa telli te al timetry, radio­echo sounding and seism ic surveying. Shallow pits and cores ha\ 'e im'estigated the upper rirn laye rs and deep hot-water and mccha nica l drills ha\'e penetra ted the entire ice-shelf thickness . Analysis of retrieved cores has

i ncl ucl ed chemica l, iso topic and cond ucti\·i ty measure­ments. Un lil now, howe\,er, no labora tory study has investiga ted ice-m echa nical properties. 1 n th e main, this has been due lO the shortage of sufIi cient quantities of ice cores for a system a ti c im'est igation to be undertaken.

Now the d eep-hole coring exped itions of the Alfred­

W egener-Institut (A \VI ) to the R onne I ce Shelf in 1990 a nd 1992 ha\ 'e made a \'a il a ble su Oi cien t quan ti ties of la rge-di ame ter ice co rcs to f ~lcilitate the examina tio n or the fracture and short -term rheology of Antarctic ice. The a im is to app ly th e deri\'Cd material parameters to help exp la in the mechanics of specific ice-shelf processes sLl ch

as crevasse fo rm a ti on a nd tid a l fl ex ure. \\'e are currentl y deve loping a number of techniques

for im'est iga ting th e fracture and mechanical propert ies of

284

cy lindrica l ice cores using unique co ld-room facilities a nd lesling a ppa ratus at University Co ll ege London (UCL). A three-point bend method (Fig . la ) allows th e inves ti ga tion of crack grow th from a n artificial notch in

a direction perpendicul ar to the ice-co re axis. One-half of

thi s specim en can subseq uentl y be used for unia xia l com pression testing (Fig. Ib ), in which it is possible to determine crac k nucleation a nd ice-rh eolog ical para­meters. \Ve describe both of th ese m eth ods in thi s paper a nd present o ur first results on Antarctic ice co res along

with some prelimin a rv a na lys is ol'how fi'ac ture-mecha ni cs results may be ap plied to ice sheh 'es. Our cu rrent work is o ngoin g and we hel\,(, a lso designed ap paratu s to

im'es ti gate crack growth parallel to the ice-co re aX Is using a notched short-rod specimen (Fig. l c).

FRACTURE MECHANICS

Cenlral to the development of o ur experim en ta l approach has becn the nced to meas ure accura lel y a material parameter ca ll ed th e }i'actllre tOllghness [or natural ice. In

linea r elasti c fracture m echa ni cs , the tensil e, or lHode I, stress-in tensi ty factol', written J(" describes the magni­tude of the stresses aro und a crack tip and d epends simpl y on the a ppli ed load a nd crac k geo metry. This stress-

Page 2: Experimental fracture and mechanical properties of … \'ariety of methods i nel ud i ng sa telli te al timetry, radio echo sounding and seismic surveying. Shallow pits and cores ha\'e

Risl alld olhers: EI/Jerimfnlal j raclure alld lIIechanical /Ho/Je/"Iies oj .-llIlarclic ice

a

b c

F

~ , F

F<!!, . 1. l~\/JCrilllelllal geomelrie.ljin measllrillg Iheji'atlllre and lIIechallical /Hoperlie.1 if ([ I)'dilldrical ice core: (a) Ihree-poilll bend leslillg, (b) ulli(l\ial cOIll/Hessioll leslillg . (c) shorl-rod le.l/illg . M elhod.1 (b) alld (() ('a ch USf 0111'­

ha(/" oj Ihe specimet/ used for melhod (a).

in te nsit y facLOr has a criliral '"<d uc, \\Tilt c n 1\J(', fo r \\' hi c h

rap id, unsla b lc tc nsil e cracK pro paga ti o n \\' ill occur

thi s is th e frac ture to ug hn ess. In th e ge ne ra l case, we m ay

IIT Il e

I

X[C' = nc:r(7rCl,.)2

wh ere c:r is th e app lied s tress. Cie is th e criti ca l c rac K leng th

a nd Cl: is a geome tri ca l facLO r . Fo r e:-;a m p lc . in th e case of

a n initi a ll y sta b le crack th e criti ca l stress- inte nsit y fac to r

ca n be ac hi eH'd ci th er th ro ug h a n incrcase in th e rC lll o te ly app li ccl s trcss. or a n in crease in the c ra c K Icn g t h. J n pri nc i p lc, [ran Lt re to ug h ness is a sca le­ind ependent para m e ter a nd a true m a teria l pro pe rt>·.

H o\\,e \ 'e r , its e:-; pe ri m e n ta l d e termin a t io n com m o nl >. itll"o h-es a nu mber of inhe rent ass um p tio ns co nce rnin g,

fo r example. th e homogeneo us. iso tropi c a nd lin ea r c las ti c na ture of th e ma teria l. th e na ture o f the cra cK bein g p ro paga ted a nd th e influ ence of tes t geo m e trv o n crac K

p ro paga ti o n . For thi s reaso n , D e lll psey ( 199 1\, lI· hils t

criti ca ll y rn' ie \\'ing th e ice- fract ure to ug hn ess litera ture,

has recom m ended fo ll o \\'in g no rma l pract ice in th e s tu ch '

of brit tlc rocks a nd cerami cs by using th e no ta ti o n 1(Q as a n "appa rC' n t" frac turc to ug h ness to rep rese n t s)" m bo l­ica li y the inherent assu mp ti ons il1\·oh-ed. This nota ti o n

wi ll th erefo re a lso be adopted here.

ICE CORE MORPHOLOGY AND SPECIMEN PREPARA TION

T he ice co res liT halT tes ted ha\'e come fro m th ree

bo reho les dril led b y A \ \"I durin g 1990 92 a t [\1'0 sites 0 11

th e R o nn c I ce Shelf (O en er a nd o th ers, 1992, 1994) , th e

first a bo ut 150 Km no rthwes t o f BerKner Isla nd abo ut

50 km fro m its m a rg in with th e "'edd ell Sea (bo reho les

BI 3 a nd BI 4- ) , th e second a furth e r 200 km upstrea m of

thi s (bo re ho lc BI 5 ) . These dee p co res a rc 72 a nd 100 mm in di a m e ter , ta Ke n to d epth s o r 2 15 an ci 320 m in regio ns \I"her e th e tot a l ice thi CKn ess is 233 a nd 422 m,

res pec ti\T ly. Within th e ice m ass, firn o f m e teoric o ri g in

unde rgoes g radu a l c ha nges in poros it y. c rys tal size a nd

crys ta l fabri c w ith d ep th , be fo re g i\ 'in g \\'ay a bruptl y to a

basal laye r of" m a rin e o ri g in a t a bo ut 153 m d epth . The tex tura l and ph ys ica l pro pe rti es o f th e co res has a lread y bee n repo rt ed (Ei c Ke n a nd o thers, 1994; O en e r a nd

o th ers, 1994- ) . Th e re a re o lw io usly d iITe rences be(\\'ee n th e

cores fro m th e t\l 'O sit es but , o f th e ice \\'e halT tes ted , a ll

th e firn a nd sha Il O\ \' m eteo ri c ice spec im ens (d o\\'n to

5+ m ). as well as th e sha llow m a rin e ice spec im ens ( 160

180 m ) , ha \T co m e fro m th e B 13 / B 14 si te; a 11 th e o ther ice is fro m B1 5. For th e purpose o r prese ntin g p re li m in a ry

res ults. \\T \\·ill rep rese nt th ese d a ta as a sing le ice-she lf

pro filc .

W e han' so fa r complet ed t\\·o suites o f tes ts o n 13

large co re pi eces, up to 57 c m in le ng th . All th e ice has

bee n Kep t in sto rage a t 1\\\' 1 a nd eeL a t a te m pe rat urc

of 30 C. Th rce ho ri zo nt a l thin sect io ns ha\'e bee n ta Ke n

fro m eac h co re pi ece, a t th e up pe r a nd 10 \\T r e:-; tremiti es

a nd a lso a t th e centre, imm edi a tel y a djacent to th e

fi 'ac tu re s urf~l ce a ft e r co m p letio n of th e initi a l three-point

bend tcs ts. G ra in-size was e:-;a min ecl using enl arged p ho tograp hs of th e thi n scct io ns ta Ken und er crossed po la ri zcrs. Th e mea n gra in di a m etc r \\'as deduced b\ co unting th e numbcr o r g ra ins per unit a rea o f pl a na r

0

50

100

I 150

.J:: 0. Cl.)

Cl 200

250

300

350 o

Marine Ice

2 4 6 8

Fim

Meteoric Ice

• •

10 12 14 16

Mean Grain Diameter (mm)

FI~!!, . 2. (;mill -.li:::.e mea.lllrellle/lls lakl'll./;-olll "eelioll., al lite mllre ( D) alld n/relllilie.1 ( . ) ~ll'adl illilial cort'-le,11 /)il'((, . Thl' .Iolid Iille/ol/owl Ihe trend of Ihe dala from Iltl' (ell Ire . adfo(ml 10 Ihe Iltree-/)oilll betld~F({clllrl' s{lIjaCl' .

285

Page 3: Experimental fracture and mechanical properties of … \'ariety of methods i nel ud i ng sa telli te al timetry, radio echo sounding and seismic surveying. Shallow pits and cores ha\'e

Rist and others: Experimel7 /alfracture and mechanical IJrolJerties of Antarctic ice

o

50

100

~ 150 E-..s::

fr Cl 200

250

300

350 500

Meteoric Ice

Marine Ice

600 700 800

_1

Density (kg m -)

Fim

*

*

900 1000

Fig. 3. Ice-core density Imfile. Data points (*) represent measuremellts from illdividual test slJecimens . T he solid line re/;resen /s a continuolls analysis of the en /ire core with a /JoLynomial best fit above 70 m dejJth and simple averages for the deep meteoric and marine ices.

c ross-sec ti o n , ass uming sph eri ca l geom e try. Th e m easure­m ents a re sho wn in Fig ure 2 a nd compl y with those m ad e b y Eicke n a nd o th e rs ( 1994) in whi c h g ra in-size was fo und to inc rease linea rl y with d epth d own to abo ut 120 m befo re becoming m o re va ri a ble . The solid lin e in

this fi g ure fo ll ows th e tre nd o f th e d a ta fro m the centra l

sec ti on o f each eo re piece . Th e g rain-size o f th e marine-ice specimens is hi g hl y vari ed. D a ta triple ts a t near-id enti cal d epths indi ca te th e va r ia tio n in crys ta l size w ithin a sing le . pecimen. This is neglig ibl e a t sh a llow d epths but ve ry

sig nificant within th e m a rin e ice .

Prior to tes ting, eac h specimen was prec iscl y machined

to size using a n ada pted meta llurg ical machine la th e contained in a co ld room a t - lOoC . Fo r th e three-point bend tes ts, a thin no tc h was c ut a t th e centre o f th e cylindrica l spec imen using a sha rp , thin , chi sel- type blad e.

Th e bl ad e a nd speci m e n we re fi tIed to a modifi ed

histolog ical m icrotome so th a t th e no tch cou ld be cut by

slicing in sma ll increm ents to th e required depth. Acc ura te machinin g o f th e specimens has a ll owed prec ise d etermin a­Li on of spec im en vol um e, a nd hence densi ty, fo r th e ice

tes ted. I t was found th a t th e d e nsity measurem ents

conform ed closely with th ose dedu ced from weighing a nd

measuring o f core pi eces immedi a tely a fter drilling a nd

fro m subseq uent continuo us gamma-ray a bsorption mea­surements o n th e B 15 core (G erl a nd a nd o thers, 1994; O erter a nd o th ers, 1994) . These have indi cated th a t d ensity, p, is roug hly co nsta nt in the d ee per me teori c ice

(72- 153 m ; p = 896±9kg m 3) a nd a lso in th e basa l

m a rine ice (below 153 m ; p = 9 11 ± 6 kg m \ but it is bes t described by a polynomi a l func tio n a bove 70 m (see F ig . 3) .

286

LVDT

SPRJrIG .___1-- ) SUPPORT ROLLER ;;.".,.",;.

L

SIDE VIE\oI

LOAD ING ROLLER

P[F[R[NCE /L--;t;;;;;;,;;;;;~_--..J PLATE

END vr[\oI

HAL F UF SPECIMEN CUT (, wAY TO REVEAL N01 CH

Fig. 4. or otclzed three-point bend sjJecilllen for fracture /o ughlless testing, showillg arrangement for measlIrlllg jnccise bending dijleclioll .

EXPERIMENTAL METHODOLOGY

The ex perimenta l m e th od s d escribed below h avc m ad e use o f a la rge 20 tonn e se rvo-h ydra u li c load fra m e norma ll y used for tes ting roc ks in th e la bo ratori es a t U CL. T he fra m e has been fitt ed with a n I ns tro n

environmenta l ch a mbe r w hich is coo led using liquid N2,

controll a b le to within I QC (a ll tes ts we re conduc ted a t

- 20°C ) . The cha mber has a la rge inte rn a l \ 'o lume ( ~90 I) to inco rpo ra te ice-co re specime ns, tes t m eas u rem en t tra nsd uce rs, a nd i ncl ud es a

d ow fo r direc t o bse rva ti o n d urin g tes ting .

Fracture-toughness testing

fixtur es a nd . . .

vlew\llg W\ll-

A three-po int bend me th od fo r d e termining th e a ppa re nt frac ture to ughness, K Q, o f cylindrica l spec im ens has bee n

d eveloped following th e recomme nd a ti o ns of th e I nte r­

na ti o na l Socie ty for R oc k M echa ni cs (I SR M ) Commis­

sio n o n T es ting M e th ods (1988 ) . The technique a ll o ws th e inves tiga tion o f frac ture propaga ti o n pe rpe ndi c u la r to

th e ice-co re a xis a nd a lso a ll ows examin a tio n o f ice ela sti city. During tes ting, a specim en res ts o n two suppo rt

ro ll ers a nd a compressive load is a pp li ed in increasing

s tress cycles a bove a n a rtifi cia l V -sha ped ligament which

o pens in tension (Figs I a a nd 4 ) . Stric t geom e tr ica l co nstra iJ1ls a re imposed o n the spec ime n size a nd no tc h d im e nsions in ord er to ensure plane st ra in conditi o ns. In p a rti cu la r, th e dista nce be tween th e lower support po ints

is a lways 3.33D , w here D is th e spec im e n d iameter , a nd

th e d e pth to th e tip o f th e V-sh a ped li ga m en t is 0.15D. The tes t-specim en di a m e te rs used in th is stud y were in th e ra nge 60- 100 mm.

Page 4: Experimental fracture and mechanical properties of … \'ariety of methods i nel ud i ng sa telli te al timetry, radio echo sounding and seismic surveying. Shallow pits and cores ha\'e

Rist alld olhers : E \perimenta/ jraclure alld lIIechanical jJro/Jerties cif Antarclic ice

400

Fim (34.5m) T=-20°C a

300

~ ~ 200 0

.....l

100

0 80 100 120 140 160 180 200 220 240

Time (s)

400 Fim (34.5m) T=-20°C b

300

Z '-' "'C 200 «l 0

.....l

100

0.02 0.04 0.06 0.08 0.10

Bending Deflection (mm)

400

Fim (29.8m) T=-20°C c

300

........ b "'C 200 «l 0

.....l

100

0.02 0.04 0.06 0.08 0.10

Bending Deflection (mm)

Fig . 5. 7)/)lcal cyclic loading behaviour oJ Jim ice during three-point bend lesting at 20°C. (a) and (b). l ceJrolll 34.5 m dep th where j aiLlI re occurs abrllplLy wil/lOlI l prior crack growlh. (c) Ice from 29.8 m deplh jar which a challge ill sjJecimen comjJLiance indicates incremenlaL crack growth .

F o r acc ura te assess men t of th e elas tic mod ul us, precise

meas urement of th e bending d enec tion of th e spec im en is

necessary. This is ac hi eved b y th e displacement measure­ment sys tem shown in Fig ure 4. H ere, a saddl e pla te res ts on points, P , d irec tl y a bove th e lower support ro ll e rs. A thin referen ce pla te is inse rted into th e no tch so th a t it

res ts on points, Q, a long th e no tch from a nd is connec ted

to th e saddl e by springs. Two spring-load ed linea r­

va ri a ble differellli a l tra nsformers (L VDTs) measure th e di spl acement be tween points P a nd Q as th e specimen bends. This meth od ensures th a t indenta ti o n o f th e ice by th e loadin g ro ll ers, and o th e r interfacc efTcc ts, a re not includ ed in th e measured di sp lace ment.

During tes ting, th e loading roller was ad\'a nced a nd re trea tcd a t a fi xed ra te ( ~7 x 10 6 ill S I ) contro ll ed by a n ex te rna l displace ment tra nsduce r connec ted to a se l"\ 'o­contro ll ed hydra uli c ac tu a tor. The corres po nding loading

ra te was 10 30 kPa m~ Si, d epending o n specimen sizc, so th a t fa ilurc occ urred within 5- 15s in a sing le loading cycle . T he spec imen-m easurement L \ 'DTs wcrc no t used fo r contro l p u rposes beca use of' th e po tenti a l fo r insta bilit y

during c rac k growth . Th e principl e of th e tes t m e th od ol­

ogy is th a t th e a ppli ed load initi a tes a c rac k a t th e sha rp

no tch roo t which th en increases in leng th as it g rows up wa rds ill -/)/ane th ro ug h th e spec im en. Th e cycli c loadin g is intend ed to prom o te incrementa l c rac k grow th p ri o r to fa ilure, with any ne\\' crack gro\\·th being infe rred fro m cha nges in spec imen compli a nce. The point a t

which J(Q is eva lu a ted is th a t a t whi ch th e stress-intensity

fac to r as a fun c ti on of c rac k leng th is a minimum. Fo r a n " id ea l" lin ea r-clas ti c ma teri a l, this sim p ly occ urs a t pea k load. If, howe\'e r , th e re is sig nifi cant clas tic-pl as ti c d eforma ti on. o r if residu a l bending stresses in th e spec i­

men a re impo rt a nt , th e eva lua ti on poilll has to be

ind ependentl y d e te rmined fo r eac h spec imen. This is

norma ll y do ne by assessing th e " d egree of nOIl-linea rit y" duri ng th e cyc li c load ing seq uences (sce I S R~I Commis­sion on T es ting ~l c th ocl s, 1988) .

'Ye fo und th a t , fo r th e Antarc ti c ice wc tes ted ,

unsta bl e frac ture propaga ti o n a lmos t a lways occ urred

\\'ith th e first crack increment. T ypica l behavio ur fo r firn

ice is sho \\'n in Fig ure 5. The repea ted stress cycles shown in Fig ure 5a did no t res ult in c rac k growth a nd so th e compliance of'this specim en, indi ca ted by th e slope of th e load-di splace ment plo t o f Fig ure 5 b , rem ain ed un­

changed . A difTe rent spec im en , illustra ted in Fig ure 5c,

d oes display a cha nge in its load-di spl ace ment slope prio r

to fa ilure, indi ca ting tha t sta bl e c rac k growth ha d occ urred during th e penultima te cycle. In fac t , thi s was th e onl y spec imen th a t behaved this way a nd was th e sha ll owes t spec im en we tes ted , ta ken a t 29.8 m d epth . It sho uld be no ted th a t a ll loading c urves rem a in ed

rema rka bl y linea r, a ltho ugh th ere is a sma ll hys te res is

effec t (Fig . 5 b a nd c). Th e no n-linea rity nea r th e peak of each load-lim e cycle (Fig . 5a) is due to ro ll e r ind enta ti on, effec ti ve ly lowering th e d efo rm a tion ra te, since thi s was ex terna ll y co ntro ll ed . Th e sudd en unsta bl e frac ture propaga ti o n m ay ha \'e been triggered by a release of

sto red energy in the tes tin g a rra ngem ent, perhaps beca use

of ind enta ti on of th e loading ro ll ers into th e ice surface . On the o th e r ha nd , it m ay mere ly refl ec t th e rema rka bl y brittl e na tu re of ice, which is well known to re ta in hi g h streng th a nd brittl eness to exceptio na ll y hi gh homologo us tempera tures, compa ra ble o nl y to coval ent a nd hydro­

gen-bond ed ce ra mi cs (G a ndhi and Ashb y, 19 79; Ri st a nd

Murrell , 199 1). For thi s type of unsta ble c rack p ro paga ti on , we have

evalua ted ]{Q by a rbitra ril y ass uming a d egree o f crac k growth that minimizes ]{I fo r th e tes t geo metry - thi s

occurs wh en th e crack has adva nced a pproximate ly

0.1 5D from th e tip of th e chev ron li ga ment , ass uming

linea r elas ti c ity. This is realisti c, conside ring th e a pparent clas ti c response o f th e ma te ri a l (whi ch a lso ma kes a n assess ment of th e d egree of non-linea ri ty unnecessa ry) . Howeve r, o ur d eri\ 'ed va lues oC I(Q should be considered a lower-bo und es tim a te fo r th e frac ture to ughness of thi s

type of ice until implementa ti on of th e short-rod tes t (Fig. Ic) , which will help reso h 'C th e iss ue. The short-rod geometry has been shown by Stehn a nd o th ers (1995 ) to

prom o te stabl e c rac k g rowth in na tura l pond ice .

28 7

Page 5: Experimental fracture and mechanical properties of … \'ariety of methods i nel ud i ng sa telli te al timetry, radio echo sounding and seismic surveying. Shallow pits and cores ha\'e

Rist alld others: Experimental ]racture alld mechanical jJrojJerlies of Antarctic ice

/

[

//

LOADING P LAT EN

LVDT / body

J

L VD T core holder

Fig. 6. /;\/Jerilllel/lal sel-up .[rH ullicl\ial cO Il1/nessioll lesling.

Uniaxial cOInpress ion tes ting

\\' e ha \·e d eveloped a compression - tes tin g meth od th a t

a ll ows inyes ti ga tion o f (Tack nu c leation , elasticity a nd

short-term rh eo logy during a sing le tes t on o nc-half of th e

sp ec im en prT\·iously used [or th e three-point bend fra c ture tes t, described a bO\·e . In thi s case, the cYlindri ca l ice core is loaded along its ax is in pure uni ax ia l compression u n ti l the rormation or th e IIrst fcw cracks

occurs. At this point th e specimen is rapid ly unloaded a nd

th e n a llowed to relax.

The simple experimenta l a rra ngem ent is shown in f ig ure 6. The specimen is defo rm ed by ach-ancing a loading ram und e r se n ·o-con trol at a fixed nomina l s train rate ( ~ I x 10 ·-'s \ determined by external di spl ace­

ment transdu ce rs connected to th e hydra u lic actuator.

Specimens were dimensioned so as to provid e a leng th !

di a m e ter rati o as close to 2 .5: I as possible. This is in acco rd a nce with standard prac tice in rock-mechanics tes ting (Jaeger a nd Cook, 1979 ), in order to prom o te a unifo rm st ress fi e ld in th e central pa rt o f th e spec im en

wi th o ut tcnd i ng to i nd ucc buc kl i ng . Prec ise m eas u re­

ments o[ true specim en strain were mad e using sub­

miniature fricti o n-free LVDTs embedded direc tly into th e ice surf;\Ce. These measured strain O\T r the centra l half o f the sp ee imcll where derormation was m os t homoge neo us.

Typical deformation beha\·io ur o f Antarct ic marine

ice during this type of t('sting is show n in Fig ure 7. The

crack nucleatio n stress was determined b y \·isual means ,

using \·ideo recording a nd the nak e-d eye where possibl e, and a lso by th c o nse t or aco usti c e miss io ns. Th e la tt er occur as it rap id release or energy associatecl \\-ith local stress relaxatio ns in th e ice, ge nerating transient elas ti c

\\'a\"('s. These a rc d e tec ted by a piezoe lec tri c transduce r

288

2.0

1.5

--;;;-1.0 0-

~ '" '" ~ 0.5 US

0 .0

-0.5

-2

2.0

1.5

0.5

0_0

8U

Marine Ice ( 16 1.8m) T=-20°C

, a

0 2 4

Specimen Stra in (1 0-4)

Marine Ice ( 16 1 8m) T=-20°C

er

b

100 120 140

Time (5)

-"" E: u,

.21

.0,

:§ l ;.-,

c: l.: 1 ,

160

6 8

lOO

80 0 0 0

::::. 60

'" 'ol ex: E

40 ::l 0

U UJ

-< 20

o 180 200

Fig. 7. 7)jJical deformation oJ marine ice during ul/i(lIial comjJression and subsequenl rela\{/Iioll al 20 c:. (a ) Slress- stra in hisIOI» includillg elastic flllloading hehalliollr. ( h) Slress and acolls/ic emissioll ( AI:) rOllnl rail' l ' frSUS

lime. shu1l'ing how l'isllal cracking c!ose(J' (o rrelales 1l'ilh .'lE 01151'1 .

a ttac hed to th e ice su rrace, amplified and then a nal ysed using comm erci a l m onitoring eq uipment (for d e tai ls see

R ist and ?d urr·ell (1990)) . Although loading is co III pres­

siYe , crack nucl ea ti on still occ urs as a res ult of tfllsile mismatch s tresses at g rain boundaries and th e crack size is of th e order of th e g rain c1iame-tcr. Under uni ax ial stress, c racks tend to rorm with th e ir long axes in the direc tion or

ma ximum compressio n, parallclto the spec imen ax is. Th e

stress at \\·hi ch these ne\\· c rac ks s tart to fo rm can be used

to infe r the cffectiw' tensilc-fi-ac ture tough ness K Q. Aft e-r a fe\\ · cracks ha\ 'e fo rm ed, th e- spec ime n is

rap idly unloaded , in less th a n 250 ms, a nd then a ll()\\Tdto re-lax. The intention is to induce as liul e dam age as possib le throug h crac kin g, so that th e ice ela sti c a nd

rh eo logical properti es ca n be accurately assesse-d. The

Page 6: Experimental fracture and mechanical properties of … \'ariety of methods i nel ud i ng sa telli te al timetry, radio echo sounding and seismic surveying. Shallow pits and cores ha\'e

Risl alld ol!ierJ: El perimenlal j;-{/rlllre (//ld lIIec!ialli({l{ /no/lali e:> of Alllarclic ice

o

50

lOO

:§: 150

..<: i5.. 0)

Cl 200

250

300

350 o

~ Fim IKl

-------------~Dtr - Er ---- -----

Meteoric Ice

Marine Ice

2

o

4

o. .:J

6

Elastic Modulus E' (GPa)

8 10

FijI, . 8 . . \[eamred elastic moduli if Alltarctic ice sjJecimens jiolll IIIree-/)oilll bend (D) alld com/JreJSioll l esls ( . ) al

20 c:.

e fTec tin' elastic modulus, E'. is d e termined direc rl y from

th e reco\'C red st ra in in th e linea r part of th e unloading c UI'\'e (Fig. 7a ). During rel axa ti o n th e tim e-depend e nt delc!J'N1 ('{({slic ('omponent or the c reep stra in is recO\'ered a nd th e remaining strain is the permanent l'is{oll:>

component. These rh eologica l d a ta a rc currently being

a nal ysed .

RESUL TS AND ANALYSIS

Measured elastic nlOduli

D eforma ti o n of the lSR\I three-po int bend geome tr~' has been e\ 'a lu ated by .\latsuki a nd o thers ( 199 1) using bo und a ry-e lem ent analysis. The clastic modulus is gi\'Cn by

, ( . )Si E = 26.7 1 - 0.3761/ D

\\·hcre Si is th e slo pe of the lin ra r load-di spla ccment cunT Fig. 5 b ). D is the spec imcn diam e tcr and 1/ = 0.33 is

Po isson';, ra t io. for th e hendi ng test s, E' \\'as detcrmi ned for each loading cycle a nd then an a\'C'rage taken. Fo r th e

compression tes ts, E' \I'as calcu la ted directly (i'om th e true

specimen st rain and app li ed stress.

The measured clasti c moduli of' th e test specimens is SI1O\\'I1 in Fig ure 8. It ca n be see n that th e m odulus increases with depth through th e Gm bc ro re reaching a consta nt \ 'a lue of' a ro und 6 ± I GPa \I'ithin the dense

meteoric and marine ice. appare ntl y re fl ec tin g c ha nges ill

ice densi t y Fig, 3 ) but no t gra i n-size ( Fig. 2 ) o r ice t ypc.

Th e compress ion data ex hibit much Icss sca tter tha n th e threc-point bend data , probabh- because of' th e nature o r

o

50

lOO

:§: 150

..<: i5.. 0)

Cl 200

250

300

350 o

Fim DD o --------D-~-- --- r1 ------ --- -----

Meteoric Ice

Marine Ice

0 1

DD o

0,2

o o

o

0,3 0.4 0,5

Fig. 9, AJi/](mllt fracture-tol/gllnm l17eaJuremmls Jor . Inlarclic icej'rom Ihree-jJOilll bmd l e.l t" al 20 C.

th e displacement measurement sys tem II'hi c h \\'as lI1tnn ­

sica ll y m ore s tabl e for th e com press ion tes ts, being

embedd ed into th e ice surface rathe r th a n res tin g o n po int contac ts, a nd also m eas urcd large r derormations. I t is diffi c ult to make direc t compari so ns \\' ith other \\'ork because o rth e s trong d epend ence or the measured mod uli ,

fo r example, o n ice type, po ros it y, impurity content a nd

loading; regi me. Hig h-freq ue ncy acoustic wa I'f'-\'e loci ty

meas ure me nts indi ca te a va lu e fo r th e dynamic Young's m odulus orp ure full y d e nse po lycrys tallinc ice to be a bo ul 9G Pa (H obbs, 1974). but it is \\'C II kn oll'n th a t s tati c measureme nts o r ice elas ti c it y a rc depe nd ent o n the tim e

o f' loadin g and magn itude of th e ap pli ed st ress. This is

because of th e con tributi on to deformat io n from th e

delayed clast ic and \'isco us compo ne nts of't he creep strai n (see Sin ha, 1978 ), It m ay be sO lll c\\' ha t surpri sing, therefore. that th e t\\'O lcst Illethods ha\ 'C produ ccd simil a r resu lt s and that deform a tion is so a ppa rentl y

lin ea r-el as ti c. H OII'('\'e r , fo r the cycli c bencling tes ts, th e

duralion of loadin g is rough ly a n o rd er of' mag nitud e

hi g her than that during unl oading a li er com press ion , but th e app li ed s trcsscs a re app rox im atch' an o rder or magnitudc 10\I'er. a nd hCll ce the e rror due to no n-elasti(' efrcus m<l\' be sim ilar. T he oiJserl't'd linea r e1 astic it\ , is . ,

exp lai ned because, O\'er short periods of' till1 e, th e delayed

clas ti c conlributio n is itself pseudo-linea. [n any case.

until the ice rheo logy is f'u ll y cha rac te ri zed, th e \ 'a lues rep rcsentcd in Fig ure 8 arc best co nsidered as "cllccti\'C" moduli rcpresenting rl'iati\ ,(, c ha nges in clas ti c pro perti es thro ug h th e ice shelL

Fracture toughness

During the fi 'ac tLlre-toughness tests . \\'C ass ume lincar-

289

Page 7: Experimental fracture and mechanical properties of … \'ariety of methods i nel ud i ng sa telli te al timetry, radio echo sounding and seismic surveying. Shallow pits and cores ha\'e

Rist and otlzers : Experimental frac/lIre alld mechanical properties oJ Alltarctic ice

0.4

00 o to 20 30 40

No. of Grains Across Specimen Diameter

Fig. 10. Ap/Jarent fi'acture -tollghness measurements for jJure laboratol)!-ice sjJecimens if vm)'ing grain-size, T = - 100 to - 2S'C'.

elast ic behav iour a nd a consta nt frac lUre toug hness with crac k leng th so ](Q coincid es with th e peak load, F;nax, and is calculated from

I{ = A minF;nax Q DU'

wh ere A lllill is the mll1 lmUm non -dime nsional stress intensity fa c tor (ISR M Commis' ion o n Testing Methods, 1988 ) . Matsuki a nd o th e r s ( 199 1) h ave found

Amin = 9 .455 using bound ary element a nalysis of th e

ISRM three-point bend specimen. T he va ria tion of a pparent frac ture toughness wi th

d epth is presented in Figure 9 . One data point a t a d epth of 288 m , presen t in a ll o th er fi g ures, is missing from this di agra m because of prem ature spec imen fa ilure during

tes ting . The trend is for increasing K Q with depth thro ug h th e urn a nd m eteo ri c ice, foll owed by a n a ppa rent drop wit hin th e m arine ice. However, it is im portant to clear u p a n y spec imen grain-size effec t at thi s point. "Ve haye conducted a number of similar tests on la bo ratory-manufac tured hig h-density (p = 912 ± 3 kg m 3), pure, isotropic, polycry talline ice specimens

of fix ed but controlled g ra in-size. Specimen di a meters were varied be tween 40 a nd 70 mm with average g ra in­sizes between 2 a nd 8 mm to prod ucc specimens with between 6 a nd 35 g rains in ter 'ecring a line throug h the diameter when viewed in plana r c ross-sec ti on. R esul ts are p lo tted in F ig ure 10 for tests conducted between - 100 a nd

- 25°C , for which there is littl e inOuence of tempera ture. It can be seen that th e sca tter in th e data is sma ll provided there a re more th a n abo ut 15 gra ins ac ross th e specimen di a meter. All of the Anta rc ti c spec imens wit h mean gra in­sizes below 6 mm (see Fig. 2) sa tisfi ed thi s condition a nd

a re th e most reliable. H owever, th e results for th e d ee pest

meteori c-ice a nd d eepest ma rin e-ice specimens should be trea ted with caution .

Beca use of the uniqu e na ture of th e ice we ha \'e tes ted, th ere a re ve ry little other d a ta with which o ur J<Q va lues for Antarct ic ice can be direc tl y compared. H owever,

290

u

50

100

~ 150 E-t a)

Cl 200

250

300

350

o

Fim •• • ------- ~.------ -- -------------

Meteoric lee

Marine Ice

• • •

• •

0.1

y, (Jnuc~d (MPa m )

• •

0.2

Fig. 11. Crack nucleation data Jor Antarctic ice fi"0111 1I1liaxial comjJression te.rts at - 20°C.

Fisc hcr and others ( 1995 ) have recen tl y inves tiga ted the apparent frac ture toug hn ess of a shallow firn co re rrom the Green land I ce Shelf Proj ec t using a modified rin g tes t

1

a nd found a m ean value of 0 .1 09lVIPa m2 for ice from 26-

27 m depth (average p = 605 kg m 3). This value can be

com pa red with o ur sha ll owest firn-i ce specim en from a sli g htl y g rea ter d epth (30 m ; p = 677 kg m- 3

) whic h co i ncid en tall y yie ld ed a nea r-icl en ti cal I<Q val ue of O. 107 MPa m2. Nixon a nd Sch ul son (1986) have invest­iga ted th e frac ture tough ness of high-d ensity laboratory­

mad e isot ro pi c polycrys ta lline ice over a range of grain­

sizes (d = 1.6-9.3 mm ; 10- 50 g ra ins across their 90 mm 1

diamcter specimens) and fo und I<Q = 0.067- 0.096 MPa m2 with little dependence on gra in-size a nd none of the sca tter for large grain-sizes we present in Figure 10. H owever, Nixon a nd Schulson used circumferentia ll y notched cy li n­

d ers for their tes ts which D empsey ( 199 1) arg ued were sub­

sized and notch insensitive, a lways produc ing low est imates of frac ture toughness. This is borne out by th e more recent work o f W eber a nd N ixon ( 1992 ), who tes ted ice man ufac tured in the same man ner, a lbeit of sma ll er (1.2-1.8 mm ) g rain-size, using a four-point bend configuration a nd fo und KQ = 0.1 50 MPa m' . Our pure-ice res ults

1

indicate K Q ;::; 0.2 MPa m2, wh ich is higher still but may merely reOec t the different ice- manufacturing tec hnique which results, for example, in a higher di stributed bubble con tent.

Crack nucleation stress

The crac k-nuclea tion d a ta d eri ved from the compression tes ls a re p lotted in Figure 11. The nuclea tion stress, a 1111C ,

has been multiplied by th e sq uare roo t of th e mean grain­size, d, to fac ilita te compa rison with the frac ture-

Page 8: Experimental fracture and mechanical properties of … \'ariety of methods i nel ud i ng sa telli te al timetry, radio echo sounding and seismic surveying. Shallow pits and cores ha\'e

Rist alld others: EXjJerimental fracture and mechanical /J}"ojJerties of Antarctic ice

Stress Intensity Factor, K, (MPa m")

Fig . 12. Silll/lLe .fracture-mechanics modeL qj sll1jace crevassing. ( a) Crevasse as all edge [Tack in all irifinile half-plane. (b ) Stress-intensity Iac /orIor variolls crevasse depths IJ lo: <'Cl as call /ours Ior difIerenl arbilrcllY slIIjace stresses (solid Lines) . The trend of the ajJ/Jamzt criticaL stress-intensity fac tor has been "!I erred .from eAjJerimentaL data (dashed line ) .

to ug hness d a ta. This is justifi ed because new crac ks in

compression a rc d eri\·ed fro m precurso rs whose mag ni­

tud e d epends on g ra in-size (Sunder and \Vu , 1990) , and

so we can write

a lth o ug h it is diffi cult to assess th e co nsta nt of propor­

ti ona lity at thi s stage. The trend of th e d a ta in Fig ure II is s trikin g ly simil a r to th at of th e ](Q va lues in Fig ure 9 , w ith anuc Vd in creas ing throug h th e firn a nd meteo ri c ice befo re a sharp decrease a t th e tra nsition to m a rin e ice.

The compression data again a ppea r [0 exhibit less sca tt e r.

It should be no ted that th e nuclea tion data reflect

frac ture res ista nce pa ra ll el lO the ice-core axis, since thi s is th e direct ion of the induced tensil e crac king in th e o\Tra ll a ppli ed uniaxial compress i\"(' stress fi eld.

Gagno n a nd Gammon ( 1995 ) ha\"(' found th e nex ural

s treng th of g lacier ice lO be dependent on bubble co nt ent

a nd sugges ted th a t illlragra nular a ir bubbles increase ice streng th b y accommod a ting g rea te r stra in a nd reduc ing

stress concentrations, whi le g ra in bound a ry bubbles ac t to

wea ken th e ice. Increas ing g ra in boundary rec rystalli za­

tion a nd mi g ra tion with d epth tends lO d cc rease th e proporti o n of inter g ra nul a r bubbles a nd may help ex p la in th e trend fo r inc reasing res ista nce to frac ture throug h th e firn a nd meteori c ice. Simi la rl y, th e co ncentra ti on of

inclusions a t g ra in bound aries in th e m a rin e ice m ay help

ex pla in its ap pa rent wea kn ess .

Application to ice-shelf deforlTIation

I n o rd er to pu t o ur m ec ha nica l test resu lts in to pe r­spec tive, wc tellla ti\"(' ly a ppl y o ur labo ra to ry data to ice­

shelf d efo rm a ti on using a simpl e fracture m od el. Frac ture

mechanics has pre\·ious ly bee n appli ed lO th e problem of

cre\·asse pene tra tion b y Smith ( 1976) , a lbeit witho ut th e benefit of a ny fracture toughn ess dat a. Smith mod e ll ed a cl"CYasse as a n ed ge crac k in a n infinite ha lf-plane subject ( 0 a unifo rm tensil e s tress p lus a linearl y increasing

overburden press ure with d epth . \Ve refin e thi s mod el b y

inco rporating the tru e near-surface d ensit y- d epth profil e

fo r this regio n of th e R onn e I ce S helf, p = f(y) , which is a po lynom ia l in y of d egree 5 (sec Fig. 3; ao = 349.95 , at = 22.739, a2 = - 0.84789 , CL3 = 2.3 104 x 10 2, CLI = - 2.9257 x 10 +, CL5 = 1. 3 13 1 x 10 6). The to tal hori zo n­

ta l stress, 0".,. (y), at d ep th y within th e ice can th en be

written simpl y as

a J. (y) = a.r(O) - g J p(y)dy ,

where 0";-(0) is an a rbitra ry tensile surface stress and 9 is

th e accele ra ti on due to g ra vity (Fig. 12a) . The stress­

intensity factor, K 1, fo r a n ed ge crac k load ed by a po lynomi a l s tress in thi s way can be fo und in th e literature (Sta ll ybrass , 1970) and

wh ere h is the crac k ha lf-l eng th (or c revasse d ep th ) . The co nsta nts, GII , a nd reference stress, ao , are d erived by rewriting a .1" as a pol ynom ial of order n.

For the geo m etry described abO\·e, ](1 varies \\·ith

creyasse dept h as shown in Fig ure 12b. In thi s fi g ure,

contours haye been drawn fo r three different surface

stresses in th e ra nge 150- 250 KPa , typ ica l of th e R onn e Ice Shelf (V a ug ha n , 1993 ). Where ](1 is less th a n the fi·ac ture to ug hn ess (1(1(', as es tima ted fi·om o ur expe ri­menta l ](Q va lues ) th e c revasse wi ll rem a in sta ble, where

](1 is grea ter th a n K 1C th e cre\·asse wi ll g row ra pidl y. Th e

fi g ure shows that provid ed th e initi a l crac k is abO\-c a sufTi cient ly small size to ra ise 1(1 a bO\"C K,(, it will g row to

a d epth o f a ho ut 40- 60 m , depending on th e surface stress, befo re KJ aga in fall s bac k belo \\' th e c riti ca l ya lue a nd

crac k g row th SlO pS. Illle rm edi a te crevasse d epths a rc

simply no t sta bl e .

A d e ta il ed fi e ld exa mina tion of surface cre \'asse depths has no t bee n und e rta ken but th eir sha ll o \\· pene tra ti on depth, 0[" the o rd er predicted here, has bee n ,,·ide ly ac kn o\\·led ged (e .g . Pa terso n, 1994) . Th e most intrig uin g

fea ture of thi s mod el, from a m ec ha ni sti c po int of \·iell', is

29 1

Page 9: Experimental fracture and mechanical properties of … \'ariety of methods i nel ud i ng sa telli te al timetry, radio echo sounding and seismic surveying. Shallow pits and cores ha\'e

Risl alld olhers: EI/Jerimelllal jiwlllre ({lid mechallical /Ho/lerlies of . llllarctic ice

the nature and size of any "starter" crack. Because \IT

have been unable to test ice from th e upper rirn , lIT

ca nnot make a precise prediction as to the potential sizc of sta rter cracks. Ho\\"el'e r , using thc J(Q nli ue for the shallo\lTst ice, \I'e halT est imated that the starter-crack

size is no grea ter than 10- 40 cm for reali st ic ice-shelf

surface stresses. It is difficult to establish whether such

small cracks in th e ice surface ac tuall y exist, because any

new crack is like ly to become rapidl y COlT red or filled \I·i th snoll· .

\\'e are curren tly app lying this simple m ode l to water­filled bottom crevasses which hal 'e been obsen'ed to

penetrate much deeper into the ice-shelf thi ckness.

SUMMARY

Labora tory experiments have been performed to im'es t­

iga te th e fracture and mechanical behm'io ur of ice ri"om the Ronne Ice Shelf. The following conclusions may be drawn li'om th e preliminary results and analysis:

i. Within the ice shelf, the eITectilT clastic modulus

increases \I'ith depth throug h the firn before reachin g

a constant I'alue of 6 ± I GPa in th e d ense m eteoric

and marine ice. This trend reOects the change with

depth of ice densit y, which may be the domin a nt influence on the observed behal·iour.

ii. The resis ta nce to li'ac ture, as m easu red by changes in apparen t fracture toug hn ess and crack-nucleation

stress, increases with depth throug h the rirn and dense

meteori c- ice la ye rs. An obsen'ed drop in the marine ice is questionable, because of a probable grain-size eITect in some deep specimens and requires lllrther inves ti ga tion.

111. For typical ice-shelf" sUl{ace stresses, a simple

fra c ture-mechani cs model predicts crevasse penetra­

tion depths of abo ut 40- 60 m from the trend of the expe rim ental data. The model a lso predicts that ern' asses initiate a t the su rface from start er c racks no grea ter than 10 40 ("m d ee p.

ACKNOWLEDGEMENTS

The ex perimental work presented 111 thi s paper \I ' as

funded by th e Natural EIl\·ironment Resea rch Council

under research g ranl number GR3/9 170. Support for co llabora li o n bet \\'een U ni\ 'e rsity College London a nd the A lli"ccl- \\' cgcner-I nsti tu t was also providecl by the Briti sh Council. The a uth ors a re g ratef"ulto re\"ie\\'ersJ . P Dempsq' and R. E. G agnon for th eir I'aluab le comments

on the manusc ript.

292

REFERENCES

Dnnpsc)" . .J. P. 1991. Thc fi 'aCl ure lOughnc,s or ice. I II J oncs, S . .J. , R. F. i\IcKcnna. J . Tillol sO Il and I .J . J o rdaan. {'(iI. I rr-Slruclllre I IIINOr/ioll .

Il "J . LI/-I. IIIR Sl"IIl/iIIlilllll. SI. ]nlll/" . . \ i'/I:/illllldlolld COllodo 1.98.9.

Berlill. ("Il' .• Springe r-\ ·c rlag. 109 11 5. Eirken. 11. . H . Oener. H. l\liller. \\'. Graf and .J. Kiplslldd. 199-1.

TcxllIral charaClr riSl ics ancl impuril )" CO lll elll of ml"lcoric and

marill c ice ill ilw ROIlIl t' Ice Sh elf: ,\lllaITlic:l. J. C;lariol., 40 ( 135 .

386 398. Fisrhcr. :'11.1' .. R . B. Allc, ancl T. EIli(cld cr. 1995. FraClure lOug hll"" or

ice and lirn cil:tcrmint'd ti'om the Illodilied ring- I t"!-.t. ]. (;/(/C;o/.. 41 1138,383 394.

Gagnon, R. E. ancl P. 11. C; ,unlll on. 1993. Charaeleri'''li"n and 11 ex Ill" a I slre ll gl h 0[" in'/)crg and g lacier icc. J. G/acio/ .. 41 ( 137 1. 103 I I I.

Gandhi , C . a nd j\1. F .. \ shi>,. 1979. FraClurc-nwchani , m maps I"r

m:lI t' riais ,,·hi ch clean': rc.c .. b.er. ancl h. l". p. nWlals ancl ceram ics .

. Irlo .I/rlall., 27. t565 1602. Gerland. S .. .J . Kipl ' lUhl , \\ ' . eraf a nd .\ . i\linikin . t 99 1. i\"on­

clc :-, lfu r ti, '(' hig-h rc:-.oiutioIl dCI1:-; it y m('a ~ lIrell1('nl s or the B 1.1 ice ('ore, i ll Ol'nc)". I-I. , {'(I. hit/ill(/" ROlllle l a Shelf Programllle. Re/Hili 8.

I3rCllll'rkl\'CII .. -\lIiTd- \\" cgelle)"- Inslilu lc 1(1I' Polar and :'Ilarinl"

Research. 21 28.

Hohb,. P. \ '. 19H. Ire /Ih)"lic\. Oxfo rcl , Clarcnclon Press.

ISR:'II COlllmission on Tesling :'IlcillOds. 1988. Sugges lecl mcillOds f(lI '

de lc)")nining Ihc li-a cl ul ... louglm("ss o r rock. i lll. ]. Rnck .t/l'l"h .. ll ill.

Sri. (;I'ollll'rh . . 1I111r .. 25. 71 'll). .Jacgn, .J . C. and N. C. \\'. Cook. 1979. FII 11 do III 1'11101.1 oIl"OI"h lIIN"hall;cI.

7 hird edilioll. LOlldon, Chaplllan and Il all. :'II<lI suki. K .. S. i\lal , une and H . Takahas hi. 199 1. Boundar) dCIll"1lI

anal),i, I" r 'Ia nclard spccimen configuraliolls in Ihc IS R:lI suggeslecl

mcthods tllr delerminillg rrarlUre to ughness "I' rock. 1111.]. Rork .l/feh.

.1 fill. Sri. (;I'OIIII'ch . . lbJIr., 28 , 335 363. '."iXOII , \\ ' .. \ . and E. i\1. Sl' hul",n. 1986. The frarlure IDUghlll' sS or ice

""n a rangl' of g rain , izl's. I II Lunardini , \ ' . .J ., Y. S. \\ 'a ng, O. r\.

.-\ yo rind e a nd D . S. Sodhi. {"(t. . i'roaedill.!;J o/Ihr 51h I lIlmwliollal

Oflilwlt' .1/t'Chollics alld .1rl"lir " ·lIgillf",ill.!; ( O. t/. I1') .~rlll/lo,illlll, . Ipril /] 18 1.986". 7 0rkn. ]a/){/II. 1'01. -I. '.",.\\. York, .\meriean Socicl) of

:llcchallica l Engineers. 3-/·c) 353. Ocner. 1-1. alld (j olhen . 1992. E,·idencc f(lr hasal marinc ice ill Ihe

Filchn!'r Ronnc Ice Shelf: . \ ·a lll re . 358163BS ), 399 401.

O"I"I<"r. H .. H . Eicken. J. Ki pfs luhl. H . . \ Iiller and \\" . Craf. 1991. Comparison bCl\\"("cn ice CO lT 111 3 alld 131 5. I II Oenel'. 11 ., I'd.

F ildll/I'I" NOllllr l a Shell i'rugllllllllll'. Re/Nrl . \ i,. 7. I3relllerha'Tn . . \If"red­\\'egl' nc)"-lnslilLllc for Polar and :'Ilarinc Rcsea rch. 29 36.

1\lInson. \ \ '. S. B. 199 L 'Jh (, /"~)"Ii(l ~lglariI'l"J. 7 hird et/ilioll. Oxf())"(1. ("IC ..

Els("\" icr Science Lld.

Risl, Ill. ,\ . and S. A. F. III urrcll. 1991. R elalions hip between creep a ncl

rraClUrC oficc. I II Cocks, .\ . C. F. and .\. R . S. POl1ler. N/' .. l/l'challirs 0/ era/) IlIilllr lIIalniat.. 1'01. 2. Londoll _ El sc" in . \ppli ed SCi"IH"!" Publi shers, 335 3()!).

Sinha.:S:. K . 197H. Shurl-lenn rheulo.g-) ofpulycnS)al lill e ice.}. (;Iarilll ..

21 ,85 1. 157 -/73. Slllilh , R . ,\ . 1976. Th t" app li cal i(J n Orrr<ll"iU IT mechanics 10 Ihe problem

or cre"",,(, pClwlra lioll . .J. (;Iaciol .. 17 , 76 ,223 228. Swlh·bra". \1. P. 1970 .. \ crack perpellclicular 10 all elaSlic half~pl a ll (".

1111. }. I~·II.~. Sri .. 8 5 . 151 362. Slchn . L. i\1 .. S . .J . De J-"ran ("o alld .1 . P. l)ClllpS"'. 199.~. Sp("ci llll' n

g-eo ITll'tl': l'm,{'1 ~ 011 ('r<lnure or warm pOlld SI 1('(", , J. )·(.'/~'], I.'.;J//!.,

.I/Nk, 121 11,16 2:i .

SUllclt"r. S.S. a nd III.S. \\ \1. 1990. Crack Iluclcalioll c1u c 10 ela,lic

an ilolropl ill pol yn>s rallille ice. Cnld Re<~. Sri. 7 a/lllol .. 18 II .2947.

\ ·<I ughall. D. C. 1993. R ci<lIillg ilw OCCU ITCIlCl' o r c rt','asscs 10 , urbcl' "rain rates.}. (;Iario/ .. 39 , 132 ,. 2.')5- 266.

\\·c ber. L..J. allll \\". ,\ . i\" ixon. 1992. Fraclun' (oug ll""" 01" granu lar li'csh\\ :lIl-r iet" . I II ,\ )nrilllk. O. r\. , l'\. K . Sillha. D. S. Sod hi and \\ ' .. \ . Nix"n. Nt.. . I'rllow/ill/!,I l!fllle 11111 I IIII'I"I/(/Iiollal OJJillllrr .1//'/-//(/lIi"

olld . 1 rclic 1:'lIgillrf)"ill,~ ( () .t/ . 1 E ) S)"III/}lIlilllll . ] 11111" 7-12 1992. ( ;algillJ .

.lIlmla. 1'01. -I . . Irclic ' Pillar 'r t'Cllllnlngl'. '\C\\ Yo rk .. \Ill c ri can Socicl) of

l\lcchallic,,1 Engineers_ 377 ~l8 1 .