experimental investigation of solid fuel gasification in...

16
M. Sc. Markus Steibel 1 , M. Sc. Federico Botteghi 1 , Prof. Hartmut Spliethoff 1,2 1 Institute for Energy Systems, TU Munich, Germany, 2 Bavarian Center for Applied Energy Research (ZAE Bayern), Germany 6th International Freiberg Conference on IGCC & Xtl Technologies Experimental Investigation of Solid Fuel Gasification in Entrained Flow Reactors

Upload: others

Post on 24-Feb-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Experimental Investigation of Solid Fuel Gasification in ...tu-freiberg.de/sites/default/files/media/professur-fuer...2014/12/02  · •Investigation of the influence of high temperature

M. Sc. Markus Steibel1, M. Sc. Federico Botteghi1, Prof. Hartmut Spliethoff1,2 1Institute for Energy Systems, TU Munich, Germany,

2Bavarian Center for Applied Energy Research (ZAE Bayern), Germany

6th International Freiberg Conference on IGCC & Xtl Technologies

Experimental Investigation

of Solid Fuel Gasification in

Entrained Flow Reactors

Page 2: Experimental Investigation of Solid Fuel Gasification in ...tu-freiberg.de/sites/default/files/media/professur-fuer...2014/12/02  · •Investigation of the influence of high temperature

2 6th International Freiberg Conference on IGCC & XtL Technologies, Coal Conversion and Syngas

19-22 May 2014, Dresden

1 Motivation

3 Experimental Equipment

5 Conclusion and Future Aspect

• Pressurized High Temperature Entrained Flow Reactor (PiTER)

• Baby High Temperature Entrained Flow Reactor (BabiTER)

Agenda

4 Results

• High Pressure Thermogravimetric Analyzer (PTGA)

2 Experimental Procedure

Page 3: Experimental Investigation of Solid Fuel Gasification in ...tu-freiberg.de/sites/default/files/media/professur-fuer...2014/12/02  · •Investigation of the influence of high temperature

3

1 Motivation

Experimental Investigation of the Gasification of a Lignite:

Lignite gasification:

• High lignite coal resources in Germany

• High reactivity

• Low ash content

• Low costs

High Interest in Characterization of the Devolatilization and Gasification

Behavior of Lignite in Entrained Flow Reactors

Investigation of the influence of

• Residence time

• Temperature

• Partial pressure of the gasification agent

• Total pressure

on the overall conversion, surface area development and reactivity of the char

6th International Freiberg Conference on IGCC & XtL Technologies, Coal Conversion and Syngas

19-22 May 2014, Dresden

Page 4: Experimental Investigation of Solid Fuel Gasification in ...tu-freiberg.de/sites/default/files/media/professur-fuer...2014/12/02  · •Investigation of the influence of high temperature

4

2 Experimental Procedure

Proximate Analysis (a.d.) Ash-Content 5.8 %

Volatiles Content 52.9 %

Fixed Carbon 41.3 %

Moisture 10.7 %

Fuel Characterization: German Lignite

Ultimate Analysis (d.a.f.) Carbon 63.4 %

Hydrogen 4.8 %

Nitrogen 0.6 %

Sulfur 0.7 %

O (calculated) 24.6 %

Char Sample

Lab Analysis

• Proximate and Ultimate Analysis

• Surface Area Measurement

Thermogravimetric Analyzers

• Char gasification kinetics

• Pressure, temperature, gasification

agents

6th International Freiberg Conference on IGCC & XtL Technologies, Coal Conversion and Syngas

19-22 May 2014, Dresden

Entrained Flow Reactors

PiTER BabiTER

Devolatilization and Gasification Experiments

Page 5: Experimental Investigation of Solid Fuel Gasification in ...tu-freiberg.de/sites/default/files/media/professur-fuer...2014/12/02  · •Investigation of the influence of high temperature

5

Fuel Feeding

Gas inlet

Quench Sampling probe

Technical Data

Gasification Agents Ar, N2, O2, CO2,

H2O

Max. Temperature 1800 °C

Max. Pressure 5.0 MPa

Steady Operation 1600°C, 2.0 MPa

1200°C, 4.0 MPa

Reaction

tube

Gas P

reheating

Reaction z

one

3 Experimental Equipment

Pressurized High Temperature Entrained Flow Reactor (PiTER)

6th International Freiberg Conference on IGCC & XtL Technologies, Coal Conversion and Syngas

19-22 May 2014, Dresden

Page 6: Experimental Investigation of Solid Fuel Gasification in ...tu-freiberg.de/sites/default/files/media/professur-fuer...2014/12/02  · •Investigation of the influence of high temperature

6

3 Experimental Equipment

Baby High Temperature Entrained Flow Reactor (BabiTER)

Gas

inlet

Fuel Feeding

Gas Preheating

Reaction z

one

Quench

Sampling probe

Technical Data

Gasification Agents Ar, N2, O2,

CO2, H2O

Max. Temperature 1600°C

Pressure Atmospheric

Optical Ports

•ELIF

•2-color pyrometer

•FTIR

6th International Freiberg Conference on IGCC & XtL Technologies, Coal Conversion and Syngas

19-22 May 2014, Dresden

Page 7: Experimental Investigation of Solid Fuel Gasification in ...tu-freiberg.de/sites/default/files/media/professur-fuer...2014/12/02  · •Investigation of the influence of high temperature

7

3 Experimental Equipment

Thermogravimetric Analyzer

Technical Data

Gasification agents Ar, N2, O2, H2,

CO2, H2O, CO

max. Temperature 1000°C

max. Pressure 5.0 MPa

Gas

inlet

Heating

Element

Sample

Beam Balance

6th International Freiberg Conference on IGCC & XtL Technologies, Coal Conversion and Syngas

19-22 May 2014, Dresden

Up to 100 % vol. of gasification agent

concentration

Page 8: Experimental Investigation of Solid Fuel Gasification in ...tu-freiberg.de/sites/default/files/media/professur-fuer...2014/12/02  · •Investigation of the influence of high temperature

8

4 Results

6th International Freiberg Conference on IGCC & XtL Technologies, Coal Conversion and Syngas

19-22 May 2014, Dresden

Reactor Experiment Temperature

[°C]

Total

Pressure

[MPa]

Atmosphere

[MPa]

Residence

Time [s]

PiTER

Pyrolysis 1200 0.5, 1.0, 2.0 Inert 0.3-1.4

Integral-

Gasification 1200 0.5, 1.0, 2.0 O/C=1 0.8-2.1

H2O-

Gasification 1200 0.5, 1.0, 2.0 p(H2O) = 0.07 0.8-2.1

CO2-

Gasification 1200 0.5, 1.0, 2.0

p(CO2) = 0.03;

0.07; 0.13 0.8-2.1

BabiTER Pyrolysis 1000, 1200,

1400, 1600 0.1 Inert 0.2-1.1

Evaluation:

Ash-Tracer-

Method

Evaluation: Total Pressure

[MPa]

Temperature

[°C]

Gasification Agent

[MPa]

0.5; 1.0; 2.0 750; 800; 850 CO2: 0.12; 0.25; 0.5

0.5 800 Combined Gasification

Entrained Flow Experiment Matrix:

Thermogravimetric Experiment Matrix:

𝑟𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑋, 𝑇, 𝑝𝑖 = 𝑆 𝑋 ∙ 𝑟𝑖𝑛𝑡(𝑇) ∙ 𝑝𝑖

𝑛

Page 9: Experimental Investigation of Solid Fuel Gasification in ...tu-freiberg.de/sites/default/files/media/professur-fuer...2014/12/02  · •Investigation of the influence of high temperature

9

4 Results

• No pressure effect on overall conversion

• Volatile yield levels off at larger

residence times

• Surface area decreases with

conversion

• Slight positive pressure effect on

surface area

6th International Freiberg Conference on IGCC & XtL Technologies, Coal Conversion and Syngas

19-22 May 2014, Dresden

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.00 0.50 1.00 1.50 2.00

Ove

rall

Co

nve

rsio

n [

-]

Residence Time [s]

Pyrolysis: Overall Conversion

0.5 MPa

1.0 MPa

2.0 MPa

0

100

200

300

400

500

600

700

0 0.2 0.4 0.6 0.8

Surf

ace

are

a [m

2/g

]

Overall Conversion [-]

Pyrolysis: Specific surface area

0.5 MPa

1.0 MPa

2.0 MPa

Pyrolysis Experiments at Different Pressures (PiTER, T=1200°C)

Page 10: Experimental Investigation of Solid Fuel Gasification in ...tu-freiberg.de/sites/default/files/media/professur-fuer...2014/12/02  · •Investigation of the influence of high temperature

10

4 Results

• Positive effect of temperature

(the higher the temperature,

the higher the overall conversion)

• Over 1400 °C, the positive effect is no

more observable

• Surface area decreases

with conversion

• Temperature effect not clear

6th International Freiberg Conference on IGCC & XtL Technologies, Coal Conversion and Syngas

19-22 May 2014, Dresden

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.00 0.50 1.00 1.50

Ove

rall

Co

nve

rsio

n [

-]

Residence time [s]

Pyrolysis: Overall Conversion

1000 °C

1200 °C

1400 °C

1600 °C

0

100

200

300

400

500

600

700

800

900

0 0.2 0.4 0.6 0.8

Surf

ace

are

a [m

2/g

]

Overall Conversion[-]

Pyrolysis: Specific surface area

1000 °C

1200 °C

1400 °C

1600 °C

Pyrolysis Experiments at Different Temperatures (BabiTER)

Page 11: Experimental Investigation of Solid Fuel Gasification in ...tu-freiberg.de/sites/default/files/media/professur-fuer...2014/12/02  · •Investigation of the influence of high temperature

• An initial impact of total pressure on

conversion is detected

• At higher residence times, no total

pressure effect on the overall conversion

11

4 Results

6th International Freiberg Conference on IGCC & XtL Technologies, Coal Conversion and Syngas

19-22 May 2014, Dresden

• Lower conversion level than

integral gasification at shorter

residence times

• Effect of the total pressure is

unclear

00.10.20.30.40.50.60.70.80.9

1

0 0.5 1 1.5 2 2.5

Ove

rall

Co

nve

rsio

n [

-]

Residence Time [s]

Integral Gasification (PiTER)

0.5 MPa

1.0 MPa

2.0 MPa

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5

Ove

rall

Co

nve

rsio

n [

-]

Residence Time [s]

H2O-Gasification (PiTER)

0.5 MPa

1.0 MPa

2.0 MPa

Integral and H2O-Gasification (PiTER, T=1200°C)

Page 12: Experimental Investigation of Solid Fuel Gasification in ...tu-freiberg.de/sites/default/files/media/professur-fuer...2014/12/02  · •Investigation of the influence of high temperature

• Lowest conversion levels

• Effect of total pressure unclear, but

analog to H2O-gasification

12

4 Results

6th International Freiberg Conference on IGCC & XtL Technologies, Coal Conversion and Syngas

19-22 May 2014, Dresden

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0 0.5 1 1.5 2 2.5

Ove

rall

Co

nve

rsio

n [

-]

Residence Time [s]

CO2-Gasification: Overall Conversion (1200°C, p(CO2) = 0.03 MPa)

0.5 MPa

1.0 Mpa

2.0 MPa

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.5 1 1.5 2 2.5

Ove

rall

Co

nve

rsio

n [

-]

Residence Time [s]

CO2-Gasification: Overall Conversion (1200°C, 1.0 MPa)

p(CO2) = 0.03 MPa

p(CO2) = 0.07 MPa

p(CO2) = 0.13 MPa

• Clear positive effect of reactant

partial pressure

• At lower residence times, similar

conversion levels

CO2-Gasification (PiTER, T=1200°C)

Page 13: Experimental Investigation of Solid Fuel Gasification in ...tu-freiberg.de/sites/default/files/media/professur-fuer...2014/12/02  · •Investigation of the influence of high temperature

13

4 Results

6th International Freiberg Conference on IGCC & XtL Technologies, Coal Conversion and Syngas

19-22 May 2014, Dresden

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 10 20 30 40

Car

bo

n C

on

vers

ion

[-]

Residence Time [s]

CO2-Gasification (p(tot) = 0.5 MPa; p(CO2)=0.125 MPa)

750 °C

800 °C

850 °C0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 10 20 30 40

Car

bo

n C

on

vers

ion

[-]

Residence Time [s]

CO2-Gasification (p(tot) = 0.5 MPa; T = 800°C)

0.125 MPa

0.25 MPa

0.5 MPa

• The higher the temperature,

the higher the carbon conversion

• The higher the partial pressure,

the higher the carbon conversion

Thermogravimetric Analysis: CO2-Gasification

Pressure

[MPa]

Activation Energy

[kJ/mol] Reaction Order

0.5 𝐸𝐴 = 153 n = 0.23

1.0 𝐸𝐴 = 158 n = 0.15

2.0 𝐸𝐴 = 168 -

Page 14: Experimental Investigation of Solid Fuel Gasification in ...tu-freiberg.de/sites/default/files/media/professur-fuer...2014/12/02  · •Investigation of the influence of high temperature

14

4 Results

6th International Freiberg Conference on IGCC & XtL Technologies, Coal Conversion and Syngas

19-22 May 2014, Dresden

• H2O-Gasification more reactive than

CO2-Gasification

• Combined Gasification is less reactive

than sole H2O-gasification

Inhibition of the H2O gasification

in the presence of CO2

0

0.05

0.1

0.15

0.2

0 0.1 0.2 0.3 0.4

r (X

= 3

0 %

) [g

/gs]

p(CO2) [MPa]

Influence of the CO2-content in the mixture on the reactivity

0 MPa H2O

0.125 MPa H2O

0.25 MPa H2O

Thermogravimetric Analysis: Combined Gasification

Page 15: Experimental Investigation of Solid Fuel Gasification in ...tu-freiberg.de/sites/default/files/media/professur-fuer...2014/12/02  · •Investigation of the influence of high temperature

15

5 Conclusion and Future Aspects

Future Aspects

• Use kinetic parameters in an effectiveness

factor approach

• Validate the model with data of the entrained

flow reactors

6th International Freiberg Conference on IGCC & XtL Technologies, Coal Conversion and Syngas

19-22 May 2014, Dresden

TGA: Intrinsic

Parameters

Entrained

Flow

Conditions

• Investigation of the influence of high temperature (up to 1600°C), high pressure

(up to 2.0 MPa) and residence time on the devolatilization behavior and reactivity

of a German lignite

• Investigation of the influence of high temperature (up to 1600°C), high pressure

(up to 2.0 MPa), residence time and gasification agents (O2, CO2, H2O, H2O/CO2)

on the gasification behavior of a German lignite

Obtained data can be used for designing large scale applications

Conclusion

Page 16: Experimental Investigation of Solid Fuel Gasification in ...tu-freiberg.de/sites/default/files/media/professur-fuer...2014/12/02  · •Investigation of the influence of high temperature

16

Thank you for your Attention!

M. Sc. Markus Steibel

[email protected]

+49 (0) 89 287 16341

Lehrstuhl für Energiesysteme

Technische Universität München

This work is part of a project supported by the German Federal Ministry of Economics and Technology and

industrial partners (AirLiquide, RWE, EnBW, Vattenfall and Siemens Fuel Gasification) under the

Contract Number: 0327773A.

6th International Freiberg Conference on IGCC & XtL Technologies, Coal Conversion and Syngas

19-22 May 2014, Dresden