experimental investigation of the mg-{mn, zn}-{ce, nd} ternary phase diagrams

17
Experimental investigation of the Mg-{Mn, Zn}- {Ce, Nd} ternary phase diagrams MagNET AGM Vancouver, June 12-13, 2013 Presented by Ahmad Mostafa Supervisor Dr. Mamoun Medraj

Upload: jovan

Post on 22-Feb-2016

71 views

Category:

Documents


0 download

DESCRIPTION

Experimental investigation of the Mg-{Mn, Zn}-{Ce, Nd} ternary phase diagrams. MagNET AGM Vancouver, June 12-13, 2013. Supervisor Dr. Mamoun Medraj. Presented by Ahmad Mostafa. Acknowledgement. NSERC MagNET Dmytro Kevorkov – Research associate – Concordia University - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Experimental investigation of the      Mg-{Mn, Zn}-{Ce, Nd} ternary phase diagrams

Experimental investigation of the Mg-{Mn, Zn}-{Ce, Nd} ternary phase

diagramsMagNET AGM

Vancouver, June 12-13, 2013

Presented by Ahmad Mostafa

SupervisorDr. Mamoun Medraj

Page 2: Experimental investigation of the      Mg-{Mn, Zn}-{Ce, Nd} ternary phase diagrams

Acknowledgement

NSERC MagNET

Dmytro Kevorkov – Research associate – Concordia University

Aimen Gheribi – Research fellow – École Polytechnique de Montréal

Pampa Ghosh – Research fellow – Concordia University

Md. Mezbahul-Islam – PhD candidate – Concordia University

Page 3: Experimental investigation of the      Mg-{Mn, Zn}-{Ce, Nd} ternary phase diagrams

Outlines• Scope

• Methodology

• Results

• Summary

• Contributions

Page 4: Experimental investigation of the      Mg-{Mn, Zn}-{Ce, Nd} ternary phase diagrams

4

Scope

• Studying the interdiffusion coefficients of the binary and ternary species of the Mg-{Mn, Zn}-{Ce, Nd} systems using diffusion couple experiments and Boltzmann-Matano analysis.

• The construction of the Mg-{Mn, Zn}-{Ce, Nd} ternary phase diagrams experimentally, by means of key alloys and diffusion couples, using DSC, XRD and SEM/EDS/WDS.

Page 5: Experimental investigation of the      Mg-{Mn, Zn}-{Ce, Nd} ternary phase diagrams

5

Mg-{Mn, Zn}-{Ce, Nd} systems

Mg MnZn

Ce

Nd

Mg-Zn Mg-Mn

Ce-MnCe-Zn

Nd-Zn Nd-Mn

Ce-Mg

Mg-

Nd

Ce-M

g-Zn

Mg-Mn-N

dMg-Nd-Zn

Ce-Mg-MnLiterature

DataExperimentalInvestigation

• Self-consistent Mg-{Mn, Zn}-{Ce, Nd} ternary phase diagrams• Binary and ternary diffusion coefficients database

Page 6: Experimental investigation of the      Mg-{Mn, Zn}-{Ce, Nd} ternary phase diagrams

6

Methodology

• Pure metals (Ce, Mg, Mn, Nd and Zn) were initially used• Alloying processes:

– Arc-melting furnace– Induction-melting furnace

Key samples Preparation

• Diffusion couples prepared from pure metals and/or alloys.- Contacting surfaces polished up to 1μm diamond suspension- End-members clamped together using stainless steel rings

Diffusion couples Preparation

• XRD, WDS/EDS, SEM, DSC and ICP key experiments

Page 7: Experimental investigation of the      Mg-{Mn, Zn}-{Ce, Nd} ternary phase diagrams

7

MethodologyInterdiffusion coefficient measurements

Y. Du et al., Atomic Mobilities and Diffusivities in Al alloys, Sci. China Tech. Sci., 55 (2012) 1-23.

D(C 0)=−(∫𝑐 1

𝐶 0

𝑥𝑑𝑐)2𝑡 (𝜕𝑐 /𝜕𝑥 )

∫C 1

C 0

xdc=∫C 0

C 2

xdc

: the flux of i atomsĎ(c): is the interdiffusivity at the composition C (cm2/sec)t: is the annealing time (sec)dc/dx : is the slope at the composition C (at.%/cm), x: is the layer thickness (cm).

…….…(1)

)dCi…………(2)

Boundary conditions

𝜕𝐶𝜕𝑡 =𝐷 𝜕2𝐶

𝜕𝑥2

Page 8: Experimental investigation of the      Mg-{Mn, Zn}-{Ce, Nd} ternary phase diagrams

8

400 500 600 700 800 900

-70

0

70

Cooling

Heat

flow

(mW

)

Sample temperature (C)

682.00

Heating

ResultsMn-Nd binary phase diagram

Position [°2Theta] (Copper (Cu))

35 40 45

Counts

0

500

1000Mn3 15.9 %Nd6Mn23 35.0 %Nd2Mn17 49.2 % Lattice

parameters of Mn17Nd2

Mn23Nd6

Mn17Nd2

β-Mn

Mn23Nd6

Mn23Nd6

Mn17Nd2

Mn2NdMn17Nd2

β-Mn

Page 9: Experimental investigation of the      Mg-{Mn, Zn}-{Ce, Nd} ternary phase diagrams

9

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.00.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

20

21

19

22

17

18

Mn23Nd6

Mn17Nd2

Mn2Nd

MgNd

15 14

16

13

12

11

109

8

7

6

5

41

3

Mn

2

Mole fraction, Mg

ResultsMg-Mn-Nd ternary phase diagramDiffusion couples experiments

450°C-for 20 days

(Nd)Mg3Nd

Mn

Mg3Nd

Mg3Nd

Mg41Nd5

Mn23Nd6

Mn

450°C-for 9 days

(Nd)Mn

Mg3Nd

MgNd

Mg41Nd5

MgMn Mn

Page 10: Experimental investigation of the      Mg-{Mn, Zn}-{Ce, Nd} ternary phase diagrams

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.00.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

20

21

19

22

17

18

Mn23Nd6

Mn17Nd2

Mn2Nd

MgNd

15 14

16

13

12

11

109

8

7

6

5

41

3

Mn

2

Mole fraction, Mg10

ResultsMg-Mn-Nd ternary phase diagramKey alloys experiments

450°C-for 14 days

Mn

Mg3Nd

Mg41Nd5

20 30 40 50 60 70

0

100

200

300

400

500

xxxxx x

Inte

nsity

2 Theta

Si Mg3Nd Mn

X Mg41Nd5

x

MnNd(Mg1-xMnx)

(Nd)Mg,Mn

450°C-for 14 days

20 40 60

0

50

100

150

200

250

Inte

nsity

(a.u

)

2 Theta (deg.)

Si Mn MgNd Nd

Page 11: Experimental investigation of the      Mg-{Mn, Zn}-{Ce, Nd} ternary phase diagrams

11

ResultsIsothermal section of the Mg-Mn-Nd system at 450°C

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0 0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

166

8

7

1514

21

12

2

10911

17

1320

18

5

19

3

1

Mole fraction, Mg

422

Mn17Nd2

Mn23Nd6

Nd Mg

MnBy means of:

Key alloys and diffusion couples and using XRD,

EPMA and metallography

20 40 60

0

50

100

150

200

250

Inte

nsity

(a.u

)

2 Theta (deg.)

Si Mn MgNd Nd

Page 12: Experimental investigation of the      Mg-{Mn, Zn}-{Ce, Nd} ternary phase diagrams

12

Results

490°C

450°C

400°C

Interdiffusion coefficients of Ce in Mg

(a) (b)

(c)

Ce

Mg MgCe

Mg3Ce Mg41Ce5 Mg12Ce Ce

Mg

MgCe

Mg3Ce Mg41Ce5 Mg12Ce

Ce Mg

MgCe

Mg3Ce Mg41Ce5 Mg12Ce

(a) (b)

(c)

Ce

Mg MgCe

Mg3Ce Mg41Ce5 Mg12Ce Ce

Mg

MgCe

Mg3Ce Mg41Ce5 Mg12Ce

Ce Mg

MgCe

Mg3Ce Mg41Ce5 Mg12Ce

(a) (b)

(c)

Ce

Mg MgCe

Mg3Ce Mg41Ce5 Mg12Ce Ce

Mg

MgCe

Mg3Ce Mg41Ce5 Mg12Ce

Ce Mg

MgCe

Mg3Ce Mg41Ce5 Mg12Ce

400°C- 120h 450°C- 96h

490°C- 48h

MgCeMg3Ce

Mg41Ce5

Mg12Ce

H Okamoto, Ce-Mn (Cerium-Manganese), Journal of Phase Equilibria and Diffusion, 2008; 29: 381-2

Page 13: Experimental investigation of the      Mg-{Mn, Zn}-{Ce, Nd} ternary phase diagrams

13

ResultsInterdiffusion coefficients of Ce in Mg

Thickness (µm)Temperature (°C) 400 450 490

Time (h) 120 96 48

Mg-Ce

MgCe 3.5 5.9 8.7Mg3Ce 5.8 8.6 16.7

Mg41Ce5 39.7 71.5 101.4Mg12Ce 21.6 31.2 19.6

Total thickness 70.6 117.2 145.40 20 40 60 80 100 120 140

0

20

40

60

80

100

120

140

160

490-48hrs450-96hrs400-120 hrs

Intermetallic interface

400°C 450°C 490°Cxo

(µm)(C)

(cm2/S)xo

(µm)(C)

(cm2/S)xo

(µm)(C)

(cm2/S)

Mg-Ce

Ce/MgCe 9.7 1.8×10-13 4.1 2.9×10-13 9.8 6.0×10-13

MgCe/Mg3Ce 12.6 8.7×10-14 9.2 1.6×10-13 16.2 3.2×10-13

Mg3Ce/Mg41Ce5 22.0 1.6×10-13 19.5 3.6×10-13 33.5 5.6×10-13

Mg41Ce5/Mg12Ce 60.8 1.1×10-13 89.6 2.3×10-13 133.3 4.2×10-13

Mg12Ce/Mg 84.4 3.1×10-13 118.0 4.8×10-13 150.9 7.3×10-13

Page 14: Experimental investigation of the      Mg-{Mn, Zn}-{Ce, Nd} ternary phase diagrams

14

ResultsActivation energies and pre-exponent factors

0.00130 0.00135 0.00140 0.00145 0.00150-13.2

-13.1

-13.0

-12.9

-12.8

-12.7

-12.6

-12.5

-12.4

-12.3

-12.2

-12.1

Ce/MgCe MgCe/Mg3Ce Mg3Ce/Mg41Ce5 Mg41Ce5/Mg12Ce Mg12Ce/Mg

log D

1/T (1/K)

Intermetallic interface

Qd

(kJ/mol)o

(cm2/S)

Mg-Ce

Ce/MgCe 55.1 3.3×10-9

MgCe/Mg3Ce 61.9 5.4×10-9

Mg3Ce/Mg41Ce5 58.9 6.4×10-9

Mg41Ce5/Mg12Ce 61.3 6.6×10-9

Mg12Ce/Mg 58.1 7.3×10-9

Arrhenius relationship1/T vs. logD

The slope represents –Qd/2.3R and the intersection with y axis represents the log Do value.

Page 15: Experimental investigation of the      Mg-{Mn, Zn}-{Ce, Nd} ternary phase diagrams

15

Summary

The isothermal sections of the Mg-Mn-{Ce,Nd} ternary systems, at 450°C, were established by means of key alloys and diffusion couples.

The Mn-Nd binary phase diagram was constructed in the complete composition range using experimental work and first-principles calculations coupled with thermodynamic modeling.

The interdiffusion coefficients of Ce, Nd and Zn in Mg were determined using diffusion couple experiments and Boltzmann-Matano analysis.

Page 16: Experimental investigation of the      Mg-{Mn, Zn}-{Ce, Nd} ternary phase diagrams

16

Contributions• A. Mostafa, A.E. Gheribi, D. Kevorkove, Md. Mezbahul-Islam, M. Medraj,

“Experimental Investigation and First Principle Calculations Coupled with Thermodynamic Modeling of the Mn-Nd phase diagram”, CALPHAD, submitted, March 2013.

Journal papers

Conference proceedings• A. Mostafa, D. Kevorkove, A.E. Gheribi, M. Medraj, “The Mg-Mn-Nd system:

Experimental Investigation and Thermodynamic Modeling”, The 9th International Conference on Magnesium Alloys and their Applications, Vancouver, 2012, p.p. 245-250.

• P. Ghosh and M. Medraj, “Thermodynamic Calculation of the Mg-Mn-Zn and Mg-Mn-Ce Systems and Re-optimization of their Constitutive Binaries”, CALPHAD, Vol. 41, 89-107 (2013)

• P. Ghosh, Md. Mezbahul-Islam and M. Medraj,"Critical assessment and thermodynamic modeling of Mg–Zn, Mg–Sn, Sn–Zn and Mg–Sn–Zn system", CALPHAD (Computer Coupling of Phase Diagrams and Thermochemistry), Vol. 36, 28-43 (2012).

Page 17: Experimental investigation of the      Mg-{Mn, Zn}-{Ce, Nd} ternary phase diagrams

THANK YOUMagNET AGM

Vancouver, June 12-13, 2013