experimental methods in marine dynamics

Upload: mullai

Post on 15-Feb-2018

224 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/23/2019 Experimental Methods in Marine Dynamics

    1/182

    _______________________________________________________________________________________________________________

    FAKULTET FOR INGENIRVITENSKAP OG TEKNOLOGI NTNU TRONDHEIMNORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET

    FACULTY OF ENGINEERING SCIENCE AND TECHNOLOGY NTNU TRONDHEIMNORWEGIANUNIVERSITY OF SCIENCE AND TECHNOLOGY

    _______________________________________________________________________________________________________________

    TMR7

    Experimental Methods in

    Marine Hydrodynamics

    Sverre Steen

    Revised August 2014

    MARINTEKNISK SENTER INSTITUTT FOR MARIN TEKNIKKMARINE TECHNOLOGY CENTRE DEPARTMENT OF MARINE TECHNOLOGYTRONDHEIM, NORWAY

  • 7/23/2019 Experimental Methods in Marine Dynamics

    2/182

    LecturenotesinExperimentalMethodsinMarineHydrodynamics,issuedAugust2014

    Page1

    CONTENTS

    1 INTRODUCTION..................................................................................................31.1 Background...............................................................................................................................3

    1.2 Whymodeltests.......................................................................................................................4

    2 GENERALMODELLINGLAWS..............................................................................62.1 Geometricalsimilarity..............................................................................................................6

    2.2 Kinematicsimilarity..................................................................................................................6

    2.3 Dynamicsimilarity....................................................................................................................7

    2.4 ScalingRatios..........................................................................................................................10

    2.5 Hydroelasticity........................................................................................................................11

    2.6 Cavitation................................................................................................................................13

    3 EXPERIMENTALFACILITIES...............................................................................143.1 Introduction............................................................................................................................14

    3.2 TowingTanks..........................................................................................................................14

    3.3 CavitationTunnel....................................................................................................................18

    3.4 OceanLaboratories.................................................................................................................20

    3.5 Generationofenvironment....................................................................................................21

    4 INSTRUMENTATION.........................................................................................284.1 Generaldescriptionofequipment.........................................................................................28

    4.2 Strainanddisplacementmeasurements................................................................................28

    4.3 Positionmeasurements..........................................................................................................32

    4.4 Accelerations..........................................................................................................................34

    4.5 PressureTransducers..............................................................................................................35

    4.6 Velocities................................................................................................................................38

    4.7 Forcemeasurements Dynamometers..................................................................................41

    4.8 WaveMeasurements..............................................................................................................42

    4.9 DataAcquisition......................................................................................................................44

    4.10 SamplingFrequency...............................................................................................................48

    4.11 LengthofRecords...................................................................................................................50

    4.12 Calibration..............................................................................................................................53

    4.13 Zeroing....................................................................................................................................54

    5 PHYSICALMODELLING......................................................................................555.1 General...................................................................................................................................55

    5.2 RigidModels...........................................................................................................................55

    5.3 ElasticModels.........................................................................................................................57

    6 CONVENTIONALSHIPTESTING.........................................................................616.1 General...................................................................................................................................61

    6.2 Towingandpropulsiontestsintowingtank..........................................................................61

    6.3 Cavitationtunneltests............................................................................................................65

    6.4 Maneuveringtests..................................................................................................................67

    7 SEAKEEPINGTESTING.......................................................................................717.1 General...................................................................................................................................71

  • 7/23/2019 Experimental Methods in Marine Dynamics

    3/182

    LecturenotesinExperimentalMethodsinMarineHydrodynamics,issuedAugust2014

    Page2

    7.2 TestRequirement...................................................................................................................71

    7.3 Testsetup..............................................................................................................................72

    7.4 TestProcedure........................................................................................................................73

    7.5 Tankwalleffects.....................................................................................................................75

    8 OFFSHORESTRUCTURETESTING......................................................................77

    8.1 General...................................................................................................................................77

    8.2 TestRequirements..................................................................................................................77

    8.3 Deepwaterstructuresrequirements.....................................................................................78

    8.4 TestProcedure........................................................................................................................80

    9 REALTIMEHYBRIDMODELTESTING................................................................829.1 Testingoffloatingoffshoreshipsandplatformswithmooringandflexiblerisersystems...83

    9.2 Testingofhydrofoilships........................................................................................................83

    9.3 Testingoffloatingoffshorewindturbines.............................................................................83

    9.4 Challengesinhybridmodeltesting........................................................................................83

    10 ANALYSISOFMEASUREDDATA........................................................................8510.1 General...................................................................................................................................85

    10.2 Statictests..............................................................................................................................85

    10.3 Decaytest...............................................................................................................................85

    10.4 RegularWaveTest..................................................................................................................88

    10.5 IrregularWaveTest................................................................................................................91

    11 FULLSCALEMEASUREMENTS.........................................................................10311.1 Deliverytrials........................................................................................................................103

    11.2 Shipmonitoringsystems......................................................................................................110

    12 ERRORANALYSIS............................................................................................11312.1 Introduction..........................................................................................................................113

    12.2 Uncertaintyanalysis.............................................................................................................113

    12.3 DiscussionofErrorSources..................................................................................................119

    13 MODELTESTSVSNUMERICALCALCULATIONS..............................................12713.1 General.................................................................................................................................127

    13.2 ModeltestsforValidationofNumericalCalculations..........................................................128

    14 REFERENCES...................................................................................................130

    15 INDEX.............................................................................................................132

    ANNEXA ExampleofReportingfromModelTest

    ANNEXB ExampleofModelTestSpecification

    ANNEXC ViscousSurgeDampingofFloatingProductionVesselMooredatSea

    ANNEXD ErrorAnalysisofExperiments.LecturenotebyS.Ersdal

    ANNEXE ITTCstandardforpoweringperformanceprediction

  • 7/23/2019 Experimental Methods in Marine Dynamics

    4/182

    LecturenotesinExperimentalMethodsinMarineHydrodynamics,issuedAugust2014

    Page3

    1 INTRODUCTION

    ThiscompendiumhasbeenpreparedforthecourseExperimentalMethodsinMarine

    Hydrodynamics.Partsofthenotesarebasedonearlierlecturenoteswithinthisfield;seeHuse

    (1999)andWalderhaug(1983).ExtensiverevisionsofthecompendiumwrittenbyAarsnesin2001

    weremade

    by

    Steen

    in

    2004,

    2005,

    and

    2006,

    followed

    by

    smaller

    revisions

    in

    2010

    and

    2012.

    AlthoughthenameofthiscourseisExperimentalMethodsinMarineHydrodynamics,wewill

    mainlybetalkingaboutmodeltesting,sincemostexperimentsinmarinehydrodynamicsaremade

    inmodelscale.Also,modeltestinginvolvesmanyinterestingissues,likescalingandmodelling.Full

    scaletestingishandledasaspecialcase,seechapter11.

    Throughoutthetext,manyreferencesaregiventosupplementaryliterature,anditis

    recommendedtoconsultthoseforamoreindepthtreatmentofspecialtopics.Agoodtextbook

    thatcoversmostofthetopicsintheselecturenotesatanintroductorybutstillmorethoroughlevel

    isthebookbyDunn(2005).

    Figure 1.1Model tests in Peerlesspool in London in 1761

    1.1 Background

    Experimentalfacilities

    for

    model

    testing

    of

    ships

    have

    along

    tradition.

    Improved

    resistance

    performanceoftheshipswasearlythemaindrivingforcebehindthedevelopmentofshipmodel

  • 7/23/2019 Experimental Methods in Marine Dynamics

    5/182

    LecturenotesinExperimentalMethodsinMarineHydrodynamics,issuedAugust2014

    Page4

    testing.ItisknownthatLeonardodaVinci(aboutyear1500)carriedouttestswith3models

    ofships,allwithequallength,butwithdifferentforeandaftshape.Basedonhisexperimentshe

    wasabletogiverecommendationaboutwhichshapegivesthehighestspeed.LaterSamuelFortey

    (16221651)alsodidtestswithshipmodelsandin1721EmanuelSwedenborggaveadetailed

    proposalforshipmodeltestingintroducingtheprinciplewithfallingweightfortowingofthe

    models.Inthiswayhewasabletoachieveaknownandconstanttowingforce. In1761thisprinciplewasusedinPeerlesspoolinLondonasshownonthepicturegiveninFigure1.1.Atthat

    timenoscalinglawswereavailabletopredictfullscalebehaviourandonehadtoassumethatthe

    winnerwasthebestalsoinfullscale.

    WilliamFroude(18101879)isoftengiventhehonourforthemethodofreallyusingmodeltesting

    forshipdesignbythedevelopmentofamethodforscalingfrommodelresistancetotheactualship

    resistance.Thismayberight,butseveralotherworksfromthesametimealsocontribute

    significantlytothisdevelopment.Theestablishingofthescalingmethodsshouldthereforemorebe

    regardedasaresultoftheincreasinginterestandactivitieswithinthisfield.

    FroudestowingtankwasbuiltinSouthEnglandinca1870andisregardedasthebeginningof

    modernmodeltesting.ThemaindimensionofthetankwasLxBxd=85mx11mx3m.Itwas

    equippedwitharailintheroof,whichcarriedthedynamometers.Maximumspeedwas5m/s.

    Shortlyafterthistankwasestablished,severalothertankswerebuiltinEngland,Germanyand

    elsewhere.ThetowingtankinTrondheimwascompletedin1939withdimensionLxBxd=170mx

    10.5mx5m,whichwasanormaltanksizeatthattime.

    Later,thedevelopmentwithinshiptechnologyhasinitiateddevelopmentandbuildingof

    specialisedfacilitiesascavitationtunnels,manoeuvringandseakeepingbasins.Duringthelast20

    25yearstheneedsfromtheoffshoreindustryhavepushedthisdevelopmentevenfurther,and

    complexlaboratorieswiththepossibilityoftestingstructuresinrealisticconditionsincludingwind,

    currentaswellasmultidirectionalwaves,havebeenbuilt.Anexampleofthistypeoflaboratoryis

    theOceanBasinatMARINTEK.

    Differenttypesoffacilitiesaredescribedinmoredetailsinchapter3.

    Afurtherdescriptionandreviewofthehistoryanddevelopmentofshipmodeltestingcanbefound

    inSNAME(1967)andinStoot(1959)

    1.2 Whymodeltests

    Hydrodynamicmodeltestingwillbasicallyhavethreedifferentaims:

    1. Toachieverelevantdesigndatatoverifyperformanceofactualconceptsforshipsand

    othermarinestructures

    2. Verificationandcalibrationoftheoreticalmethodsandnumericalcodes

    3. Toobtainabetterunderstandingofphysicalproblems.

    Alltheaimscanbeassociatedtotheoftenverycomplicatednatureofproblemsconnectedtothe

    interactionbetweenfixedandfloatingstructuresandthemarineenvironment.

    Aim1isspeciallythecaseiftheanalysisisverycomplicatedforwhichverifiednumericaltoolsare

    notavailable.Modeltestcanbeusedtoinvestigateeffectsofsimplificationsusedasbasisfor

  • 7/23/2019 Experimental Methods in Marine Dynamics

    6/182

    LecturenotesinExperimentalMethodsinMarineHydrodynamics,issuedAugust2014

    Page5

    analyticalornumericalmodels.Inthiswaymodeltestresultscanbeusedtoassist

    developmentofmorereliablenumericaltools.

  • 7/23/2019 Experimental Methods in Marine Dynamics

    7/182

    LecturenotesinExperimentalMethodsinMarineHydrodynamics,issuedAugust2014

    Page6

    2 GENERALMODELLINGLAWS

    Physicalmodelsareintendedtorepresentthefullscalesystemascloseaspossibleata(much)

    smallerscale.Tobeabletodeterminetheproperpropertiesofthemodelweneedmodellingor

    scalinglawsthatensureasimilarbehaviourinmodelandfullscale.

    Dimensionalanalysiscanbeusedtoderiveagroupofmeaningfuldimensionlessquantitiesfor

    applicablevariables.Thisisparticularlyusefuliftheproblemiscomplex.Typicallyallthevarious

    quantitiesassumedtobeofimportanceforacertainphenomenaislisted.Afunctionalrelationship

    betweenthedifferentparametergroupsisthenestablishedforallflowgoverningquantities.The

    scalinglawsareobtainedbytakingtheratioofthedifferentforces. Adetaileddescriptionof

    dimensionalanalysiscanbefoundinTaylor(1974).Aderivationofthemostcommon

    dimensionlessvariablesusedinfluiddynamics,usingBuckinghamsPitheoremisfoundinchapter5

    ofWhite(2005).

    Toachievesimilarityinforcesbetweenthemodelscaleandfullscalesituationthefollowing

    conditionsmustbefulfilled:

    Geometricalsimilarity

    Kinematicsimilarity

    Dynamicsimilarity

    Inthefollowingtheserequirementswillbediscussed.Amorecomprehensivediscussionabout

    modellawsisgivenbyChakrabarti(1998)

    2.1 Geometricalsimilarity

    Geometricalsimilarstructuresinmodelandfullscalehavethesameshape.Thismeansthata

    constantlengthscalebetweenthemexist:

    /F ML L

    whereLMandLFareanydimensionsofthemodel/fullscalestructure.Therequirementtoequal

    lengthratioforalldimensionsdoesnotapplyonlytothestructures,butalsotothesurrounding

    environment.Atthefirstviewthisseemstobeaneasyrequirementtosatisfyforpracticaltesting.

    Howeverthisneednotbetheactualsituation.Forexampletheactualsurfaceroughnessofaship

    cannotbeaccuratelymodelled.Anotherexampleisthealmostunrestrictedextentofthe

    surroundingwaterforasailingship(exceptforwaterdepthinsomecases).Thissituationisnot

    possibletoreproduceinmodelscale,whichimpliesthatphysicalboundariesalwayspresentin

    modeltestingcaninfluencethetestresults.

    2.2 Kinematicsimilarity

    Theratiosbetweenvelocitiesinmodelscalehavetobeequaltothecorrespondingratiosinfull

    scale.Thisimpliesthatflowwillundergothegeometricalsimilarmotionsinbothcases.Asan

    exampletheratiobetweentheforwardspeedofashipandtherotationalspeedofthepropeller

    hastobethesame:

  • 7/23/2019 Experimental Methods in Marine Dynamics

    8/182

    LecturenotesinExperimentalMethodsinMarineHydrodynamics,issuedAugust2014

    Page7

    (2 ) (2 )

    F M

    F F M M

    V V

    n R n R

    or

    F MF M

    F F M M

    V VJ J

    n D n D

    whereVistheshipspeed,nistherateofrevolutionofthepropeller,Risthepropellerradius,Dis

    thepropellerdiameterandJistheadvancecoefficient.

    2.3 Dynamicsimilarity

    2.3.1 Forces

    Dynamicsimilarityisachievedifwehavethesameratioatmodelscaleandfullscaleforthe

    differentforcecontributionspresentintheproblem.Inprinciplethefollowingforcecontributions

    willbeofimportance:

    1. InertiaForces,Fi

    2. Viscousforces,Fv

    3. Gravitationalforces,Fg

    4. Pressureforces, Fp

    5. Elasticforcesinthefluid,Fe.

    6. Surfaceforces,Fs.

    Inaddition,forelasticmodelstheelasticrelativedeformationsmustbeidenticalinmodelandfull

    scale.

    Wewillusethefollowingdifferentphysicalquantitiestocharacterisethedifferentforce

    contributions;physicallength;L,velocity;U,fluiddensity;,gravitationalacceleration;g,andthe

    fluidviscositycoefficient;.ThefollowingdependenceofthephysicalparametersL,U,,gand

    willexistforthedifferentforcecontributions:

    InertiaForces:

    2233

    LULdt

    dx

    dx

    dU

    Ldt

    dU

    Fi

    ViscousForces: ULLdx

    dUFv

    2

    GravitationalForces:3

    gLFg

    PressureForces:2

    pLFp

    ElasticfluidForces:2LEF vve

    SurfaceForces: LFs

  • 7/23/2019 Experimental Methods in Marine Dynamics

    9/182

    LecturenotesinExperimentalMethodsinMarineHydrodynamics,issuedAugust2014

    Page8

    wherevistherelativeelongation(compression),Evisthevolumeelasticityandisthesurfacetension.

    2.3.2 FroudeNumber

    Thedynamicsimilarityrequirementappliedontheratiobetweeninertiaandgravityforcesgives

    thefollowingrelation:

    gL

    U

    gL

    LU

    F

    F

    g

    i

    2

    3

    22

    Appliedonmodelandfullscalethisrequirementgives:

    2 2

    M F

    M F

    M FN

    M F

    U U

    gL gL

    U UF

    gL gL

    whereFNistheFroudenumber.Geometricalandkinematicsimilarity,andequalityinFroude

    numberinmodelandfullscalewillthereforeensuresimilaritybetweeninertiaandgravityforces.

    Sincesurfacewavesaregravitywaves,thisimpliesthatequalityinFroudenumbershouldgive

    equalityinwaveresistancecoefficient.

    2.3.3 ReynoldsNumber

    Equalratiobetweeninertiaandviscousforceswillgive:

    2 2

    i

    v

    F U L UL UL ReF UL

    whereReistheReynoldsnumberand=/ isthekinematicviscosity.EqualityinReynolds

    numberbetweenfullscaleandmodelscalewillthereforeensurethattheviscousforcesare

    correctlyscaled.

    2.3.4 Machsnumber

    Theelasticityofwaterwillinfluencethepressuretransmissioninwaterandwillthereforebe

    importantforsometypeofmodeltesting.Equalratiobetweeninertiaandelasticforcesgives:

    2

    22

    LE

    LU

    F

    F

    vve

    i

    Usingthegeometricalsimilarityrequirementthatvareequalinmodelandfullscalethis

    requirementgives:

    2 2 2 2

    2 2

    , ,

    v v v vM F

    M F

    n

    v M v F

    U L U L

    E L E L

    U U

    ME E

  • 7/23/2019 Experimental Methods in Marine Dynamics

    10/182

    LecturenotesinExperimentalMethodsinMarineHydrodynamics,issuedAugust2014

    Page9

    whereMnistheMachnumberand vE isthespeedofsoundinwater.

    2.3.5 Webersnumber

    Theratiobetweeninertiaandsurfacetensionforcesisgivenfrom:

    LU

    L

    LU

    F

    F

    s

    i222

    Similarityrequirementforthisforceratioinmodelandfullscalewillnowgivethefollowing

    requirement:

    2 2

    M F

    U L U L

    whichgives:

    ( ) ( )

    M Fn

    M F

    M F

    U UW

    L L

    whereWnistheWebersnumber

  • 7/23/2019 Experimental Methods in Marine Dynamics

    11/182

    LecturenotesinExperimentalMethodsinMarineHydrodynamics,issuedAugust2014

    Page10

    2.4 ScalingRatios

    Thefollowingdimensionlessquantitiesarecommonlyusedfortestingofshipandoffshore

    structures:

    Symbol DimensionlessNumber ForceRatio Definition

    Re ReynoldsNumber Inertia/Viscous UL

    FN FroudeNumber Inertia/GravityU

    gL

    Mn MachsNumber Inertia/ElasticityV

    U

    E

    Wn WebersNumber Inertia/SurfacetensionU

    L

    St Strouhallnumber vf D

    U

    KC KeuleganCarpenterNumber Drag/Inertia AU T

    D

    TheStrouhalNumberisnotderivedfromaforceratio.fvisthevortexsheddingfrequencyandStis

    thenondimensionalvortexsheddingfrequency,whichagaindeterminetheoscillationfrequency

    ofthetransverseliftforcesactingonacylinderwithcrossdimensionD.

    TheKeuleganCarpenterNumberisdeterminedfromforceratiobetweendragandinertiaforces

    forthecasewithoscillatingflowpastacylinder.TistheperiodofoscillationandUAisthevelocity

    amplitude.EqualKCinmodelandfullscaleisforexampleachievedifthesameratiobetweenwave

    heightandcylinderdiameterisused.

    Inpracticaltestingitwillnotbepossibletosatisfysimultaneouslythedifferentscalinglaws.For

    exampleshipsandoffshorestructuresareformostpracticalsituationinfluencedbysurfacewave

    effects,eitherfromincomingwavesorwavegeneratedbytheforwardspeedormotionsofthe

    structure.Gravitationalforceswillgovernthesurfacewaveformation.Thisimpliesthatforthese

    conditionsequalityinFroudenumberinmodelandfullscalemustbeachieved.Ifviscousforcesare

    importantfortheactualsituation,therequirementofequalityinReynoldsnumbershouldin

    principlealsobesatisfied.Thisisnotpossibletoachieve.Theviscousforceswillnotbecorrectly

    scaledandinthescalingprocessfrommodeltofullscalethiseffecthastobeevaluated.

    OtherpracticallimitationsforachievingequalityinRearemodelsizeandnecessarymodelspeed.

    TherequirementofconstantUL(assumingconstant)willformostcasesbeimpossibletoachieve.

    Inconventionalmodeltestingofshipsandoffshorestructures,physicalscalingandtestexecution

    aremostcommonlycarriedoutbasedonFroudeScaling.TheeffectofdifferentReynoldsnumberis

    accountedforbydifferentscalingprocedures.Atypicalexampleisshipresistancetests,where

    scalingmethodsforcorrectingforeffectofdifferentReynoldsnumberiswellestablished.Forother

    applicationsnoestablishedmethodexistsforaccountingfortheeffectofReynoldsnumber.Thiswillbediscussedinmoredetailsinchapter12.2.

  • 7/23/2019 Experimental Methods in Marine Dynamics

    12/182

    LecturenotesinExperimentalMethodsinMarineHydrodynamics,issuedAugust2014

    Page11

    AssumingFroudescalingisappliedandgeometricalsimilaritywithscaleratio /F ML L ,

    fromtheequalityinFroudenumberwehave:

    M F

    M F

    FF M M

    M

    U U

    gL gL

    LU U U

    L

    Theotherphysicalparameterscannowbederivedfromthedimensionalanalysissfollows:

    Structuralmass:3F

    F M

    M

    M M

    Force:

    3F

    F MM

    F F

    Moment: MM

    F

    F MM4

    Acceleration: F Ma a

    Time: F Mt t

    Pressure: FF MM

    p p

    Theratio F M isincludedtoaccountforpossibledifferenceinfluiddensitybetweenfullscale

    andmodelscale(usuallyseawaterinfullscalerelativetofreshwaterinthetesttank).

    2.5 Hydroelasticity

    Inhydroelasticproblemsthehydrodynamicforcesareinfluencedbytheelasticdeformationofthe

    structure.Thisdeformationisgovernedbytheinertiaforcesandelasticforcesinthestructure.Themodellingoftheelasticpropertiesofstructureswillthereforegiveseveraladditionalproblems

    comparedtothemodellingofwaveinduceddynamicresponseofrigidstructures.Exampleswhere

    correctlyscaledelasticbehaviourofthemodelwillbeimportantisspringingandwhippingofships,

    anddynamicbehaviourofmarinerisersandmooringlines.

    Additionalrequirementstotheelasticmodelcanbesummarisedasfollows:

    Correctlyscaledglobalstructuralstiffness

    Structuraldampingmustbesimilartofullscalevalues

    Themassdistributionmustbesimilar.

  • 7/23/2019 Experimental Methods in Marine Dynamics

    13/182

    LecturenotesinExperimentalMethodsinMarineHydrodynamics,issuedAugust2014

    Page12

    Geometricalsimilaritybetweenmodelandfullscaleforanelasticstructurewillrequirethat

    theelasticdeformationsaresimilar.Toillustratethiswewillconsiderthedeflectionofacantilever

    beamasanexample.Thedeflection,,isgivenfrom:

    EI

    FL3

    whereEIistheflexuralrigidityandFisthehydrodynamicforcewhichcanbeexpressedas:

    22LUCF

    whereCisaforcecoefficientdependentonFN,Reetc.Therequirementofsimilarityindeformation

    inmodelandfullscalegives:

    F MF M

    F ML L

    Usingtheaboveequationsthisrequirementissatisfiediftheratio:

    2 4C U L

    EI

    isequalinmodelandfullscale.Assumingequalforcecoefficientanddensityweobtainthe

    followingrequirementtothestructuralrigidity:

    2 4 2 4

    5

    F M

    F M

    U L U LEI EI

    EI EI

    Ifalldimensionsofthecrosssectionalshapeofthebeamarescaledgeometricalsimilar,the

    momentofinertia,I,willsatisfytherelation:

    4

    F MI I

    WearethanleftthefollowingrequirementtotheYoungsmodulus,E:

    F ME E

    ThisimpliesthattheYoungsmodulusforthemodelmustbe1/timesthevalueofthefullscale

    structure.

    Itshouldbenotedthatthetwolastequationsisnottoberegardedasrequirementstothemodel.

    ThebendingstiffnessrequirementisgivenforEI.Inpracticalmodeltestingtherequirementgiven

    toscalingofEIisoftensatisfiedbymanipulatingthedifferentparametersbyapplyingother

    materials,otherwallthickness,orbymodifyingthestructuralbuildupofthebeam.Theouter

    geometry,whichisexposedtothehydrodynamicforces,hastobemodeledgeometricallycorrect.

    Alsotherequirementtocorrectmodelingofmassdistributionandstructuraldampinghastobe

    satisfied.Thiswillbefurtherdiscussedaspartofthephysicalmodeling,seechapter5.3.

    Similarresultswillbefoundfortheaxialandtorsionstiffnesses.Therequirementfortheaxial

    stiffnesscaseis:

  • 7/23/2019 Experimental Methods in Marine Dynamics

    14/182

    LecturenotesinExperimentalMethodsinMarineHydrodynamics,issuedAugust2014

    Page13

    3)()( MF EAEA

    whereEAistheaxialstiffness.Thisrelationgivesequalstraininmodelandfullscale.Thecross

    sectionalarea,A,willsatisfytherelation2

    MF AA ,whichgivesthesamerequirementtothe

    Youngsmodulusasshownabove.

    2.6 Cavitation

    Ifcavitationoccurs,dynamicsimilarityalsorequiresthatthelawofequalcavitationnumberis

    accountedforintheexperiments.Therequirementisthatthecavitationnumbergivenas:

    0

    2

    ( )

    1/ 2

    vgh p p

    U

    hastobethesameforthemodelasinfullscale.p0istheatmosphericpressure,ghisthe

    hydrostaticpressureandpvisthevapourpressure.Tosatisfythisrequirementacavitationtunnel,

    withpossibilitytolowertheatmosphericpressurehastobeapplied.

  • 7/23/2019 Experimental Methods in Marine Dynamics

    15/182

    LecturenotesinExperimentalMethodsinMarineHydrodynamics,issuedAugust2014

    Page14

    3 EXPERIMENTALFACILITIES

    3.1 Introduction

    Thedifferenttypeofexperimentalfacilitiesusedforshipsandoffshorestructurescanbe

    categorizedasfollows:

    Towingtanks,conventionalandfacilitiestailormadeforspecificpurposes.

    Cavitationtunnels

    Oceanbasins

    Usuallywewillfindtwoormoredifferenttypeoftestsfacilitiesateachresearchandtesting

    institution.ForexampleatMARINTEKthereisthreetowingtanks,acavitationtunnelandanocean

    basin.InFigure3.1anoverviewofthetestfacilitiesatMARINTEKispresented.

    Theexperimentalfacilitiesfortestingofshipandoffshorestructuresarenotonlythephysicaltank/basinwherethetestsareexecuted.Thetestingfacilitieshavealsotocoverdifferent

    additionalfunctionsasworkshopsforconstructionandbuildingofmodels,instrumentation,

    simulationofenvironmentandsoftwareandtoolstorecordandanalyzethemeasureddata.A

    typicallayoutofatowingtank,includingutilityfunctions,isshowninFigure3.2. Fortestingof

    realisticbehaviorofstructuresinaseaway,equipmentforgenerationofwind,wavesandcurrent

    andefficientwaveabsorptionareofvitalimportance.

    3.2 Towing

    Tanks

    Thefirsttowingtankswerebuiltforperformingtowingandpropulsiontests.Thelengthofthe

    towingtankhastobelongenoughtogetasufficientlongtimewithsteadyflowconditionsfor

    measurementsoftowingandpropulsionforces.Therequiredsizewillthereforebedependenton

    typeofshipstobetested,scaleratioandforwardspeed. Todayalargenumberoftowingtanks

    exist,morethan200areinregularuse. Thelengthofthetowingtanksisfrom20mtomorethan

    1000m.

    Thesmalltanksaretypicallyconnectedtoteachingandresearchinstitutions.Theverylongtanks

    aremainlyconnectedtonavalactivities.AnexampleisthehighspeedtankatDavidTaylorNaval

    ShipResearchandDevelopmentCentrewithdimensions900mx6.4mx3mwithamaximum

    towingcarriagespeedofupto50m/s.Thistankwasbuiltespeciallyfortestingofhighspeedships.

    Theconstructionofthistankwasadirectresultoftherequirements:Navyin50kn,definedin

    about1960asatargetfortheUSNavy.AsimilarfacilityalsoexistsinSt.Petersburg.

    AtypicalsizeforcommercialworkingtowingtanksisLxBxd=250mx10mx5m. Typicalshipmodel

    lengthis58m.Thissizeoffacilitiesseemstorepresentareasonablecompromisebetweencostfor

    tankconstruction,costformodelmanufactureandoperationalcosts(whichtogetherdetermine

    thecostofmodeltesting)andtherequiredscaleratioandcorrespondingaccuracythatcanbe

    achieved.ThesizeofthelargehydrodynamiclaboratoriesattheMarineTechnologyCentreis

    showninFigure3.1,withmoredetailsaboutthetowingtanksgiveninFigure3.3.

  • 7/23/2019 Experimental Methods in Marine Dynamics

    16/182

    LecturenotesinExperimentalMethodsinMarineHydrodynamics,issuedAugust2014

    Page15

    Almostalltowingtanksuseatowingcarriagetomovethemodeltroughthewater.A

    typicaltowingcarriagedesignisshowninFigure3.3.Thetypicalmaxcarriagespeedis10m/s.

    Duringcalmwatertowingandpropulsionthemodeliskeptfixedinsurgeswayandyaw,butfreeto

    heaveandpitch.

    Figure 3.1 Overview of test facilities at MARINTEK

  • 7/23/2019 Experimental Methods in Marine Dynamics

    17/182

    LecturenotesinExperimentalMethodsinMarineHydrodynamics,issuedAugust2014

    Page16

    Figure 3.2 A typical towing carriage design.

    Tobeabletoperformseakeepingtestsorothertypeoftestinginsurfacewaves,manytowing

    tanksareequippedwithawavemakeratoneendofthetank.Generationofwavesandtypeofwavegeneratorsarediscussedinmoredetailsinchapter3.5.1.Inordertopreventreflectionsof

    wavesfromtheoppositeside,awavebeach,whichisabsorbingthewaveenergy,hastobe

    installedatthissideofthetowingtank.

    Ithasalsobeenconstructedtowingtanksthatarehighlyspecialisedforagivenpurpose.An

    exampleistheDutchandChinesevacuumtanks,wheretheentirespaceabovethetankis

    evacuatedandairpressuredownto0.04barcanbeachieved.Thepurposeofthistypeoffacilityis

    todopropulsiontestswithsurfaceeffectsandcompleteshipmodelpresent,atthelowpressure

    requiredforequalityincavitationnumber.

    AnotherexampleofaspecialisedtankistheicetanksinHamburgandHelsinki.Iceismodelledby

    freezing,usinghighsalinitywaterandchemicalstocontrolthemechanicalprioritiesoftheice.

    Thesetanksareusedfortestingoficebreakersandoffshorestructuresexposedtotheactionof

    driftingice.

    ThetowingtankatMARINTEKwascompletedin1939withdimensions170x10.5x5m.Later,in

    1978,extendedto260mwherethedepthoftheextensionis10.0m.Thelayoutofthetowingtank

    isshowninFigure3.4.Thetowingcarriageisofconventionaltype. Fortestingofhighspeed

    vesselsthecarriageisequippedwithaFreetoSurgerig.The8mlongrigismountedinfrontof

    thetowingcarriageasshowninFigure3.4.Usingthisrigthewinddisturbanceatthepositionofthe

    modeliseliminatedandthemodelisallowedtofreelysurge,heaveandpitchduringwavetesting.

  • 7/23/2019 Experimental Methods in Marine Dynamics

    18/182

    LecturenotesinExperimentalMethodsinMarineHydrodynamics,issuedAugust2014

    Page17

    Towingtankdata

    TankI TankII TankIII TankI+III*

    Length:

    Width:

    Depth:

    175m

    10.5m

    5.6m

    25m

    2.8m

    1.0m

    85m

    10.5m

    10m

    260m

    10.5m

    5.6/10.0m

    Tot.weightcarriage:

    Wheelbase:

    Speedrange:

    Max.acceleration:

    20tons

    11.04m

    0.0210m/s

    1m/s2

    0.2ton

    3m

    0.051.75m/s

    1m/s2

    15tons

    11.04m

    00.9m/s

    1m/s2

    20/15tons

    11.04m

    0.0210m/s

    1m/s2

    Modelsizerange: 8m 1m 8m

    Wavemaker:

    Max.waveheight:

    Waveperiodrange:

    Max.wavesteepness:

    Singleflap

    Regularandirregularwaves

    0.3m

    0.253sec.

    1:8

    Doubleflap

    Regularandirregularwaves

    0.9m

    0.85sec.

    1:10

    Doubleflap

    Regularandirregularwaves

    0.9m

    0.85sec.

    1:10

    Wavespectra: Computergenerated

    * Tank I and III can be used separately and also as one long tank (Tank I + III) by removing the gate (12)

    and wave absorber (15). In Tank I + III either of the two carriages can be used.

    Figure 3.3 Towing Tanks at MARINTEK.

    11

    4

    10 9 8 7

    136

    5

    3 2 1

    1

    5.

    6

    10.

    0

    28

    39 85

    260

    13.

    5

    10.

    5

    Model store

    Drawing office

    Reception

    TankII

    Ship model manufacturing

    shop

    Trimming tank

    NC milling machine for

    model production

    Instrumentation workshop

    Carpenter workshop

    Propeller model

    manufacturing shop

    Cavitation laboratory

    Dock gate

    Wave absorber, Tank I

    and Tank I+III

    Wavemaker, Tank III

    and Tank I+III

    Wave absorber, Tank III

    12 15

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    13

    14

    15

    TANKI TANKIII 1

  • 7/23/2019 Experimental Methods in Marine Dynamics

    19/182

    LecturenotesinExperimentalMethodsinMarineHydrodynamics,issuedAugust2014

    Page18

    Figure 3.4 Free to surge rig in front of towing carriage.

    3.3 CavitationTunnel

    Cavitationtunnelsaredesignedtobeabletotestpropellersandotherliftingsurfacesata

    sufficientlylowpressuretoachievecorrectcavitationnumber.Mostcommercialmodeltest

    institutionshaveoneormorecavitationtunnels,andabout100tunnelsistodayinregularuse.

    Awiderangeofdifferentsizecavitationtunnelsexist,fromsmallsizetunnelsforresearchand

    education,with

    test

    section

    area

    of

    typically

    0.25

    x0.25

    m,

    to

    very

    big

    circulating

    water

    tanks,

    with

    testsectiondimensionupto3x6mandlengthof11m(theBerlintunnel).Atypicalsize

    conventionaltunneliswithcirculartestsectionwithdiameterofabout1mMaximumflowspeed

    atmeasuringsectionisusually1020m/s.Largetunnelsoftenhavetestsectionsallowingfor

    mountingofacompleteshiphullmodel.

    Fortunnelsthatcannotallowtestingofentireshiphullmodels,anafterbodymodeloftheshipis

    oftenappliedtoproducecorrectinflowtothepropeller,andmeshscreensareusedtoproducethe

    specifiedwakedistribution.Thebenefitofusingafterbodymodelsandmeshscreens,insteadofa

    completemodel,isthepossibilityofhavingthemeshscreensimulatefullscalewake,notonly

    modelscalewake.Whentestingtheentireshipmodel,onlymodelscalewakemightbetested.

    Somecavitationtunnelsareofthefreesurfacetype.Suchtunnelscanbeusedfortestingofhigh

    speedpropellersoperatinginfullorsubmergedcondition.Thistypeoftunnelsisespeciallywell

    suitedforstudyingventilationproblemsforpropeller,waterjetsandfoilsections.Largetunnels

    withfreesurfaceenabletestwithnormalshipmodels.

    ThecavitationtunnelatMARINTEKisshowninFigure3.6.Thediameteroftheworkingsectionis

    1.2mandthelengthofworkingsectionis2.08m.Maximumwatervelocityis18m/s.The

    minimumworkingpressureis0.1atm.Afterbodymodelsandmeshscreensareapplied.

  • 7/23/2019 Experimental Methods in Marine Dynamics

    20/182

    LecturenotesinExperimentalMethodsinMarineHydrodynamics,issuedAugust2014

    Page19

    Figure 3.5 Cavitation Tunnel at MARINTEK.

  • 7/23/2019 Experimental Methods in Marine Dynamics

    21/182

    LecturenotesinExperimentalMethodsinMarineHydrodynamics,issuedAugust2014

    Page20

    3.4 OceanLaboratories

    Theoceanlaboratoriesareingeneralconstructedfortestingofoffshorestructuresandfor

    seakeepingandmanoeuvringtestingofships.

    Incontrasttothetraditionaltowingtankstheoceanbasinsandseakeepinglaboratoriesmakeit

    possibleto

    carry

    out

    tests

    with

    any

    wave

    heading

    (oblique

    waves)

    for

    ships

    with

    forward

    speed.

    For

    manoeuvringtestsitisrequiredwithatowingcarriagewithcontrolledmotionsinbothlongitudinal

    andtransversedirection.Thisisachievedbyasubcarriage,whichisconnectedunderneaththe

    mainlongitudinalmotioncarriage(seeFigure3.7,takenfromtheseakeepinglaboratoryatSSPA,

    Sweden).Combinedwiththelargewidthofthesefacilities(typically3050m)thearbitrary

    horizontalmotionrequirementtendstomakethecarriagesystemcomplexandheavy.

    Basinspurposebuiltforoffshoretestingisformostcasesbuiltafter1980.Foroffshoretestinga

    largecarriagesystemisnotrequired.Oceanlaboratoriesareusuallyequippedwithadvanced

    systemsforgenerationofwaves,oftencapableofgenerationofbothlongcrestedand

    multidirectional(or

    short

    crested)

    waves

    as

    well

    as

    wind

    and

    current.

    In

    this

    way

    it

    is

    possible

    to

    givearealisticrepresentationofthemarineenvironmentalconditions.

    Figure 3.6 Carriage system in Ocean Basin (from SSPA, Sweden).

    Examplesofcommercialoceanlaboratoriesfortestingofcoastalandoffshorestructuresare:

    MARINTEK,Trondheim; LxB=80mx50m,d=010m

    MARIN,Netherlands; LxB=45mx36m,d=010.5m,pitincentrewithd=30m

    HydralicLab,Ottawa,Canada: LxB=50mx30m,d=3m

    OTRC,TexasA&M: LxB=45.7mx30.5m,d=5.8m,pitwithd=16.8m

  • 7/23/2019 Experimental Methods in Marine Dynamics

    22/182

    LecturenotesinExperimentalMethodsinMarineHydrodynamics,issuedAugust2014

    Page21

    Somebasinsareequippedwithafalsebottomthatcanbesettodifferentdepths.Inthis

    waytheactualwaterdepthcanbecorrectlymodeledinthetestsetup.Thispropertyalsoenable

    mountingofmodels,mooringsystemandothersubseaequipmentonadrybottom,whichafter

    installationofthesystemtobetested,islowereddowntothewantedwaterdepth.Thislargely

    simplifiesthepreparationworkforthetest.

    TheoceanlaboratoryatMARINTEKisfittedwithtwosetsofwavemakers.Alongthe50msideof

    thebasinthereisadoubleflapwavemakercapableofgeneratinglongcrestedwaves.Alongthe80

    msidethereisamultiflapwavemakerconsistingof144individuallycontrolledflapsforgeneration

    ofshortcrestedandlongcrestedwaves.Waveabsorptionbeachesareinstalledonthetwo

    oppositesidestoreducetheproblemswithwavereflections.Currentcanbemodeledindirection

    alongthebasin(inwavedirectionofthedoubleflapwavemaker).Thewaterdepthisadjustable

    from0m(surfaceposition)to10mbymovingthefalsebottom.Amoredetaileddescriptionofthe

    OceanLaboratoryatMARINTEKisgivenbyHuseandTrum (1981)andNaeser.(1981).

    3.5 Generationofenvironment

    Reliablemodeltestingrequirescontrolledgenerationofwind,wavesandcurrentinbothtimeand

    spacetoachievearealisticandwelldefinedenvironment.Commonlyusedequipmentfor

    environmentgenerationisdescribedinthefollowing.

    3.5.1 Wavegenerationandabsorption

    Therearetwomainclassesofwavegenerators,thehorizontaldrivenflaptypewavemakerandthe

    verticaldrivenwedge(plunger)typewavemaker.Inmoderntestfacilitiesalmostonlytheflaptype

    isused.TwoexamplesofflaptypewavemakersareshowninFig3.8.Thefirstoneisadoubleflap

    wavemakerasinstalledinthetowingtankandintheoceanbasinatMARINTEK.Hydraulic

    actuatorsareused.TheotheristhesingleflapwavemakerasinstalledinMarineCybernetic

    Laboratory(MCLab)atMARINTEK.Thiswavemakeriselectricallydriven.Therearsideoftheflap

    maybeeitherdryorwet. Thedoubleflaptypeisusuallyusedfordeeperwater.Bythepossibility

    ofusingtheupper,thelowerorbothflapsincombinationsforthedoubleflaptype,itispossibleto

    generatewaveswithaminimumofdistortionforlargerwavelengthrangethanwhatispossiblefor

    asingleflapsolution.

  • 7/23/2019 Experimental Methods in Marine Dynamics

    23/182

    LecturenotesinExperimentalMethodsinMarineHydrodynamics,issuedAugust2014

    Page22

    Figure 3.7 Examples of flap type wave maker; single flap and double flap.

    Othertypesofwavemakersarepistontype(asmallsketchisshowninFigure3.9),andpneumatic

    wavemakers.Pneumaticwavemakersusevariableairpressureinachamberabovethewaterat

    theedgeofthebasintocreatewaves.DavidTaylorModelBasininWashingtonDChasapneumatic

    wavemakerintheiroceanbasin,exceptforthattheprincipleislittleused,andisconsidered

    inferiorrelativetoflaptypewavemakers.

    Figure 3.8 Wave-maker theory, Wave height to stroke ratio as function of relative depth.

  • 7/23/2019 Experimental Methods in Marine Dynamics

    24/182

    LecturenotesinExperimentalMethodsinMarineHydrodynamics,issuedAugust2014

    Page23

    Thegenerationofwavesarecontrolledbythefrequencyandamplitudeoftheflap.In

    Figure3.9therelationbetweenflapstroke,S,andwaveheightH,isshownforflaptypewave

    maker.Theresultingwaveheightisshownasafunctionoftheparameterkhwhere 2k is

    thewavenumber,isthewavelengthandhisthewaterdepth.Theresultsarebasedonwave

    makertheoryseee.g.DeanandDalrymple(1984).Thisratiobetweenthemechanicaldisplacement

    ofthe

    flap

    to

    the

    wave

    amplitude

    is

    the

    transfer

    function

    of

    the

    wave

    maker.

    Aregularwaveelevationcanbegeneratedusingthetransferfunctiontodeterminetherequired

    controlsignaltothewavemaker.InFigure3.10themaximumwaveheightforregularwavesas

    functionofwaveperiodisshownforthedoubleflapwavemakersinthetowingtankatMARINTEK.

    Itisobservedthatincreasingwaveperiod(andhencewavelength),givesdecreasingmaximum

    waveheight.

    Figure 3.9 Maximum wave height as function of wave period, Double Flap wave maker at

    MARINTEK

    Thegenerationofirregularwavesiscontrolledbyaninputsignalbasedontheselectedwave

    spectrum

    combined

    with

    the

    transfer

    function

    of

    the

    wave

    maker.

    The

    commonly

    used

    assumption

    thattheseasurfaceelevationisastationaryGaussianprocesswithzeromeanisapplied. The

    surfaceelevationasfunctionoftime,(t),canthanberepresentedbyafinitenumberofFourier

    components:

    1

    ( ) cos( )N

    n n n

    n

    t a t

    wheren isthephaseangleofcomponentncreatedfromarandomphasegenerator.Random

    phaseisnecessarytoeliminateanycoherentfeaturesdevelopinginthewavesignal.anisthe

    FourieramplitudeofcomponentndeterminedfromtheinputwavespectrumdensityS()as:

    2 ( )n na S

  • 7/23/2019 Experimental Methods in Marine Dynamics

    25/182

    LecturenotesinExperimentalMethodsinMarineHydrodynamics,issuedAugust2014

    Page24

    isthefrequencyintervalforeachcomponent.Itisimportantwithasufficientnumberof

    componentsinthewavegenerationtoavoidrepetitionofthewavesignalandaliasing,see

    Newland(1975)forfurtherdetails.Typically,2000componentsareused.

    FormostcasesthewavespectraaregeneratedaccordingtotheJONSWAPformulation:

    2020 2()(exp4

    052 )(25.1exp)( gS

    where:

    07.0 for 0

    09.0 for 0

    0 isthespectralpeakfrequency

    isthepeakednessparameter.

    InFigure3.11atypicalexampleoftheoreticalJONSWAPspectrumandmeasuredwavespectruminthewavetankareshown.Theagreementinenergydistributionisseentobeverygood.

    Figure 3.10 Typical example of theoretical JONSWAP spectrum and measured wave spectrum in

    the wave tankMultidirectional(orshortcrested)wavescanbegeneratedusinganarrayofflapsalongonesideof

    thebasin.Therearetypicallyaboutahundredindividualflaps.Themultiflapwavegeneratorscan

  • 7/23/2019 Experimental Methods in Marine Dynamics

    26/182

    LecturenotesinExperimentalMethodsinMarineHydrodynamics,issuedAugust2014

    Page25

    alsobeusedtogeneratelongcrestedwaveswithanarbitrarywaveheading. Togenerate

    shortcrestedwavethedirectionalspreadingfunctionmustbespecifiedinadditiontotheenergy

    densityspectrum.Thisgivesthefollowinggeneralisationforthesurfaceelevationasfunctionof

    spaceandtime,(x,y,t):

    nnnnnN

    n

    n tyxkatyx )sincos(cos),,( 1

    whereannowistheFourieramplitudeofcomponentnincludingthespreadingfunction:

    ),()(2nnnn DSa

    Toavoidreflectionandwavebuildingupinthebasin,anefficientwaveabsorptionsystemisalso

    essential.Themostusedsystemforwaveabsorptioniswavebeaches.Anexampleisshownin

    Figure3.12.Theshapeisparabolicwhichhasbeenfoundtobemoreefficientforalargewave

    periodrangecomparedtoastraightbeach. Reflectedwaveheightoflessthan5%oftheincoming

    waveheightwilltypicallybeachievedwiththisbeachdesign. Inoceanbasinswaveabsorbersareusuallymountedonthesideswithoutwavemakers,typicallywithtwosideswithwavemakersand

    twosideswithwaveabsorbers(asinMARINTEKoceanbasin).

    Intowingtanksthemainproblemwillbereflectionoftheshipgeneratedwavesystemfromthe

    tankwalls.Itisnotpracticaltomountabeachalongsidethetankwallandtransversewaveswillbe

    generated.Fortestswithforwardspeedthisisusuallynotaproblem,sincethereflectedwaveswill

    hitthetestareaafterthemodelhasleft.Fortestswithzeroorverylowforwardspeed,the

    problemofwavereflectionsmustbetakenveryseriously.Forlongtestruns,likeistypicalforatest

    inirregularwaves,somekindofwaveabsorptionalongthetankwallisrequired.

  • 7/23/2019 Experimental Methods in Marine Dynamics

    27/182

    LecturenotesinExperimentalMethodsinMarineHydrodynamics,issuedAugust2014

    Page26

    Figure 3.11 Upper; Wave absorber, beach type. Lower; measured wave reflection from beach, in

    % of incoming wave amplitude.

    3.5.2 Windgeneration

    Windgenerationismostconnectedtostationarymodeltestsinoceanbasins.Forfreelymoving

    modelswind

    is

    not

    easily

    applied

    in

    practical

    testing.

    The

    wind

    in

    the

    basin

    is

    usually

    generated

    by

    meansofabatteryofportableelectricalfans.Thefansareplacedsomedistancefromthetesting

    areatoachieveahomogeneouswindspeeddistributionatthepositionofthetestmodel.Thewind

    directioncanbechangedbymovingthepositionofthefans.

    Twodifferentmethodsforcalibratingthewindspeedarecommonlyused:

    1. Froudescalingofwindspeed,i.e: WindFWindM UU ,,

    2. Usingprecalculatedwindforceactingonthemodelandtuningthemodelwindspeedto

    thisforce

    is

    achieved.

    Forthefirstcasethewindspeediscalibratedatthepositionofthemodel,butwithoutthemodel

    present.Usingthisprocedurerequireaveryaccuratemodellingofthemodelsuperstructureto

    obtainreliablewindforces. Thelastprocedurerequiresthatreliablewindforceestimatesare

    availableonbeforehand.Ifthisisthecasethescaleeffectsonwindforcescanbeavoided.Usually

    thisprocedurewillgiveabout20%higherwindspeedthanthespeedestablishedfromFroude

    scalinglaw.

    Theeffectofwindwillbeimportantforalmostalltypesofmooredstructures.Thewindspeedisin

    general

    non

    steady

    and

    the

    dynamic

    effects

    of

    the

    winds

    can

    be

    an

    important

    exaction

    source

    for

    resonancemotionsofmooredstructureandinspecialcasesforrollmotionsofships.Thedynamic

  • 7/23/2019 Experimental Methods in Marine Dynamics

    28/182

    LecturenotesinExperimentalMethodsinMarineHydrodynamics,issuedAugust2014

    Page27

    effectofwindcanbesimulatedinthetestbycontrollingthepowertothefans.A

    frequentlyusedwindenergyspectrumforoffshoreapplicationsistheNPDspectrum.

    Thefrequencyrangeofawindspectrumisquitebroadbanded,oftencoveringarangefrom0.005

    to1Hz.

    3.5.3

    Current

    Tosimulatecurrenttwodifferentapproachesarecommonlyused:

    1. Directgenerationofcurrentinthebasinusingpumpingofwater

    2. Towingofthemodelsetupwithspeedequaltothecurrentspeed.

    Thefirstapproachrequireslargepumpswithrecirculationducts.Forbasinswithafalsebottom(as

    atMARINTEK)thepumpscanrecirculatethewaterunderthefalsebottom. Alsoexternalpiping

    (outsidethebasin,asusedinMCLabatMARINTEKandatMarinintheNetherlands)canbeusedfor

    recirculationofwater.

    Localcurrentcanbegeneratedbyplacingportablecurrentgeneratorsinfrontofthemodel(in

    principleasforthewindgeneration).Howeverforthismethoditisdifficulttoachieveareasonable

    stationarycurrentfieldatthepositionofthemodelduetolargeeddiesofbackflowingwater.The

    effectofcurrentonwaveforceswillnotberealisticallyaccountedforbythisproceduredueto

    largespacevariationincurrentfieldbetweenthewavemakerandmodel.

    Theeffectofcurrentisespeciallyimportantformooredstructures,bothduetothedirectforces

    duetothecurrentandduetotheinteractionbetweencurrentandwaves.Theinteractionbetween

    currentandwaveseffectcanlargelyinfluencethewavedriftforcesandhenceinfluencemean

    offsetandforcesaswellastheslowdriftmotions.Forthecasewithmooredstructuresthe

    simulationofthecurrenteffectbytowingthemodelwithaspeedequaltothecurrentspeedisnot

    apracticalsolution.Forthiscaseabasinwithdirectcurrentgenerationwillberequired.

    ThegenerationofcurrentspeedisbasedontheFroudescalinglaw.Thisisnecessarytoproperly

    representthewavecurrentinteractioneffects,butitmayintroducesomescaleeffectsforthe

    currentforcesduetodifferenceinRenumber,resultinginpossiblydifferentflowregimesinmodel

    andfullscale.

    Currentcalibrationofspeedandprofileshouldbeperformedwithoutthemodelinthebasin.

    Velocityfluctuationswillalwaysbepresentinbasingeneratedcurrent(inrealfullscalecurrent,

    fluctuationswillalsobeobserved).Largefluctuationsincurrentmayrepresentanexcitationsource

    forslowlyvaryingresonanceoscillationsandthemagnitudeshouldthereforebeaslowaspossible.

    Astandarddeviationforthecurrentfluctuationofabout5%ofmeancurrentistypicallyachievedin

    basinswithclosedrecirculationsolutions.Correctmodellingofthecurrentfluctuationsmightbe

    importantforthedynamicsofdeepwatersystems,butwestillnotknowenoughaboutthis,andno

    modeltestingfacilitiescurrentlyhavepossibilitiestocreatecontrolledcurrentfluctuations.

  • 7/23/2019 Experimental Methods in Marine Dynamics

    29/182

    LecturenotesinExperimentalMethodsinMarineHydrodynamics,issuedAugust2014

    Page28

    4 INSTRUMENTATION

    4.1 Generaldescriptionofequipment

    Alargerangeofdifferenttypeofmeasuringequipmentisusedfortestingofshipsandoffshore

    structures.Usually,instrumentsaredesignedtogenerateananalogvoltageorcurrentsignalwhich

    islinearlyproportionaltothemeasuredparameter.Nonlinearcharacteristicsoccurinrarecases.

    Instrumentswithdigitaloutputareincreasinglyused,butanalogoutputisstillpreferred,inorder

    toavoidthecomplexitiesofdealingwithdifferentdigitalsignalprotocols.

    Thesystemrequiredforperformingmeasurementsincludesthefollowingcomponents:

    Thetransducers

    Amplifiers

    Filters(analogand/ordigital)

    ADconverter

    Datastorageunit

    Cablingbetweenthedifferentcomponents

    AtypicalsetupisshowninFigure4.1.Itiscommonpracticetousetwoormoreindependent

    computersystemsforoperatingthetankfacility.Onemachineisusedforrealtimegenerationof

    controlsignalforthewavemakerandanadditionalmachineisusedforthedataacquisitionand

    analysis. Additionalmachinesmightbeusedforcontrolofruddersorothercontroldevices,orfor

    controlofthecarriage.

    Figure 4.1 Schematic of typical set op of a data acquisition system for model testing

    Afurtherdescriptionofinstrumentationandtransducersrelevantformodeltestingcanbefoundin

    Olsen(1992).Adetaileddescriptionofmeasurementtechniquesforfluidmeasurementsisgivenby

    Goldstein(1983)

    4.2 Strainanddisplacementmeasurements

    Themostusedmethodsforstrainanddisplacementmeasurementsinmodeltestingarebasedon

    thefollowingprinciples:

    Resistivetransducers, basedonchangeofresistanceduetostrain; straingauges

    Inductivetransducers Capacitancetransducers.

    TRANSDUCER

    AMPLIFIER& SIGNALCONDITIONER

    A/DCONVERTER

    RESPONSE

    C

    OMPUTER

    DATABUS

  • 7/23/2019 Experimental Methods in Marine Dynamics

    30/182

    LecturenotesinExperimentalMethodsinMarineHydrodynamics,issuedAugust2014

    Page29

    Inadditiontoadirectmeasureofstrainanddisplacements,thesetypeoftransducerare

    alsocommonlyusedasthebasisforpressurecells,forcetransducers,velocitymeasurementsand

    accelerometers.Theseapplicationswillbediscussedseparately.

    4.2.1 Straingauges

    Thestrain

    gauge

    measured

    the

    elongation

    in

    the

    material

    to

    which

    it

    is

    glued.

    Strain

    gauges

    are

    commonlyusedinanumberofdifferenttypesoftransducers.Examplesofstraingauge

    constructionsareshowninFigure4.2.ThethreadsareusuallyCUNialloys.

    Theuseofstraingaugesisbasedonthattheelongationofthestraingaugewillchangethe

    resistance.Thegaugefactork,isdefinedas:

    LL

    RR

    k

    whereR

    is

    the

    resistance

    and

    Lis

    the

    length

    and

    represent

    the

    change

    of

    length

    or

    resistance.

    The

    factork istypicallyabout2formetallicmaterials.Increasingthefactorkwillincreasethe

    sensitivityofthestraingauge. kvaluesuptoabout100200canbeachievedusingpiezoresistive

    materials.

    Theelongationofthestraingaugesususuallymeasuredinmicrostrain,S=106S,where

    LLS .

    Figure 4.2 Examples of strain gauges designs

    Tomeasure

    the

    change

    of

    resistance

    over

    astrain

    gauge,

    a

    Wheatstonebridgecircuitisused.AbasicWheatstone

    bridgecircuitcontainsfourresistances,aconstantvoltage

    input,andavoltagegage.ForagivenvoltageinputVin,the

    currentsflowingthroughABCandADCdependonthe

    resistances,i.e.,

    4321 RRIRRI

    VVV

    ADCABC

    ADCABCin

    Thevoltage

    drops

    from

    A

    to

    B

    and

    from

    A

    to

    D

    are

    given

    by:

    Figure 4.3 Wheatstone bridge circuit

  • 7/23/2019 Experimental Methods in Marine Dynamics

    31/182

    LecturenotesinExperimentalMethodsinMarineHydrodynamics,issuedAugust2014

    Page30

    4

    34

    4

    1

    21

    1

    RRR

    VRIV

    RRR

    VRIV

    in

    ADCAD

    in

    ABCAB

    ThevoltagegagereadingVgcanthenbeobtainedfrom:

    in

    inin

    ADABg

    VRRRR

    RRRR

    RRR

    VR

    RR

    VVVV

    3421

    4231

    4

    34

    1

    21

    Nowsupposethatallresistancescanchangeduringthemeasurement.Thecorrespondingchange

    involtagereadingwillbe:

    ingg

    VRRRRRRRRRRRRRRRRVV

    33442211

    44223311

    Ifthebridgeisinitiallybalanced,theinitialvoltagereadingVgshouldbezero.Thisyieldsthe

    followingrelationshipbetweenthefourresistances:

    rR

    R

    R

    RorRRRR

    VRRRR

    RRRRV ing

    1

    0

    3

    4

    2

    14231

    3421

    4231

    Wecanusethisresulttosimplifythepreviousequationthatincludesthechangesinthe

    resistances.DoingsoresultsinthesolutionforthechangeinVg:

    ing VR

    R

    R

    R

    R

    R

    R

    R

    r

    rV

    1

    1 4

    4

    3

    3

    2

    2

    1

    1

    2

    whereisdefinedby:

    3

    3

    2

    2

    4

    4

    1

    1

    1

    1

    1

    R

    R

    R

    Rr

    R

    R

    R

    R

    r

    Moreover,whentheresistancechangesaresmall(

  • 7/23/2019 Experimental Methods in Marine Dynamics

    32/182

    LecturenotesinExperimentalMethodsinMarineHydrodynamics,issuedAugust2014

    Page31

    Inpractice,oneoftenusesthesameresistancevalueforallfourresistors,R1=R2=R3=R4=R.

    Notingthatr=1inthiscase,thechangeinvoltagecanbefurthersimplifiedto

    ing VR

    RRRRV

    4

    4321

    DifferenttypesofWheatstonebridgecircuitsareusedtomeasurethechangeofresistanceoverastraingauge. Averysimpleexampleformeasurementofforceisshowninfigure4.4. Onestrain

    gaugeismountedtoeachsideofabeam.Twodummyresistances(usuallyintegratedinthe

    amplifier)areusedforbalancingthebridge. Thissetupiscalledahalfbridge.Aconstantvoltageis

    usedasexcitation,Vin.Theforcegivesrisetoanelongationofstraingauge1andcompressionof

    straingauge2.Thisintroducesanunbalanceinthebridgeandavoltagecanbemeasuredatthe

    exitatVg.Inafullbridgecircuit,allfourbranchesofthebridgearestraingauges.Mountingtwo

    straingaugesoneachsideofthebeaminFigure4.4inafullbridgearrangementwouldgivetwice

    thesensitivityofthehalfbridgearrangement.

    Figure 4.4 Examples of half-bridge circuit for measurements of change of resistance of strain

    gauges.

    4.2.2 Inductivetransducers

    Theinductivetransducersarebasedonthevoltageinducedbyamovablecore.Anexampleofan

    applicationisshowninFigure4.5.TheshownsystemiscalledLVDT(linearvariabledifferential

    transformer).OnesetofthecoilisexcitedbyACvoltageandtheinducedvoltageismeasuredin

    thesecondset.

    Thistypeoftransducerisavailableinawiderangeofsizes,frequencyrangesandaccuracys.Itis

    usedfordirectpositionmeasurements,butalsoasbasisforpressurecellsforcetransducers,

    velocitymeasurementsandaccelerometers.

    1 2

    Side view Front view

    Force K

    Straingauges R

    +R

    R

    R-

    R

    R

    A B

    B

    C

    VgG

    Vin

  • 7/23/2019 Experimental Methods in Marine Dynamics

    33/182

    LecturenotesinExperimentalMethodsinMarineHydrodynamics,issuedAugust2014

    Page32

    Figure 4.5 LVDT transducer for displacement measurements.

    4.2.3 Capacitancetransducers

    Thecapacitancetransducersconsistoftwocloselyspacedplatesoraplatesuspendedbetweena

    pairofouterplatesasshowninFigure4.6.Theplatesareconductiveandrelativemovement

    betweentheplatesintroduceavariationofthecapacitance

    Figure 4.6 Capacitance transducers for displacement measurements.

    Thistypeoftransducersrequireamuchsmallerdrivingforcecomparedtoinductivetransducers,

    buthaveahighernoiselevelandarethereforelessfrequentlyusedinpracticalmodeltesting.

    4.3 Positionmeasurements

    Typicalpositionmeasurementsofinterestforfloatingstructureswillbethe6degreesoffreedoms

    rigidbodymotionsofship/platformsandmotionsofmooringlinesandrisers. Otherexamplesare

    measurementsofdeflectionsofelasticmodelsasforspringingandwhippingresponseofships.

    4.3.1 OpticalandVideosystems

    Forfreerunningmodelsandmooredstructurestheglobalmotionsaremeasuredbyopticalor

    videobasedsystems.Foropticalsystemminimum3lightemittingdiodesarelocatedonthemodel.

    F

    F

  • 7/23/2019 Experimental Methods in Marine Dynamics

    34/182

    LecturenotesinExperimentalMethodsinMarineHydrodynamics,issuedAugust2014

    Page33

    Forvideosystemsballshapedreflectorsmountedonthemodelisused.Onshorecameras,

    minimum2,areusedforreadingthepositionofeachdiode.Basedontheinstantaneousposition

    (x,yandz)ofeachofthe3diodes,themotionsin6DoFaredetermined.

    Theaccuracyofthemeasuredmotionswillforbothopticalandvideosystemsbeoftheorderof

    +/ 1mmforposition(inmodelscale)and+/0.05degreesforroll,pitchandyaw.Formostcases

    thisisanacceptableaccuracyfortherigidbodyvesselmotions.

    4.3.2 Gyros

    Therollandpitchmotionscanalsobemeasuredusinggyros. Theprinciplebehindthegyrois

    showninFigure4.7.Arotatingmasskeepstheinnerpartofthegyroinacontinuoushorizontal

    position.Thenextlinkcanbetiltedaboutoneaxisandtheangleismeasuredusinga

    potentiometer. Theouterlinkcanbetiltedaboutanaxisperpendiculartothefirstaxisandthe

    anglecanbemeasuredinthesameway. Fromthemeasuredanglesandtheknownsequenceof

    theanglestherollandpitchmotionsareuniquelydetermined.

    Thegyroisarobusttoolandiscommonlyusedbothinmodeltestingandininstrumentsappliedin

    fullscale.However,sinceitinvolvescomplexmechanicalcomponents,itisfairlylargeandfairly

    expensive.Thesizelimitstheuseinmodels,andthecostlimitstheusebothinmodelandinfull

    scaleexperiments.

    Figure 4.7 Principle of a gyro for measurement of roll and pitch.

    4.3.3 Potentiometer

    Lowfrictionpotentiometerscanbeusedformeasurementofmotioninonedirection.ANylonline

    isconnectedtothemodel,thenpassedaroundthepulleyonthepotentiometerspindleand

    tensionedbysprings.Themotionofthemodelwillthereforebedirectlytransducedintoavoltage

    signalbythepotentiometer.

    Acommonlyusedsetupformeasurementsofheaveandpitch(trim)fortowingtestsisshownin

    Figure4.8. Thepotentiometersareusedformeasurementsofthemotionsbetweentheshipmodelandthetowingcarriage.Thesetupisusedbothformeasurementsofrunningheaveandtrimin

    calmwatertestingandformeasurementsofwaveinducedmotionsinheadseawaves.

  • 7/23/2019 Experimental Methods in Marine Dynamics

    35/182

    LecturenotesinExperimentalMethodsinMarineHydrodynamics,issuedAugust2014

    Page34

    Figure 4.8 Example of using potentiometers for measurements of heave and pitch motions in

    towing tests.

    4.3.4 Positionbasedonmeasuredforceandacceleration.

    Measurementofpositioncaninprinciplebeobtainedfrommeasuredacceleration(seebelow)bya

    doubleintegrationofthemeasuredaccelerationsignal:

    BAtdtdttatx )()( Ascanbeseen,positionbasedonintegratedaccelerationcannotgiveinformationaboutmean

    levelorpossibleconstantdriftoftheposition.Increasingperiodofoscillationwillgivereduced

    accuracyofthederivedposition.Forpracticalapplicationsthismethodarethereforeusuallylimited

    tomeasurementsofthewavefrequencypartofthemotions.

    Anotherindirectwaytoestablishthepositionisusingmeasuredforceincombinationwithalinear

    spring:

    k

    tF

    tx

    )(

    )(

    Themethodrequiresaspringconnectionbetweenthemodelandafixedpoint(e.gtowingcarriage,

    seabedetc.).Itisnecessarythatthespringstiffnessissufficientlowtoavoidanyinfluenceonthe

    dynamicbehaviorofthemodel.

    4.4 Accelerations

    Measurementsmadebyaccelerometersarebasedontheratiobetweenforce,massand

    acceleration:

  • 7/23/2019 Experimental Methods in Marine Dynamics

    36/182

    LecturenotesinExperimentalMethodsinMarineHydrodynamics,issuedAugust2014

    Page35

    m

    tFta

    )()(

    Amasscanbeconnectedtoabeam.Whenexposedtoaccelerationthebeamwillbedeflectedby

    theinertiaforces.Thedeflectionofthebeamisproportionaltotheacceleration.Straingaugescan

    beusedformeasuringthedeflectionofthebeamandhencetheaccelerationisobtained.

    Anothertypeofaccelerometersisbasedonthepiezoelectricaleffect.Apiezoelectricalmaterialis

    amaterialwhichwhendeformedproducesanelectricalfield.Thevoltagegeneratedisproportional

    tothesurfacepressureapplied.Combinedwithamassthisgivesasignalproportionaltothe

    acceleration.TheprincipleisshowninFigure4.9. Thechargeistransferredtovoltageinacharge

    amplifier,butsomeofthechargeleaksout.Thisgivestheaccelerometeralowerlimitforwhich

    frequenciesthatcanbecovered.Thistypeofaccelerometerscanthereforeonlybeusedfor

    dynamicmeasurements.

    Figure 4.9 Piezo electric material exposed to surface pressure.

    Theresonanceofthemassspringsystemmayinfluencethemeasurementofaccelerations.Forfrequencieswellbelowtheresonancefrequencythemasswillfollowthemotionsofthehousing

    andwehavealinerrelationbetweentheaccelerationandthesignalout.Forfrequenciesinthe

    resonanceregionthemasswillbeexitedandthesignaloutwillbefrequencydependent.The

    dynamicamplificationswillbedependentofthedampingofthesystem,butingeneral

    accelerometersshouldonlybeusedformeasurementsofresponseswithoscillationfrequencies

    wellbelowthenaturalfrequencyoftheaccelerometer. AccelerometersbasedonPiezoelectricity

    canbemadeverystiffwithresonancefrequencyhigherthan500KHz.Thismakesthemusefulfor

    applicationsofmeasurementsofresponseduetoimpactloads. Toincreasethesensitivityofthe

    accelerometerthemassmustbeincreasedorthestiffnessreduced.Accelerometerswithlow

    naturalfrequencywillthereforebemoresensitivethantheaccelerometerswithhighresonancefrequency.

    Theaccelerometersaddweighttothestructureanditisthereforeimportanttoensurethatthat

    weightissufficientlylowtoavoidanyinfluenceonthedynamicbehaviour.Theweightofthe

    accelerometercanbemadeverysmall,typicallydowntoafewgrams.

    4.5 PressureTransducers

    Pressuremeasurementsaremostlyperformedusingpressurecells.Threetypesofpressurecellsarecommonlyused:

  • 7/23/2019 Experimental Methods in Marine Dynamics

    37/182

    LecturenotesinExperimentalMethodsinMarineHydrodynamics,issuedAugust2014

    Page36

    1. basedonpiezoelectricity

    2. basedoninductivetransducers

    3. basedonstraingauges.

    Pressure

    cells

    are

    basically

    force

    measurements

    over

    a

    small

    area.

    Typical

    dimensions

    of

    presser

    cellsusedformodeltestingisD=210mm.Thedifferenttypesofpressuremeasuringdevicesare

    illustratedinFigure4.10.

    Figure4.10 Schematicrepresentationofthemostcommontypeofpressuretransducers.

    (a):Capacitancetransducer, (b):Piezoelectricand(c):Straingauge

    Pressurecellsbehaveinmanywayssimilarasanaccelerometerandtheresonanceofthemass

    springsystemmayinfluencethemeasurements.Thedynamicamplificationswillbedependentof

    thedampingofthesystem,butingeneralpressurecellsshouldonlybeusedformeasurementsof

    responseswithfrequencieswellbelowthenaturalfrequencyofthecell. Straingaugetypecells

    respondstodisplacementsfromdcto5kHz.Itisthereforewellsuitedformostpracticalmodel

    testing.Pressurecellsbasedonpiezoelectricitycanbemadeverystiffwithresonancefrequency

    uptomorethan500kHz. AnexampleofthistypeofpressurecellisshowninFigure4.11.This

    transduceris

    therefore

    well

    suited

    to

    measurements

    of

    pressure

    behavior

    with

    very

    low

    rise

    time

    as

    willbethecaseforslammingpressuremeasurements.Anexampleofmeasuredslammingpressure

    fortheimpactofaflat,elasticplatetowardsawavecrestisshowninFigure4.12.Itisobserved

    thatclosetothecenteroftheplatebottomwherethewavecresthit,therisetimeislessthan

    0.0001sandthedurationofthepeakextremelyshort.Consequentlyapressurecellwithveryhigh

    resonanceperiodwillberequiredtoaccuratelyreproducethispressurebehavior.

  • 7/23/2019 Experimental Methods in Marine Dynamics

    38/182

    LecturenotesinExperimentalMethodsinMarineHydrodynamics,issuedAugust2014

    Page37

    Figure 4.10 Piezoelectric pressure transducer for pressure measurements.

    Figure 4.11

    Example of measured slamming pressure. Impact of a horizontal circular cylinder

    towards calm water surface.

    4.5.1 Measurementofpressuredistribution

    Inthe

    later

    years,

    pressure

    sensing

    film

    has

    been

    developed

    by

    several

    different

    companies.

    The

    filmisbasicallyamatrixofsmallpressurecellsintegratedintoaflexibleplasticfilmthatcanbe

    appliedtocurvedsurfaces,andwilleffectivelyreturnthepressuredistributionoverthesurface.

    Thepressurecellsaremadeofalayerofsemiconductingmaterialwherethedegreeof

    conductivitydependsonthepressureappliedtothematerial.Twocompaniesthatdevelop

    pressuresensingfilmareTekscanhttp://www.tekscan.com/andPressureProfileSystems

    http://www.pressureprofile.com/.Thistechnologyhasmainlybeendevelopedfordry

    applications,liketestinganddevelopmentofcarseats,sportsequipment,andsimilar.Thus,itisnot

    straightforwardtoapplyittomarinehydrodynamicsproblems,butthepossibilityofeasily

    measuringthepressuredistribution,notonlypointpressures,meansthatthistechnologyis

    probablygoingtobeappliedalsotomarinehydrodynamicsinthefuture.

  • 7/23/2019 Experimental Methods in Marine Dynamics

    39/182

    LecturenotesinExperimentalMethodsinMarineHydrodynamics,issuedAugust2014

    Page38

    Aslightlysimilartechnologyispressuresensitivepaint(PSP).Thecolorofthepaintis

    changingwiththepressure,whenaspeciallightsourceisused.Thisisalsoarecentmeasurement

    technique,developedintheformerSovietUnionandknownintheWestsinceanadvertisementin

    AviationWeeklyin1990.Itisprimarilyusedinwindtunneltestingofaircraft.Thepressure

    sensitivepaintissensitivenotonlytopressure,buttotemperatureandoxygencontentintheflow,

    somethingthatcomplicatestheapplication.

    4.6 Velocities

    Thevelocity inapointcanbeobtainedbyastraightforwardintegrationofmeasuredacceleration

    orbyaderivationofmeasuredposition.Bothmethodsarecommonlyusedforvelocity

    measurementsofstructuralcomponents.

    Formeasurementoffluidvelocitydifferentprinciplesarepossible:

    Basedonmeasurementsofpressure,e.g.pitottubes LDV

    Ultrasonictransducers

    Bymeasuringrateofrevolutionofasmallimpeller.

    Thetwofirstmethodsarediscussedinthefollowing.

    4.6.1 Pitottubes

    Thepitottubesensoriscommonlyusedformeasurementofthewakesurveys,flowthroughwater

    jetsetc.ThePrandtlpitottubeisshowninFigure4.13.Thepressuredifferencebetweenthetotal

    pressureheadatthefront(inpos.Ainthefigure)andthestaticpressureattheside(atpositionB)

    ismeasuredbyadifferentialpressurecell.Basicallythepitottubeisapressuredifferencemeasure,

    butthevelocityisobtainedfromthewellknownrelation:

    21 2p U

    Toimproveaccuracythistheoreticalrelationisnotused,insteadthecalibratedrelationbetween

    pressureandvelocitywillbeapplied.

  • 7/23/2019 Experimental Methods in Marine Dynamics

    40/182

    LecturenotesinExperimentalMethodsinMarineHydrodynamics,issuedAugust2014

    Page39

    Figure 4.12 Prandtl pitot tube.

    Tocovermorepositionsinthesamerun,severalpitottubescanbemountedtogetherasshownin

    Figure4.14.

    Usingpitottubeswithfiveholeslocatedindifferentangularpositiononasphericalhead,the

    velocityinallthreedirectionscanbemeasured,incaseofwakesurveys;axial,tangentialandradial

    velocity.

    Figure 4.13 Pitot tube arrangement for measurement of velocity in several positions.

  • 7/23/2019 Experimental Methods in Marine Dynamics

    41/182

    LecturenotesinExperimentalMethodsinMarineHydrodynamics,issuedAugust2014

    Page40

    4.6.2 LaserDopplerVelocimetry LDV

    LaserDopplerVelocimetry(LDV)hasbeenusedformorethan20yearsformeasurementsofflow

    aroundshipsandpropellers.Theusehasbeenmainlyforvalidationofpredictiontoolsforvelocity

    distributionaroundliftingsurfaces,withinboundarylayersandforwakeflow.GenerallyLDV

    measurementsaretimeconsumingandexpensivetoperformandtheuseforcommercialmodel

    testinghave

    been

    very

    limited.

    See

    ITTC,

    (1996)

    for

    afurther

    discussion

    for

    application

    of

    LDV

    in

    modeltesting.

    LDVusestheDopplershiftinthereflectedlightfrequency(color)todeterminethevelocityand

    directionoftheflow.Byusingtwobeamsfromdifferentdirection,the3Dvelocityvectorina

    singlepointcanbemeasured.Tomeasurevelocityindifferentpositions,thetransmittingand

    receivingopticsmustbemoved(seeFigure4.14).Thisiscommonlydoneusinganautomatic

    traversingsystem.

    OneofthemainbenefitsofLDVisthatitisanonintrusivemeasurementtechnique,whichmeans

    thatone

    does

    not

    have

    to

    put

    any

    sensors

    into

    the

    area

    where

    one

    wants

    to

    measure,

    thus

    one

    is

    notinterferingwiththeflowfieldofinterest.LDVdoalsogiveveryquickresponse,whichmeans

    thatitissuitableformeasurementofturbulenceandsimilarlyrapidlychangingflowphenomena.

    Formeasurementofaveragevelocityinonedirection,itisgenerallyrecommendedtousepitot

    tubesorsimilartechniques.

    ForLDVtoworkthereneedstobelightreflectingparticlesdissolvedinthewaterinorderto

    providelightscattering.Ifthereisnoparticlesinthewaterthelightfromthelaserwillnotbe

    reflected.Infact,oneisnotmeasuringthewatervelocity,butrathertheparticlevelocity.There

    mightbesufficientdirtinthewaterfromthestart,butitiscommontohavetoapplyparticlesfor

    thepurpose

    of

    LDV

    measurement.

    This

    process

    is

    called

    seeding.

    Proper

    seeding

    is

    one

    of

    the

    keys

    tosuccessfulapplicationofLDV.Whentestinginlargefacilities,likealargetowingtank,seeding

    mightbeoneofthemainchallenges.Seedingtheentiretankisdifficultandexpensive.Seeding

    locallyintheareaofmeasurementmightdisturbtheflow,anditmightbedifficulttoobtaina

    reasonablyhomogeneousdistributionofparticles.

    Figure 4.14 Principles of a LDV measurement system

    Laser

    Signal

    processing

    Transmitting

    optics

    Receiving opt ics

    with detector

    Signal

    conditioner

    Flow

    HeNeAr-Ion

    Nd:Yag

    Diode

    Beamsplitter(Freq. Shift)

    Achrom. Lens

    GasLiquid

    Particle

    Achrom. LensSpatial Filter

    Photomultiplier

    Photodiode

    Spectrum analyser

    Correlator

    Counter, Tracker

    Amplifier

    Filter

    PC

  • 7/23/2019 Experimental Methods in Marine Dynamics

    42/182

    LecturenotesinExperimentalMethodsinMarineHydrodynamics,issuedAugust2014

    Page41

    4.6.3 ParticleImageVelocimetry PIV

    ParticleImageVelocimetry,orPIV,isanonintrusive,opticaltechniqueformeasurementofvelocity

    vectors.AsforLDVlaserlightisused,andsimilartoLDVthewaterneedsparticlesseedingto

    providelightscattering.WhileLDVmeasuresvelocityinasinglepointatatime,PIVmeasuresthe

    velocityinanarea,soitisconsideredafieldmeasurementtechnique.PIVusesalaserlightsheet,

    createdby

    putting

    aspreading

    lens

    in

    front

    of

    the

    laser

    beam.

    By

    taking

    two

    stereo

    photographs

    (or

    onedoubleexposurestereophotograph)withveryshorttimeintervalthevelocityoftheparticles

    canbedeterminedfromhowfartheyhavemoved.Byusingstereophotographs,themovementin

    space,notonlyinasingleplane,canbedetermined.PIVhasbeeninuseforalongtime,butitis

    theadvanceindigitalhighspeedvideoandimageanalysisthatquiterecentlyhasmadePIV

    interestingtoapplyinregularhydrodynamicsresearch.Inthetimeoneusedfilmbasedpictures

    andmoreorlessmanualanalysis,PIVwasextremelytediousandtimeconsuming.Now,semi

    automatinganalysisofthedigitalvideoimagesmeansthatlargeamountsofmeasurementdatacan

    begeneratedfairlyquickly.Also,theaccuracyhasbeengreatlyincreased.PIVisincreasinglyused

    insteadofLDV,sinceitismuchfastertomapavelocitydistributionactuallythedistributioninan

    areaiscapturedatoneinstant,andnotoversometime,aswithLDV.

    Figure 4.15 Principles of a PIV measurement system

    4.7 Forcemeasurements Dynamometers

    Theloadcellsusedinmodeltestingareoftendesignedtofitaspecificpurposeandtocoverthe

    expectedrangeofloadsduringthetests.Forexamplefortowingtests,veryhighaccuracyin

    measuredforcewillberequiredandthetransducerwillbetailormadetomeasureforceinone

    directionwithahighaspossibleresolution.Thisiscalledaresistancedynamometerandisstandard

    equipmentinatowingtank.InFigure4.15adynamometerformeasurementsofpropellerthrust

    andtorquedirectlyonthepropellerhubisshown. Thethrustismeasuredbyaninductiveposition

    transducerandthetorquebystraingaugeswhichmeasuresheardeformationonahollowpartof

    thepropellershaft.

  • 7/23/2019 Experimental Methods in Marine Dynamics

    43/182

    LecturenotesinExperimentalMethodsinMarineHydrodynamics,issuedAugust2014

    Page42

    Figure 4.16 Dynamometer for measurements of propeller thrust and torque.

    Transducersformeasurementsofforcesinoneormoredegreesoffreedomareoftenproducedas

    apurposemachinedpiecewithstraingaugesgluedtothebasematerial.Atypicaldesignfor

    measurementofforcesin3d.o.fs(axialforceandshearforces)isshowninFigure4.17.

    Figure 4.17 Example of force transducer based on strain gauges. Axial forces and shear forces

    are measured.

    Themachiningofthematerialgivesareaswithhighshearstresseswherethestraingaugesare

    mounted.Bycarefuldesignofthetransducerthecrosstalkcanbekeptataminimum.Cross

    talkmeanscouplingeffectsbetweenthedifferentdegreesoffreedom.Forexampleforthe

    transducerinFigure4.17,ifapuretensioninxdirectionisapplied,themeasuredresponsefrom

    thetransducerinyandzdirectionisaresultofcrosstalk.Fortransducerdesignitisimportant

    withminimumcrosstalk.

    Using3transducerofthistypemountedbetweentwoplatesa6d.o.ftransducerisobtained.

    4.8 WaveMeasurements

    Waveelevationismostcommonlymeasuredbymeansofwaveprobesoftheconductive(or

    resistance)type. Avoltageisappliedontoparallelrods.Theresistanceisdeterminedbythelength

  • 7/23/2019 Experimental Methods in Marine Dynamics

    44/182

    LecturenotesinExperimentalMethodsinMarineHydrodynamics,issuedAugust2014

    Page43

    oftherodswhichiswetted(orsubmerged).Bymeasuringthecurrentduetotheapplied

    voltageacrosstherodsthewettedpartandhencesurfaceelevation,isdirectlyachieved. Arraysof

    threeormoreofthistypeofsensorscanbeusedtomeasurethedirectionaldistributioninshort

    crestedwaves.

    Waveprobesarealsousedformeasurementofrelativemotionsbetweenthestructureandthe

    watersurface.Thewavegaugemaythenbemountedonthestructureandtherelativemotionin

    thepointisdirectlyobtained.ExamplesoftransducersolutionsforthispurposeareshowninFigure

    4.18. Bothrodsandconductivetapegluedtothemodelareusedforthispurpose.Rodsare

    preferableatzerospeedduetoeasiermountingandcalibration,whileconductivetapeisoften

    requiredformodelswithforwardspeed,toavoidresistanceandwatersprayfromtherods.

    Figure 4.18 Example of wave transducers for measurements of relative motions.

    Formeasurementofwavesathighforwardspeeds,thewirebasedprobesdontworkwell,dueto

    thesprayandwavemakingofthesurfacepiercingwires.Runupinfrontofthewiresand

    ventilationbehindthewiresleadstolargeerrorsinthemeasurements.Forforwardspeedsofmore

    than2m/s,thewirebasedprobesshouldnotbeused.Alternativesaremainly:

    Ultrasoundwaveprobes

    Servoneedlewaveprobes

    Ultrasoundwaveprobesworksbysendingoutahighfrequencysoundpulse,andmeasuringthe

    timeittakesbeforethereflectedsoundwavereachestheprobe.Thetechniquehasbeenusedfor

    alongtimeforlevelmeasurementintanksanddams,butitisnotuntilfairlyrecentlythat

    instrumentswithsufficientaccuracyfortowingtankwavemeasurementhasbeenavailable.The

    UltraLabsystems

    from

    General

    Acoustics

    is

    in

    practical

    use

    in

    the

    hydrodynamic

    laboratories

    at

    the

    MarineTechnologyCentre.Someofthesesystemshavelimitationswithrespecttoforwardspeed

  • 7/23/2019 Experimental Methods in Marine Dynamics

    45/182

    LecturenotesinExperimentalMethodsinMarineHydrodynamics,issuedAugust2014

    Page44

    andwavesteepness,whilethemostadvancedsystemscoverallconditionsofpractical

    interestfortowingtankwork.

    Servoneedlewaveprobesconsistofasensingneedlemountedonaservomechanism.Thesensing

    needlemeasuresthedegreeofcontactwiththewater,andtheservomechanismmakessurethe

    needlehasafairlyconstantsubmergence.Then,theactualwaveheightisfoundbymeasuringthe

    positionoftheneedle.Thisisafairlycomplexandfragileinstrument,andtheonlyreasontouse

    suchaninstrumentisthecapabilityofwavemeasurementathighforwardspeed.

    4.9 DataAcquisition

    Thedifferentinstrumentsappliedinthetestsetupareconnectedbycablestoadataacquisition

    systemtorecordthemeasureddata.AschematicofadataacquisitionsystemisshowninFig4.1.

    4.9.1 Amplifiers

    Atypicalanalogtransducersignaliswithoutputinmicrovolts.Itisthereforeamplifiedbyan

    amplifier,usuallyto+/10Voltrange.

    Dependingontypeoftransducerdifferenttypeofamplifiersisused.Amplifiersforanalogsignals

    fromstraingaugeandsimilartypeoftransducerscanhavebridgeexcitationandbridgebalancing

    builtin.Thismeansthattheamplifierwillprovidethecurrentandvoltagerequiredforthe

    measurementbridge(seesection4.2.1Straingauges),inadditiontoamplificationoftheoutput

    signal. Piezoelectricaltransducersrequireachargeamplifier. Inductiontypetransducersrequire

    ACexcitation,whichmeansthatthedrivingcurrentofthetransducerisACratherthanDC.Strain

    gaugetransducerscanuseeitherACorDCexcitation.

    4.9.2

    Filters

    Filterscanbeeitheranalogordigitalfilters.Analogfiltersareappliedbeforethesignalsare

    convertedtodigitalunitsbytheADconverterandmaybebuiltinasanintegratedpartofthe

    amplifier.ThedigitalfiltersareappliedaftertheADconversionandcanbeimplementedeitherasa

    digitalcircuitorassoftwareinthecomputerusedforanalysis.

    Thefiltersremovesignalsatcertainfrequencybands.Dependingonwhichfrequencybandis

    removedtheycanbesplitintothreeclasses:

    Lowpass,i.e.forremovingofhighfrequencycomponents

    Highpass, i.e.forremovingoflowfrequencycomponents

    Bandpass

    thedifferenttypesareillustratedinFigure4.19.

    Analoglowpassfilteriscommonlyusedforremovingofnoiseasthenoiseisusuallyappearingata

    significantlyhigherfrequencythanthephysicalmeasuringsignal. ToavoidNyquistphenomena(se

    discussionbelow)thecutofffrequencyoftheanaloglowpassfilteredshouldbesettobelower

    thanhalfthesamplingfrequencyfS..Thegeneralrecommendationistosetthecutofffrequency

    muchlowerthanhalfthesamplingfrequency1/10ofthesamplingfrequencyisthepreferredvalue,butitmightmeanthathighsamplingfrequenciesarerequired,andthereforecompromises

    areoftenmade.

  • 7/23/2019 Experimental Methods in Marine Dynamics

    46/182

    LecturenotesinExperimentalMethodsinMarineHydrodynamics,issuedAugust2014

    Page45

    Figure 4.19 Illustration of different type of filters.

    Lowpassfiltersappliedinrealtimecausesatimedelay.Thismightbeillustratedwithanexampleofaverysimplelowpassfilter,whichiscreatedbycreatingthelowpassfilteredsignalfroman

    averageoftheunfilteredsignaloveracertainperiodoftime.Intheexample,showninFigure4.20,

    asinusoidalsignalwithperiodof30secondshashadanothersinusoidalsignalwithperiod1.2

    secondssuperimposed.Thefilterisimplementedasarunningaverageover2.4seconds,seenin

    Figure4.20asthetimeittakesbeforethefilteredsignalappears.Itisclearlyseenfromthefigure

    thatthefilteredsignallagsbehind,withhalftheaveragingtime.Thelongertheaverageperiod,the

    lowerthefilterfrequency,andthelongerthetimedelay.Iftheaveragingwindowcouldhavebeen

    symmetricallyplacedrelativetothetimeofthefilteredvaluethedelaywouldbeavoided.Thiscan

    beachievedwhenfilteringanexistingdataset,butnotwhenfilteringinrealtime,sinceitwould

    requiretheabilitytolookintothefuture.

    Itshouldbenotedthatfilteringisinpracticenotperformedbysimpleaveraging.Thereisalarge

    varietyofmethods,whichisnotcoveredhere.SeeforinstanceDunn(2005)foradiscussionof

    filteralgorithms.

    Amplitude

    Frequency

    Ideal characteristic

    Real characteristic

    Low pass filter

    High pass filter

    Band pass filter

  • 7/23/2019 Experimental Methods in Marine Dynamics

    47/182

    LecturenotesinExperimentalMethodsinMarineHydrodynamics,issuedAugust2014

    Page46

    Figure 4.20Illustration of time-delay due to filtering

    4.9.3 AnalogtoDigital(AD)Conversion

    Mosttransducertypes,includingthelargegroupofstraingaugebasedtransducers,areanalog

    transducers,meaningthattheyproduceananalogoutputsignal.Torepresentthissignalina

    computerit

    has

    to

    be

    digitized.

    The

    process

    of

    digitalization

    is

    performed

    in

    the

    AD

    converter.

    TheADconverterisusuallyaphysicallyseparateunit;aboxoranextracardforthecomputer.The

    lineinpartofacomputersoundcardisanADconvertercustommadeforsound,butreallyquite

    similartotheADconvertersusedforothermeasurements.TheADconverterunitwilloftenalso

    haveapossibilityfordigitaltoanalogconversionDAsimilartothelineoutofacomputersound

    card.TheDAconvertermightforinstancebeusedtoproduceasignalforacontrolsystem.TheAD

    convertermightbeintegratedwiththemeasurementamplifier.ThisisthecasefortheHottinger

    MGC+digitalmeasurementamplifiersinuseinthehydrodynamiclaboratoriesattheMarine

    TechnologyCentre.

    TheADconverterunitwill,dependingontheactualmodel,haveacertainnumberofchannels,

    whichmeanshowmanysignalscanbeconvertedsimultaneously.LimitationsintheADconverter

    willdeterminehowfastthedatacanbesampledthesamplingfrequency.Itmeansthatfor

    experimentsrequiringveryfastsampling,specialADconverterequipmentmighthavetobe

    acquired.

    OneshouldalsobeawarethatsomeADconverterssampleallchannelsatexactlythesameinstant,

    whileotherswillsamplethechannelssequentiallyduringthesamplinginterval.Ifforinstance10

    channelsaresampledat10Hz,thesequentialADconverterwillsampleasinglechannelevery

    1/100second,

    so

    that

    each

    channel

    is

    sampled

    every

    1/10

    second,

    but

    not

    at

    the

    same

    time.

    This

    is

    usuallynotaproblem,sincet