f. sacconi, m. povolotskyi, a. di carlo, p. lugli university of rome “tor vergata”, rome, italy...

15
F. Sacconi, M. Povolotskyi, A. Di Carlo, P. Lugli University of Rome “Tor Vergata”, Rome, Italy M. Städele Infineon Technologies AG, Munich, Germany Full-band approaches to the Full-band approaches to the electronic properties of electronic properties of nanometer-scale MOS structures nanometer-scale MOS structures

Upload: doreen-williamson

Post on 21-Jan-2016

214 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: F. Sacconi, M. Povolotskyi, A. Di Carlo, P. Lugli University of Rome “Tor Vergata”, Rome, Italy M. Städele Infineon Technologies AG, Munich, Germany Full-band

F. Sacconi, M. Povolotskyi, A. Di Carlo, P. LugliUniversity of Rome “Tor Vergata”, Rome, Italy

M. StädeleInfineon Technologies AG, Munich, Germany

Full-band approaches to the electronic Full-band approaches to the electronic properties of nanometer-scale MOS properties of nanometer-scale MOS

structuresstructures

Page 2: F. Sacconi, M. Povolotskyi, A. Di Carlo, P. Lugli University of Rome “Tor Vergata”, Rome, Italy M. Städele Infineon Technologies AG, Munich, Germany Full-band

Full-band methods

required theoretical approaches that include

state-of-the-art MOSFETs :

gate lengths < 20nm , thin gate oxides < 1nm

• quantum description beyond limitations of EMA• atomic structure modeling

gate oxide tunnelingquantization of states in MOS inversion layer

• empirical pseudopotential• bulk Bloch function expansion

• transfer matrix

• semiempirical tight binding

Full-band atomistic MOS calculations This Work

Methods

Page 3: F. Sacconi, M. Povolotskyi, A. Di Carlo, P. Lugli University of Rome “Tor Vergata”, Rome, Italy M. Städele Infineon Technologies AG, Munich, Germany Full-band

Tunnelling through thin oxide layers

1 1

1, 1 , , 1 , 1

1 1

( )

1 0s s ss s s s s s s s

ss s s

C C CH H E H HT

C C C

(,)()|, |||| s kECEsk Transfer Matrix

Transmission Coefficient T(E,k||)

Cs-2

L R

Cs -1 Cs Cs +1C0C-1 CN+1 CN+2

, 1s s Tight-

binding

//

// //2 , , ,2

k k R FR L FL

BZ

eJ d T E f E E f E E dE

Self consistently calculated potential profile

SiO2p-Si

n+-Si

VoxECB = 3.1 eVDT

MOSMOSEFL

EFR

Tunneling current J(Vox)

Page 4: F. Sacconi, M. Povolotskyi, A. Di Carlo, P. Lugli University of Rome “Tor Vergata”, Rome, Italy M. Städele Infineon Technologies AG, Munich, Germany Full-band

Tunnelling through thin oxide layers

• based on crystalline-SiO2 polymorphs -cristobalite, tridymite, -quartz

3D Si/SiO2/Si model structures

• lattice matching : no dangling bonds, no defects

• non stoichiometric oxide at Si/SiO2 interface : SiO, SiO2, SiO3

• Silicon sp3s*d • SiO2 sp3

Tight Binding parameterization

Si / -cristobalite / Si

Page 5: F. Sacconi, M. Povolotskyi, A. Di Carlo, P. Lugli University of Rome “Tor Vergata”, Rome, Italy M. Städele Infineon Technologies AG, Munich, Germany Full-band

Transmission Coefficients

-cristobalite model TB vs. EMA• EMA underestimates (up to 2-3

orders of magnitude) TB transmission for thicker oxides (tox > 1.6 nm)• Overestimation for thinner oxides• Better agreement with non-parabolic correction , but always higher T(E)

T(E,k||) for k|| = 0

Increases T• Non – parabolicity of complex bands• Interface / 3D microscopic effects

Decreas T for thin oxides

[see M. Städele, F. Sacconi, A. Di Carlo, and P. Lugli, J. Appl. Phys. 93, 2681 (2003)]

Page 6: F. Sacconi, M. Povolotskyi, A. Di Carlo, P. Lugli University of Rome “Tor Vergata”, Rome, Italy M. Städele Infineon Technologies AG, Munich, Germany Full-band

Tunneling Current : TB vs. EMA

SiO2p-Si

n+-Si

-cristobalite model

• Current mainly determined by transmission at E = 0.2 Ev

tox = 3.05 nm

• EMA underestimates TB current for thicker oxides (tox > 1.6 nm)• Overestimation of TB for thinner oxides (tox < 1.6 nm)• Non-parabolic correction to EMA overestimates always TB, max 20 times

Page 7: F. Sacconi, M. Povolotskyi, A. Di Carlo, P. Lugli University of Rome “Tor Vergata”, Rome, Italy M. Städele Infineon Technologies AG, Munich, Germany Full-band

Tunneling current

SiO2p-Si

n+-Si

-cristobalite

• Good agreement with experimental results [Khairurrjial et al., JAP 87, 3000 (2000)]

• Microscopic calculation,no fitting parameters (contrary to EMA)

Page 8: F. Sacconi, M. Povolotskyi, A. Di Carlo, P. Lugli University of Rome “Tor Vergata”, Rome, Italy M. Städele Infineon Technologies AG, Munich, Germany Full-band

Tunneling current : SiO2 polymorphs

• Better agreement with experiments for -cristobalite (meff = 0.34 m0)

• -quartz : higher mass (0.62)

• Exponential decay with tox (agreement with experiments)

• Oxide thickness dependence of tunneling current

lower contribution to transmission

-quartz fails to reproduce correct I/V slope

Norm. current (tox~1.6nm)

Page 9: F. Sacconi, M. Povolotskyi, A. Di Carlo, P. Lugli University of Rome “Tor Vergata”, Rome, Italy M. Städele Infineon Technologies AG, Munich, Germany Full-band

Tunneling current components

• CBE: Electron tunneling from Gate Conduction band(dominant for Vox < ~1.3 V)

Vox

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4

10-3

10-1

101

103

Cu

rre

nt

De

nsi

ty [

A/c

m2

] All components CBE VBE VBH

• VBE: Electron tunneling from Gate Valence band : dominant for Vox > ~1.3 V(interband tunneling)

• VBH: Holes tunneling from p-Si Valence band (negligible)

-cristobalite

SiO2p-Sin+-Si

VBE

CBE

Page 10: F. Sacconi, M. Povolotskyi, A. Di Carlo, P. Lugli University of Rome “Tor Vergata”, Rome, Italy M. Städele Infineon Technologies AG, Munich, Germany Full-band

FULL-BAND CALCULATION OF QUANTIZED STATES

Self-consistent bulk Bloch Function ExpansionMethod:

Diagonalize Hamiltonian in basis of Bloch functions

H = mq | Hcrystal + V | nk

Empirical pseudopotential

band structure Hartree potential of free

charges

calculate charge density

calculate V from Poisson’s eq.

iteration

[ F. Chirico, A. Di Carlo, P. Lugli Phys. Rev B 64, 45314 (2001)]

Page 11: F. Sacconi, M. Povolotskyi, A. Di Carlo, P. Lugli University of Rome “Tor Vergata”, Rome, Italy M. Städele Infineon Technologies AG, Munich, Germany Full-band

FULL-BAND CALCULATION OF QUANTIZED STATES

Self-consistent bulk Bloch function expansion Method:

,cristal (r ,r) (R)V (r R d r R d )R

H W

,

cristal

d (k G G k )k k

G,G

k k (k k )

(G ) (G)V ( G k G k) in n

n H n W

B B e

structure independent

matrix element

1 if r point belongs to the material(r)

0 otherwiseW

material atom in a cell

Page 12: F. Sacconi, M. Povolotskyi, A. Di Carlo, P. Lugli University of Rome “Tor Vergata”, Rome, Italy M. Städele Infineon Technologies AG, Munich, Germany Full-band

n+ Si

SiSiO2

FULL-BAND CALCULATION OF QUANTIZED STATES

Si states in MOS inversion channel

Si states in MOS inversion channel

Self consistently calculated band profile

22

F = 200kV/cm

Page 13: F. Sacconi, M. Povolotskyi, A. Di Carlo, P. Lugli University of Rome “Tor Vergata”, Rome, Italy M. Städele Infineon Technologies AG, Munich, Germany Full-band

FULL-BAND CALCULATION OF QUANTIZED STATES

Si states in MOS inversion channel

Si states in MOS inversion channel

• Quantization energies :good agreement with EMA in k||=kmin

Full bandEMNon p EM

• Parallel dispersion and DOS: good agreement only for E < ~0.3 eV.• Large discrepancies for higher energies, when a greater part of Brillouin zone is involved. • Higher scattering rates (lower mobilities) are expected.

Large contribution

k

Page 14: F. Sacconi, M. Povolotskyi, A. Di Carlo, P. Lugli University of Rome “Tor Vergata”, Rome, Italy M. Städele Infineon Technologies AG, Munich, Germany Full-band

FULL-BAND CALCULATION OF QUANTIZED STATES

• Sizable deviations from EMA for thin (2-3 nm) rectangular wells and for energy E > ~ 0.3 eV.

2.2nm

SiSiO2 SiO2

Si states in Double Gate MOSFET

Si states in Double Gate MOSFET

Full bandEMNon p EM

• Only the 1st state energy is calculated correctly in the EMA.

Page 15: F. Sacconi, M. Povolotskyi, A. Di Carlo, P. Lugli University of Rome “Tor Vergata”, Rome, Italy M. Städele Infineon Technologies AG, Munich, Germany Full-band

CONCLUSIONSTwo examples of full-band quantum MOS

simulations Atomistic tight-binding approach to oxide tunneling

• Strong dependence of tunneling currents on local oxide structure.

• Qualitative/quantitative discrepancies from effective mass approx. • Calculated currents in good agreement with experiment.

Pseudopotential approach to inversion layer quantization

• Effective mass approximation is reliable (up to 2 nm) for quantization energy calculations for several lowest levels, but fails completely to reproduce the density of states for E > 0.3 eV.

Future work • Transmission from quantized states in the channel. • Calculation of scattering rates and extension to 2D systems.