fˇµ2012 c 2 8 fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3t...

203
~'§Æ(Œ˘9˘ƒ^) ~'§ø´ ?˝ ˇ˘ #Fˇ 2012 c 2 8 F

Upload: others

Post on 21-Mar-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

~©§á(êÆ9'Ʀ^)

~©§ùÂ

Ü ?Í

þ°ÏÆ

#Fϵ2012c 2 8F

Page 2: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘
Page 3: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

c ÷

~©§ß 17 ­V"ÄkÑy3ÃX Isaac Newton, Gottfried Leibniz

Ú Bernoulli[xÆ[ó¥. ¨ã¢S^l)

ÐÒNyÑ5,XÚî|^åÆnïá~©§,¿$^È©

y²/¥7$1;´ý.

é¢S¯K (AO´ÚîåÆ!UNåÆ)¥Ñþ©

§¦)I,r?ÚíÄÈ©)ÚuÐ.Ï ~©§

´éXÈ©;§,§´éõêÆY§Ä:.

XEuÐ,~©§3éõ'Æ,XÔn!ó§!>f&E!

)ÔÚzƱ9²L7K,¥u­^©

~©§3éuÐÏSѴϦ«). 1841 c Jeseph

Liouvilley²a/ªþ~ü Riccati§ØU^ÐÈ©¦

). Liouvilleór¦<Ϧ#ïÄ~©§ÚnØ. 19

­V" 20­VÐ, Henri PoincareXmM5óC½yÄåX

ÚÄ:.

Ö´?öõc53þ°ÏÆêÆX),±9óÚ²L

+nX)ÇùÂÄ:þ?. ùÂÀáK´¦þ

ò~©§Ä:7nØNXÀ\á, Ó3Ù!¥

B0ÄåXÚCnØÐÚ£. 3Ä:nØy²þQ

À^²;©ÛÔöÆ)©ÛÚíUå, qÚ\Ü©

y©ÛÔöÆ)ÄgÚÜ6ínUå, ¿¦¦éy

©ÛkÐÚ@£.

ÖQãÚy²åfw´Ã, BÆ)gÆ. Ö¥kþ

5P,ùÑ´~­SN.§éSNn)äkéÐ

Ï.F"Öö3ÖÖL§¥­Àé5PÜ©n).

ÐÈ©Ü©0Aa§¦), ¿kþ~K.

Page 4: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

ý­:3T§ÚÈ©Ïf±95©§, ÏùÜ©SN

Ø=3þ 3nØþÑ´é­. ٧ܩѴÑù,Ï

éõ§Ñ±ÏL MathematicaÚ MapleêÆ^5¦). ÏdÖ¥

ÏL~fü/0 Mathematica^.

~©§Ä:nØÌ©Ù31ÙÚ1nÙ. 1Ù­:ã

Xþ~©§Ð¯K)35!5,±9)'ugCþ!Ð

©^ÚëêëY65. ùÜ©SNy²Ìóä´ål

m¥Ø NnÚ Arzela-AscoliÚn.

1nÙÌ9p©§Ú§|)Ä:nØ.äN)

35,)'ugCþ!Щ^ÚëêëY5;)Û

©§|ÛÜ)Û)35; ©§|ÛÜÈnر9§3

5Ú[5 ©§¦)¥A^.

1oÙÌùã5©§|Úp5©§)3«

mÚÏ)(, ~Xê5©§|Úp~Xê5©§

),±9CXê5©§|Ä:nØ.¿|^~Xê

5©§|)Ú Mathematicsã?ز¡àg5©§

")ÛÜÿÀ(. CXꩧܩý­:´±ÏXê5

©§|Ä)Ý FloquetIO., 9±Ï) Floquet¦êm'

X;5©§)":!>¯KÚ?ê). AO/,

Ùép~Xê5©§Ä)|Ñ'y². é)

Û5©§)Âñ»Ñ#y².

1ÊÙ´~©§nØCÜ©. 0k')­½

5,43ÚØ3ü½,±9©|¯KeZVgÚ~

f.

á±ÆÏùÇ.éØÓÆéÚÆê,1nÙ

©§)Û)ÚÈnØ, 1oÙCXê5©§Ä:nØ

Ú1ÊÙ²¡g£©XÚSN±ÀJÜ©ÆS, ÏùÙ

!SNéÕá,ØKÙ§Ù!SNÆS.

Ù´N¹,Ù¥Ñ Arzela-AscoliÚny²ÚÛÉ¢Ý

2

Page 5: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

Ýéê35y². Ï Arzela-Ascoli Ún9Ùy²Ñ3

¼©ÛÖÄm¥Ñ,$c?Æ)Öå5(J.

BÖö,N¹¥Ñüy². ¢ÛÉÝÝéê

35õê5êÖvkÑy², BÖö3N¹

¥ÑÙy².

Öë©zØ=~©§'Ö7Ú©z,

ÄåXÚ©zÚÖ7. 8´4ÆkåÆ)ÏL?Ú

'©z],é~©§ynØkÐÚ).

ùÂ3þ°ÏÆêÆXÚ²L+nÆ)Á^L§

¥, éõÓÆuyØ<Ø, ¿JÑB?U¿ÚïÆ.

3d¦L«©%a.

duY²Úm, Ö¥UkaØv$Ø/.

ÖöeuyÖ¥?Û¯KÑU9?ö6, ±B?Ú?

U.Øa-

?Íö

2012c 2 8F

3

Page 6: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

8 ¹

1Ù ~©§Ä:£ 1

1 ~©§ÄVg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 ©§Ú) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 ©§Ú)~f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 ©§)AÛ)º!3Ú5 . . . . . . . . . . . . . . . . . . . 4

1.4 ¢S¯K.í . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 ÐÈ© . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 T§ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 È©Ïf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Aa=zT§§ . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 5©§~êC´ . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Ûª§ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6 p©§ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.7 Mathematica ¦)~©§ . . . . . . . . . . . . . . . . . . . . . . . . 30

3 SK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1Ù ©§)35Ú5 37

1 ý£µålmØ Nn . . . . . . . . . . . . . . . . . . . . . . . . 37

1.1 ålm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1.2 Ø Nn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2 )35: Picard ½n . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3 )35µPeano ½n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 )éÐÚëêëY65 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5 SK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

1nÙ p©§Ú§|)nØ 54

1 p©§Ú§|: )5 . . . . . . . . . . . . . . . . . . . . . . . . 54

2 )Û©§)Û) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4

Page 7: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

~©§

3 ©§ÈnØ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.1 ÈÄ:nصÄgÈ©35 . . . . . . . . . . . . . . . . . . . . 65

3.2 ÄgÈ©3 ©§¦)¥A^ . . . . . . . . . . . . . . . . . . . . 70

3.3 Hamilton XÚÈ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4 SKn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

1oÙ 5©§ÄnØÚ) 83

1 5©§)ÄnØ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

1.1 5©§|)3«m . . . . . . . . . . . . . . . . . . . . . . . . 84

1.2 5©§|Ï)( . . . . . . . . . . . . . . . . . . . . . . . . . 85

1.3 p5©§Ï)( . . . . . . . . . . . . . . . . . . . . . . . . 90

2 ~Xê5©§|) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

2.1 Ýê¼ê~Xê5©§|) . . . . . . . . . . . . . . . . 96

2.2 ~Xêàg5©§|Ä)ݦ . . . . . . . . . . . . . . . . 98

2.3 A^µ²¡~Xê5©XÚÛÜ( . . . . . . . . . . . . . . . . 105

2.4 ^ Mathematica ¦§|)Ú²¡©§)ÛÜã . . . . . . 110

3 p~Xê5©§) . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

3.1 ~Xêàg5©§) . . . . . . . . . . . . . . . . . . . . . . . 111

3.2 ~Xêàg5©§½Xê . . . . . . . . . . . . . . . . . 116

4 CXê5©§Ä:nØ . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.1 ±ÏXê5©§|µFloquet nØ . . . . . . . . . . . . . . . . . . 118

4.2 CXêàg5©§: '½nÚ Sturm-Liouville >¯K . 124

4.3 pCXê5©§µ?ê) . . . . . . . . . . . . . . . . . . . 133

5 SKo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

1ÊÙ ©§½5Ú­½5nØ 147

1 ©§)­½5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

1.1 àg5©§|")­½5 . . . . . . . . . . . . . . . . . . . . . 148

1.2 d5Cq(½5§­½5 . . . . . . . . . . . . . . . . . . . 152

1.3 ½­½5 Lyapunov 1 . . . . . . . . . . . . . . . . . . . . . . 153

5

Page 8: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

2 ²¡g£©XÚ: 4Ú©| . . . . . . . . . . . . . . . . . . . . . . . . . . 157

2.1 435Ú­½5½ . . . . . . . . . . . . . . . . . . . . . . . . 159

2.2 ©|¯KAü~f . . . . . . . . . . . . . . . . . . . . . . . . . 164

3 SKÊ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

18Ù N¹ 171

1 Arzela-Ascoli Úny² . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

2 Ýéê35y² . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

ë©z 175

6

Page 9: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

Î Ò L

R ¢ê8£½¢ê¤

C Eê8£½Eê¤

Z ê8£½ê+¤

Rn ¢n5m

A \B áu8ÜAØáu8ÜB¤8Ü

∃ 3

∀ ?¿

n! 1 n ë¦È, = n(n− 1) · 2 · 1

x ∈ D x áu8Ü D

f ∈ C(Ω) f ´« Ω þëY¼ê

f ∈ Ck(Ω) f ´« Ω þ k gëY¼ê

⇒ Âñ

A ⊂ B 8ÜA´8ÜBf8

C[a, b] ½Â3 [a, b]þëY¼êN¤8Ü

A⇐⇒ B ·KAdu·KB

D(f1, . . . , fn)

D(y1, . . . , yn)¼ê fi(x, y1, . . . , yn), i = 1, . . . , n 'u y1, . . . , yn Jacobi 1ª

∂(f1, . . . , fn)

∂(y1, . . . , yn)¼ê fi(x, y1, . . . , yn), i = 1, . . . , n 'u y1, . . . , yn Jacobi Ý

(Rn,0) Rn m¥I: 0 ,

fx(x, y) ¼ê f(x, y) 'uÙCþx ê

7

Page 10: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

1Ù ~©§Ä:£

ÙÌ0~©§Ä£, X©§Ú)½Â, )AÛn),

)3ÚQã, ±9©§«). ©§nØÜ©ÙØ9.

§1.1 ~©§ÄVg

!Äk0©§, ±9)ÚÏ)½Â

§1.1.1 ©§Ú)

©§´¹k¼êê§. ¼êgCþ´üCþ©§¡

~©§. ¼êgCþ´õCþ©§¡ ©§. ©§¹k

êpê¡©§.

~K:

1. §d3y

dx3+ (y5 + xy + 1)

dy

dx= 1 ´ 3 ~©§.

2. § x2 d4x

dt4+

(dx

dt

)5

= cosx ´ 4 ~©§.

3. Newton 1$ĽÆÑ©§ md2x(t)

dt2= F (x(t) ´ 2 ~©§, Ù¥ m

´:þ, F ´ t âf3 x(t) É^å.

4. §∂2u(x, y)

∂x2+∂2u(x, y)

∂y2= 0 ´ 2 ©§.

5. §∂u(x, y, z)

∂x+ (u+ 1)

∂u(x, y, z)

∂y− xyz ∂u(x, y, z)

∂y= u3 ´ 1 ©§.

ÖÌùã~©§, ~©§nØ3 ©§¥A^, Ö¥ §3.3.2 0

©§).

n ~©§/ª´

F

(t, x(t),

dx

dt(t), . . . ,

dnx

dtn(t)

)= 0, (1.1.1)

1

Page 11: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

§1.1 ~©§ÄVg

Ù¥ F ´'u n+ 2 Cþ½¼ê, F 7L¹kdnxdtn . Ï x 'u t n ê¹3

¼ê F ¥, ¤±¡ (1.1.1) n Ûª~©§ (¡ n Ûª§). ±B

å~^ x, x, x′(t), x′′(t) Ú x(n)(t) L«¼ê x 'ugCþ t ê. ~©

§¥, S.þ~^m t gCþ; ~^ y ÏCþ, x gCþ.

n wª~©§/ª´

x(n)(t) = f(t, x(t), x′(t), . . . , x(n−1)(t)

), (1.1.2)

Ù¥ f ´'u n + 1 Cþ¼ê. ´, w«~©§±¤Ûª~©§/

ª. Ûª~©§ÛÜ/±|^Û¼ê3½n¤w«/ª.

¼ê F ½Â3 Rn+2 m,m« Ω þ. ½Â3 (t1, t2) þ¼ê x = φ(t) ¡

©§ (1.1.1) ), XJ φ(t) 3 (t1, t2) þäk n− 1 ëYê, Ù n ê3, (t, φ(t), φ′(t), . . . , φ(n)(t)

)∈ Ω,

F(t, φ(t), φ′(t), . . . , φ(n)(t)

)≡ 0, t ∈ (t1, t2).

¡ (t1, t2) )½Â«m. 5µkU t1 = −∞ ½ t2 =∞.

Λ ⊂ Rn ´m«, c = (c1, . . . , cn) ∈ Λ. ¹k n ~ê¼ê x = φ(t, c), (t, c) ∈

(t1, t2)×Λ, ¡§ (1.1.1)Ï),XJ φ´§ (1.1.1)), n~ê´?¿½Õ

á, = φ, φ′, . . . , φ(n−1) 'u c1, c2, . . . , cn Jacobi 1ª

D(φ, φ′, . . . , φ(n−1))

D(c1, c2, . . . , cn):=

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂φ∂c1

∂φ∂c2

· · · ∂φ∂cn

∂φ′

∂c1

∂φ′

∂c2· · · ∂φ′

∂cn...

.... . .

...

∂φ(n−1)

∂c1

∂φ(n−1)

∂c2· · · ∂φ(n−1)

∂cn

∣∣∣∣∣∣∣∣∣∣∣∣∣6= 0, (t, c) ∈ (t1, t2)× Λ.

n ©§ (1.1.1) ½ (1.1.2) ÷vЩ^

x(t0) = x0, x′(t0) = x1, . . . , x

(n−1) = xn−1, (1.1.3)

¡Ð¯K, Ù¥ t0 ∈ R ¡Ð©m, (x0, x1, . . . , xn−1) ∈ Rn ¡Ð©½¡Ð.

©§ (1.1.1) ½ (1.1.2) ÷vЩ^ (1.1.3) )¡Ð¯K).

N5:

• n ©§Ð¯K¥Ð©^´d n ^(½.

2

Page 12: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

1Ù ~©§Ä:£

• Щ (x0, x1, . . . , xn−1)áuþ¼ê (φ(t, c), φ′(t, c), . . . , φ(n−1)(t, c)), (t, c) ∈ t0×

Λ, , ЯK)¹3Ï)¥. ù´Ï|^Û¼ê3½n±)Ñ

A c0,l φ(t, c0)ҴЯK). ~X y = cex ´©§ y′ = y 3 RþÏ

). §¹§¤k).

• e~fL²Ï)7¹©§¤k). ~X©§

dy

dx= y2,

kÏ) y = −(x + c)−1, Ù¥ c ´?¿~ê. w, y = 0 ´§), §Ø¹3

Ï)¥.

§1.1.2 ©§Ú)~f

1. ©§

x′′(t) = g, g ∈ R,

3 t ∈ R þkÏ) x = φ(t, c1, c2) = 12gt

2 + c1t+ c2, Ù¥ c1 Ú c2 ´?¿~ê.

2. n©§

x′′′(t) + x′′(t)− x′(t) + 15x(t) = 0,

3 t ∈ RþkÏ) x = φ(t, c1, c2, c3) = c1e−3t + c2e

t cos(2t) + c3et sin(2t), Ù¥ c1, c2, c3

´?¿~ê.

3. a(x), b(x) 3 (α, β) ⊂ R þëY, x0 ∈ (α, β), y0 ∈ R. K©§Ð¯K

dy

dx= a(x)y + b(x), y(x0) = y0,

3 x ∈ (α, β) þk)

y(x) = e∫ xx0a(s)ds

(y0 +

∫ x

x0

b(t)e−

∫ tx0a(s)ds

dt

).

4. ЯK

dy

dx= y

13 , y(1) = 0,

3

Page 13: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

§1.1 ~©§ÄVg

3 x ∈ R þkáõ)

y(x) =

0, x ≤ c,

±(

23

) 32 (x− c) 3

2 , x > c,

Ù¥ c ≥ 1 ´?¿~ê.

5. ©§

dy

dx= y2,

– ÷vЩ^ y(1) = 1 3 (−∞, 2) þk) y = (2− x)−1;

– ÷vЩ^ y(1) = −1 3 (0,∞) þk) y = −x−1.

6. ЯK

dy

dx= 1 + y2, y(0) = 0,

3 (−π2 ,π2 ) þk) y = tanx.

N5:

• ~ 4 ¥§mà¼ê3 (x, y) ²¡ëY, 3 y = 0 Ø, ЯKkáõ).

ù9©§Ð¯K)35¯K, ò3©¥ÅÚ0.

• ~ 5 Ú 6 ¥©§mà¼ê3 (x, y) ²¡þëY, )½Â«mké«

O. ù´©ò0)òÿ¯K.

§1.1.3 ©§)AÛ)º!3Ú5

ãÄnØ, ÄkÄXew«©§

x = f(t, x), (1.1.4)

Ù¥ f 3 R2 ,m« Ω þëY. x = φ(t), t ∈ (α, β) ´§ (1.1.4) ). K

(t, φ(t)) : t ∈ (α, β) ´ Ω ¥^1w­(Ùy²ò3eÙÑ), ¡§ (1.1.4)

È©­. 3È©­þ?: (t0, φ(t0)), ÙÇ φ′(t0) u f(t0, φ(t0)). ù`²é

u Ω ¥?: (t, x), XJkÈ©­ÏL, KÏLT:È©­Ç f(t, x).

4

Page 14: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

1Ù ~©§Ä:£

é ∀ (t, x) ∈ Ω, LT:Ç f(t, x) ã. Ω ¥¤kùãN¤

8Ü¡§ (1.1.4) |. |^|±Cq/ѧȩ­. |

*~f´^/^c±^|µ3[äkKü4^/^c±gþá

c,§òUì^|3^c±ü. ¤kùk5KücÒ¤

^|¤÷v~©§|. ÖØäNïá^/^c^|÷v§,k,

Ööë [16, p.16, ~3].

¯K: ½ (t0, x0) ∈ Ω, § (1.1.4) ÷vЩ^ x(t0) = x0 )´Ä3ºXJЯ

K)3, @o)´Äº

5: ±Bå, ò§ (1.1.4) ÷vЩ^ x(t0) = x0 )`¤§ (1.1.4) LÐ

©: (t0, x0) ), ½§ (1.1.4) LЩ: (t0, x0) È©­.

þã¯K)û3~©§uФþ²ém. IêÆ[Augustin Cauchy

(1789–1857) u 19 ­V 20 cïá~©§Ð¯K)35½n (ÏX

d,ЯKq¡Cauchy¯K).IêÆ[ Rudolf Lipschitz (1832–1903)u 1876c~f

Cauchy'uЯK)35½n^.5IêÆ[ Charles Emile Picard

(1856–1941) Ú ¥=êÆ[ Ernst Lindelof (1870–1946) Ñ Lipschitz (J#y², AO

´ Picard u 1893 c^Åg%Cy² Lipschitz ½n (5õêÖÑ^ Picard

y²,ÏdT½nq¡ Picard ½n,½ Cauchy–Lipschitz ½n,½ Picard–Lindelof

½n). Peano ° Picard ½n^, y²ëY5=y)35 (,=këY

5Ãy5). Peano(J<¡ Peano ½n. 'u~©§)3Ú

5kéõÙ§?Úí2ÚU?, ÑÖ£, Ø3d0.

e¡½ny§ (1.1.4) ЯK)35Ú5.

½n1. (Picard½n) f(t, x) 3m« Ω ⊂ R2 þëY, 'u x ÷vÛÜ Lipschitz ^

, =é ∀ (t, x) ∈ Ω, 3 (t, x) Ut,x, 9~ê Lt,x, ¦é ∀ (t, x1), (t, x2) ∈ Ut,x Ñ

k

|f(t, x1)− f(t, x2)| ≤ Lt,x|x1 − x2|.

K§ (1.1.4) L?: (t0, x0) ∈ Ω Ñk), P x = φ(t), t ∈ (α, β).

N5:

• þã½nÑ©§ (1.1.4) ЯK)3Ú5¿©^. XJòÛÜ

Lipschitz ^¤ f(t, x) 'u x 3 Ω ¥këY ê, K½n(Øw,¤á.

5

Page 15: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

§1.1 ~©§ÄVg

• T½nyl Ω ¥?:Ñuk=k^È©­ÏL. ?Ú/,

– XJ x = ψ(t), t ∈ (µ, ν) ´§ (1.1.4) L (t0, x0) ), ÷v (α, β) ( (µ, ν),

t ∈ (α, β) ψ(t) = φ(t), ¡) x = ψ(t) ´) x = φ(t) òÿ.

– eéu§ (1.1.4)L (t0, x0)?) x = ψ(t), t ∈ (µ, ν)Ñk (µ, ν) ⊂ (α, β), ¡

) x = φ(t), t ∈ (α, β) ´§ (1.1.4) L (t0, x0)Øòÿ); d¡ (α, β) ´

§ (1.1.4) L (t0, x0))3«m½¡3«m.

• 3þ!~ 1, 2, 3, 4 ¥)3«mÑ´ (−∞,∞), ~ 5 ¥)3«m´k

, ~ 6 ¥)3«m´k. 5¿, ù)Ñ´Øòÿ).

½n 1 Ø=y)35, y)5. ¯¢þ, f(t, x) ëY5Ò

y)35.

½n2. (Peano ½n) XJ f(t, x) 3m« Ω ⊂ R2 þëY, K§ (1.1.4) L?:

(t0, x0) ∈ Ω )Ñ3, )½Â33«mþ.

½n 1 Ú 2 y²ò31Ù¥Ñ.

þ!~ 4 `²=këY5ØUyЯK)5. XJ f(t, x) Ø÷vëY5

b, ЯK)35ØUy. ~X, ЯK

dy

dx= f(x, y), y(0) = 0, (x, y) ∈ (R2,0). (1.1.5)

vk), Ù¥ (R2,0) L«I:,,

f(x, y) =

1, (x, y) ∈ (R2,0), (x, y) 6= (0, 0)

0, (x, y) = (0, 0).

¯¢þ, $^y, XJЯK (1.1.5) k), P y = φ(x), x ∈ J = [0, β) (3 0

>«m±aq/?Ø). Uì)½Â, φ(x) 3 J þëY, ê3. du3:,

dy

dx= 1, ¤±3: φ(x) = x + b. qÏ φ(x) ëY, ¤± 0 = φ(0) = lim

x→0φ(x) = b.

φ(x) = x. Ï φ′(0) = 1. ùdφ(x)

dx

∣∣∣∣x=0

= f(0, φ(0)) = f(0, 0) = 0 gñ. ùgñ`²Ð

¯K (1.1.5) vk).

6

Page 16: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

1Ù ~©§Ä:£

§1.1.4 ¢S¯K.í

1. gdáN$Ä ±/¡I:, YþI¶ x . , t0

3pÝ x0 /òþ m ÔNe, XØÄÙ¦å3­å^eÔN3 t

(> t0) XÛ? b­å\Ý g.

Ä­åÚ x , ¿$^Úî1½Æ mx = −mg, =

x(t) = −g.

ù´LãÔNgdeá$ħ.

2. 5ÔPC k,5Ô3 t êþ x(t), ÔPCÝÔ

êþ¤', Kk

x(t) = −kx(t),

Ù¥ k > 0 ´ÔPC'~~ê. T~£ã5ÔPC5Æ.

3. <. <¯K´~E,, §éX¬ÆÚ)ÔÆÃõÏ. ~Ä

nz¹.

<3, t êþ x(t), <OÇ k(t, x). K<C5Æ

x(t) = k(t, x)x(t).

5µ<OÇÑ)ÇÚk, §K.

3] 4Ù´L¹e, <OÇ k ±w~ê. ù´ Malthus <nØÄ

:. ¯¢þ, X<O5/«¸», ±9<mék] p¿, <

ODZ k = a(1− xL ), Ù¥~ê L¡¸Nþ. T.¢S/N<

Cz. ,éuäN¢S¹, <ODZ٧ܷ¼ê.

4. êÆ$Ä êÆ´nþ m l ü, Ù3­å^e$Ä. 5½

lmYmÝ, x üYY. 3êÆ$Ä

$^Úî1½Æ

mlx = −mg sinx,

=

x = −ml

sinx.

T§£ãü$Ä5Æ.

7

Page 17: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

§1.2 ÐÈ©

5. RLC £´>6 Äd> (R)!>a (L)!>N (C)Ú> ¤Gé>´. 3 t

> >Ø E(t), >´>6rÝ I(t). KT>!>aÚ>Nüà>Ø©O

´

UR(t) = RI(t), UL(t) = LI ′(t), UC(t) =1

C

∫I(s)ds.

d>´ó Kirchhoff ½Æ

UR(t) + UL(t) + UC(t) = E(t).

é§ü>'u t ¦ê'u£´>6÷v©§

LI ′′(t) +RI ′(t) +1

CI(t) = E′(t).

±þÑåÆ!>ÆÚ)ÔÆþü¢S.÷vÄåƧí. 3

e¡ÆL©§¦), ÏL¦)?Ún)Úݺ¢S¯K$Ä5Æ.

§1.2 ÐÈ©

!0ÏLÐÈ©Ò±¦)Aa~©§¦).

§1.2.1 T§

ò©§

dy

dx= f(x, y),

¥gCþ x ÚÏCþ y w¤é, KT§±¤é¡/ªµ

f(x, y)dx− dy = 0.

!Äé¡/ª©§

P (x, y)dx+Q(x, y)dy = 0, (1.2.1)

Ù¥ P (x, y) Ú Q(x, y) 3m« Ω ⊂ R2 ¥ëY.

§ (1.2.1) ¡T§½©§, XJ3 Ω þ¼ê Φ(x, y) ¦

dΦ(x, y) = P (x, y)dx+Q(x, y)dy, (x, y) ∈ Ω.

8

Page 18: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

1Ù ~©§Ä:£

d¡ Φ(x, y) = c (c ?¿~ê) ´§ (1.2.1) ÏÈ©. 5µ(1.2.1) ´T§du

3¼ê Φ(x, y) ¦

Φx(x, y) = P (x, y), Φy(x, y) = Q(x, y), (x, y) ∈ Ω,

Ù¥ Φx Ú Φy ©OL« Φ 'u x Ú y ê.

e¡·KL²ÏÈ©3¦)¥­^.

·K3. e Φ(x, y) = c (c ?¿~ê) ´§ (1.2.1) 3 Ω SÏÈ©, K Φ(x, y) = c )

=§´ (1.2.1) 3 Ω ¥).

y: 75. Ï Φx Ú Φy ØÓ", Ø Φy 6= 0. éu c ∈ R, y = u(x), x ∈ I ´

âÛ¼ê3½nl Φ(x, y) = c ¥¦Ñ). Kk Φ(x, u(x)) ≡ c, x ∈ I. l

0 ≡ dΦ(x, u(x))

dx= Φx(x, u(x)) + Φy(x, u(x))u′(x),

=

P (x, y)dx+Q(x, y)dy|y=u(x) = Φx(x, u(x))dx+ Φy(x, u(x))du ≡ 0, x ∈ I.

ù`²l Φ(x, y) = c ¥¦Ñ¼ê y = u(x) ´§ (1.2.1) ).

¿©5. y = u(x), x ∈ I ½ x = v(y), y ∈ J ´§ (1.2.1) 3 Ω S). ØÄc

ö, y Φ(x, u(x)), x ∈ I ðu~ê. ¯¢þ, Ï Φ(x, y) 3 Ω S, ¤±

dx(x, u(x)) = Φx(x, u(x)) + Φy(x, u(x))u′(x) = P (x, u(x)) +Q(x, u(x))u′(x) ≡ 0, x ∈ I.

ùÒy²÷X§ (1.2.1) 3 Ω S?) Φ(x, y) Ñ~. ·Ky..

Q,ÏÈ©3é¡/ª©§¦)¥åXXd­^, @o¯K´

• XÛ½§ (1.2.1) ´Ä´T§º

• XJ (1.2.1) ´T, XÛ¦ÏÈ©º

½n4. (T§½) P (x, y), Q(x, y) 9 ê Py(x, y), Qx(x, y) 3Ý/«

R ⊂ R2 þëY. K (1.2.1) ´T§=

Py(x, y) = Qx(x, y), (x, y) ∈ R. (1.2.2)

9

Page 19: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

§1.2 ÐÈ©

y: 75. db, 3 R þ¼ê Φ(x, y) ¦

Φx(x, y) = P (x, y), Φy(x, y) = Q(x, y), (x, y) ∈ R.

k

Py(x, y) = Φxy(x, y), Qx(x, y) = Φyx(x, y), (x, y) ∈ R,

Ù¥ Φxy =∂2Φ(x, y)

∂x∂y, Φyx =

∂2Φ(x, y)

∂y∂x.

db Φxy(x, y) Ú Φyx(x, y) 3 R þëY, ¤± Φxy(x, y) = Φyx(x, y), (x, y) ∈ R. l

Py(x, y) = Qx(x, y), (x, y) ∈ R.

¿©5. ? (x0, y0) ∈ R. -

Φ(x, y) =

∫ x

x0

P (s, y)ds+

∫ y

y0

Q(x0, t)dt. (1.2.3)

K Φx = P (x, y). Ï Py(x, y) = Qx(x, y), ¤±

Φy(x, y) =

∫ x

x0

Py(s, y)ds+Q(x0, y) =

∫ x

x0

Qx(s, y)ds+Q(x0, y) = Q(x, y).

y..

N5:

• 3üëÏ« R þ, 3^ (1.2.2) e, È©

Φ(x, y) =

∫ (x,y)

(x0,y0)

Pdx+Qdy,

È©´»Ã'. Ïd3¦ Φ(x, y) , ±À¦O¦þüЩ: (x0, y0)

Úl (x0, y0) (x, y) ´uO´». 'Xkl (x0, y0) (x, y0), 2l (x, y0)

(x, y) ´»ÏÈ©

Φ(x, y) =

∫ x

x0

P (s, y0)ds+

∫ y

y0

Q(x, t)dt.

• ½n 4 ¥Ý/« R ±´?ÛüëÏà«.

~K: ½§

(yex + 2ex + y2)dx+ (ex + 2xy)dy = 0,

´Ä´T§. XJ´T§, ¦ÙÏÈ©.

10

Page 20: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

1Ù ~©§Ä:£

): - P = yex + 2ex + y2, Q = ex + 2xy. Kk Py = Qx = ex + 2y. T§.

(0, 0) Щ:, À´» (0, 0) −→ (x, 0) Ú (x, 0) −→ (x, y). KkÏÈ©

Φ(x, y) =

∫ x

0

P (s, 0)ds+

∫ y

0

Q(x, t)dt = 2ex + exy + xy2 − 2.

N5: T§k±^©|Ün©¦). 'X

(exy + y2 cosx

)dx+ (ex + 2y sinx+ y) dy

= (exydx+ exdy) +(y2 cosxdx+ 2y sinxdy

)+ ydy

= d(exy) + d(y2 sinx) + d

(1

2y2

).

§1.2.2 È©Ïf

1. È©Ïf

é¡/ª§ (1.2.1)UØ´T§,k¦±,ðØ"Ïf µ(x, y)

¤T§, =

µ(x, y)P (x, y)dx+ µ(x, y)Q(x, y)dy = 0, (x, y) ∈ Ω, (1.2.4)

´T§. ¡ µ(x, y) ´§ (1.2.1) 3 Ω ¥È©Ïf. 5¿, § (1.2.1) Ú (1.2.4)

3 Ω þ´Ó) (Ï µ(x, y) 6= 0), ¦)§ (1.2.1) du¦)§ (1.2.4).

¯K: § (1.2.1) ´Ä3È©ÏfºXÛ½º

·K5. § (1.2.1) 3 Ω þkÈ©Ïf='u µ ©§

P∂µ

∂y−Q∂µ

∂x=

(∂Q

∂x− ∂P

∂y

)µ,

3 Ω þk"). AO/,

• § (1.2.1) k¹ x È©Ïf¿^´

Py(x, y)−Qx(x, y)

Q(x, y),

´ x ¼ê, P G(x), KÈ©Ïf µ(x) = e∫G(x)dx.

11

Page 21: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

§1.2 ÐÈ©

• § (1.2.1) k¹ y È©Ïf¿^´

Qx(x, y)− Py(x, y)

P (x, y),

´ y ¼ê, P H(y), KÈ©Ïf µ(y) = e∫H(y)dy.

y: dT§½Â±í, lÑ. 5: ©¥")´Øðu").

~K: ¦)§

dy

dx+ p(x)y = q(x)yn, n ≥ 0, (1.2.5)

Ù¥ p(x), q(x) ´,m«m (α, β) þëY¼ê.

): Äkò§ (1.2.5) ¤é¡/ª

(p(x)y − q(x)yn)dx+ dy = 0. (1.2.6)

- P (x, y) = p(x)y − q(x)yn, Q(x, y) = 1.

XJ n = 0, § (1.2.5) ¡5§. Ï (Py −Qx)/Q = p(x), § (1.2.6) kÈ©Ï

f µ(x) = e∫p(x)dx. l ÏÈ©

Φ(x, y) = ye∫p(x)dx −

∫q(x)e

∫p(x)dxdx.

5§ (1.2.5) Ï)

y = e−∫p(x)dx

(c+

∫q(x)e

∫p(x)dxdx

), Ù¥ c ´?¿~ê.

XJ n = 1,§ (1.2.5)¡àg5§. Ï (Py−Qx)/Q = p(x)− q(x),§ (1.2.6)

kÈ©Ïf µ(x) = e∫

(p(x)−q(x))dx. l ÏÈ©

Φ(x, y) = ye∫

(p(x)−q(x))dx.

àg5§ (1.2.5) Ï)

y = ce−∫

(p(x)−q(x))dx, Ù¥ c ´?¿~ê.

XJ n > 0 n 6= 1, § (1.2.5) ¡ Bernoulli §. dØU$^·K 5. ´

y = 0 ´§ (1.2.5) ). y 6= 0 , 顧 (1.2.6) du

(p(x)y1−n − q(x))dx+ y−ndy = 0. (1.2.7)

12

Page 22: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

1Ù ~©§Ä:£

- P (x, y) = p(x)y1−n − q(x), Q(x, y) = y−n. Kk (Py − Qx)/Q = (1 − n)p(x), ¤±§

(1.2.7) kÈ©Ïf µ(x) = e∫

(1−n)p(x)dx. é§

e∫

(1−n)p(x)dx(p(x)y1−n − q(x))dx+ y−ne∫

(1−n)p(x)dxdy = 0,

È©(1.2.7) ÏÈ©

Φ(x, y) = y1−ne∫

(1−n)p(x)dx − (1− n)

∫q(x)e

∫(1−n)p(x)dxdx.

¤± Bernoulli §k) y = 0 Ú ÏÈ©

y1−ne∫

(1−n)p(x)dx − (1− n)

∫q(x)e

∫(1−n)p(x)dxdx = c,

Ù¥ c ´?¿~ê.

N5:

• 5§ÏÈ©±l Bernoulli §ÏÈ©¥- n = 0 .

• Bernoulli § y 6= 0 ±ÏLC z = y1−n =z5§

dz

dx+ (1− n)p(x)z = (1− n)q(x).

2. ©|ܦȩÏf

½é¡/ª©§ (1.2.1), kØU^·K 5 ½È©Ïf

35, I©|ÜéÈ©Ïf. ~X, §

y3dx+ 2(x2 − xy2)dy = 0, (1.2.8)

éJ^®k¦). ò§ (1.2.8) ©|Ü

(y3dx− 2xy2dy) + 2x2dy = 0,

ØJuycökÈ©Ïf µ1(y) = y−5, ökÈ©Ïf µ2(x) = x−2. XÛ|^üöÈ©

Ïf (1.2.8) È©Ïf.

·K6. éuÈ©Ïf, e(ؤá.

13

Page 23: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

§1.2 ÐÈ©

• µ(x, y) ´ (1.2.1) È©Ïf, k

µ(x, y)P (x, y)dx+ µ(x, y)Q(x, y)dy = dΦ(x, y),

Ké?¿ëY¼ê g(·), µ(x, y)g(Φ(x, y)) ´ (1.2.1) È©Ïf.

• ò§ (1.2.1) ©|¤

(P1(x, y)dx+Q1(x, y)dy) + (P2(x, y)dx+Q2(x, y)dy) = 0.

e3 µ1(x, y),Φ1(x, y), µ2(x, y),Φ2(x, y) ¦

µ1(x, y)P1(x, y)dx+ µ1(x, y)Q1(x, y)dy = dΦ1(x, y),

µ2(x, y)P2(x, y)dx+ µ2(x, y)Q2(x, y)dy = dΦ2(x, y),

· g1(·), g2(·)¦ µ1g1(Φ1) = µ2g2(Φ2). K µ(x, y) := µ1g1(Φ1)´ (1.2.1)

È©Ïf.

y: N´y, lÑ.

~K: ¦)§ (1.2.8).

): Äk x = 0 Ú y = 0 Ñ´§ (1.2.8) ).

x 6= 0, y 6= 0 , § y3dx− 2xy2dy = 0 kÈ©ÏfÚÏÈ©©O

µ1(x, y) = y−5, Φ1(x, y) = xy−2.

§ 2x2dy = 0 kÈ©ÏfÚÏÈ©©O

µ2(x, y) = x−2, Φ2(x, y) = y.

g1(z) = z−2, g2(z) = z−1, =§ (1.2.8) È©Ïf

µ(x, y) = µ1g1(Φ1) = µ2g2(Φ2) = x−2y−1,

ÚÏÈ©

Φ(x, y) = 2 ln |y| − x−1y2.

14

Page 24: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

1Ù ~©§Ä:£

§1.2.3 Aa=zT§§

1. Cþ©l§

/X

P1(x)P2(y)dx+Q1(x)Q2(y)dy = 0, (1.2.9)

§¡Cþ©l§. ´ Q1(x) ": x = x0 Ú P2(y) ": y = y0 Ñ´§

(1.2.9) ). éu Q1(x)P2(y) 6= 0, Cþ©l§ (1.2.9) duT§

P1(x)

Q1(x)dx+

Q2(y)

P2(y)dy = 0.

Ï Q1(x)P2(y) 6= 0, § (1.2.9) kÏÈ©∫P1(x)

Q1(x)dx+

∫Q2(y)

P2(y)dy = c,

Ù¥ c ´?¿~ê.

3 §1.1 ~ 4 ¥, ЯK y′(x) = y13 , y(1) = 0 )Ø. e¡|^©lCþ

§¦)Ñùa§Ð¯K)3¿^.

~K: f(y) 3 |y − a| ≤ σ þëY, y = a ´ f(y) ":. K§

y′(x) = f(y), (1.2.10)

l y = a þz:Ñu)Ñ¿^´∣∣∣∣∫ a±σ

a

dy

f(y)

∣∣∣∣ =∞.

y: 75. y. e ∣∣∣∣∫ a±σ

a

dy

f(y)

∣∣∣∣ <∞. (x0, y0) ´ 0 < |y − a| < σ ¥?:, Ø y0 > 0. d Peano ½n, § (1.2.10)

L (x0, y0) k), φ(x) ´LT:). Ï y = a ´ f(y) ":, Ø

y ∈ (a, a+σ]k f(y) > 0. ¤±X xl x0~, φ(x)~ (Ï φ′(x) = f(φ(x)) > 0).

duL y = a þ?:), ¤±3 x l x0 ~L§¥©ªk φ(x) > a. )

φ(x) 1)3«m (−∞, x0]. - b = limx→−∞

φ(x), Kk b ≥ a. l

∞ >

∫ y0

b

dy

f(y)=

∫ x0

−∞dx =∞.

15

Page 25: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

§1.2 ÐÈ©

ùgñ`²∣∣∣∫ a±σa

dyf(y)

∣∣∣ =∞.

¿©5. y. b§ (1.2.10) L,: (x0, a) k,), P y = ψ(x), x ∈ J , Ù¥

J ´¹ x0 m«m. Ï y = ψ(x) Ú y = a ´§ (1.2.10) üØÓ), ¤±3

x1 ∈ J ¦ y1 := ψ(x1) ∈ (a− σ, a+ σ) \ a. ùÒk

∞ =

∣∣∣∣∫ y1

a

dy

f(y)

∣∣∣∣ =

∣∣∣∣∫ x1

x0

dx

∣∣∣∣ <∞.ùgñ`²§ (1.2.10) L y = a þ?:)Ñ´. y..

2. àg§

§

dy

dx= R

(yx

), (1.2.11)

Ú§

P (x, y)dx+Q(x, y)dy = 0, P,Q ´ m gàg¼ê, (1.2.12)

Ñ¡àg§. ¼ê P (x, y)¡ m gàg¼ê,XJéu?¿ s > 0Ñk P (sx, sy) =

smP (x, y).

- y = ux, àg§ (1.2.11) Ú (1.2.12) ©OzCþ©l§

xdu

dx= R(u)− u.

Ú

xm(P (1, u) + uQ(1, u))dx+ xm+1Q(1, u)du = 0.

ÏLþãCþ©l§¦)§ (1.2.11) Ú (1.2.12)¦).

~Kµ¦)§

xdy

dx− y = x tan

y

x. (1.2.13)

)µ- y = xu. K§ (1.2.13) =z

xdu

dx= tanu,

ÙÏ)

sinu = cx, Ù¥ c ´?¿~ê

16

Page 26: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

1Ù ~©§Ä:£

¤±, § (1.2.13) Ï)

y = xu = x arcsin(cx),

Ù¥ c ´?¿~ê"

3. ©ª5§ª

/X

dy

dx= f

(ax+ by + c

px+ qy + r

), (1.2.14)

§¡©ª5§ª. §±ÏL·C=zCþ©l§. ¯¢þ

• c = r = 0 , (1.2.14) w,´àg§.

• ∆ := aq − bp = 0 , Ø a = λp, b = λq. - u = px+ qy, K§ (1.2.14) z

Cþ©l§

du

dx= p+ qf

(λu+ c

u+ r

).

• ∆ 6= 0 , (ξ, η) ´5§| ax + by + c = 0, px + qy + r = 0 ). -

x = u+ ξ, y = w + η, K§ (1.2.14) zàg§

dw

du= f

(au+ bw

pu+ qw

).

~Kµ¦)§

dy

dx=−x3 + xy2 + x

x2y + y3 + 3y. (1.2.15)

)µ- u = x2, v = y2, § (1.2.15) =z

dv

du=−u+ v + 1

u+ v + 3. (1.2.16)

ê§

−u+ v + 1 = 0, u+ v + 3 = 0

k) u0 = −1, v0 = −2. -

u = ξ − 1, v = η − 2

17

Page 27: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

§1.2 ÐÈ©

§ (1.2.16) =z

dξ=−ξ + η

ξ + η.

- η = wξ. þã§z

ξdw

dξ= −w

2 + 1

w + 1

ù´Cþ©l§, ¦)

ln[(w2 + 1)ξ2] + 2 arctanw = c, Ù¥ c ´?¿~ê.

£Cþ, § (1.2.15) ÏÈ©

ln[(x2 + 1)2 + (y2 + 2)2

]+ 2 arctan

y2 + 2

x2 + 1= c,

Ù¥ c ´?¿~ê.

4. Riccati §

/X

dy

dx= p(x)y2 + q(x)y + r(x), p(x) 6≡ 0, r(x) 6≡ 0, (1.2.17)

§¡ Riccati §. 5`, Riccati §ØU^ÐÈ©¦).

·K7. e® Riccati § (1.2.17) ), K§±^ÐÈ©¦).

y: y = φ(x) ´§ (1.2.17) ). - y = φ(x) + u, K§ (1.2.17) =z

du

dx= (2p(x)φ(x) + q(x))u+ p(x)u2,

ù´ Bernoulli §, Ï ±^ÐÈ©¦). y..

e¡(ØÑa Riccati §^ÐÈ©¦)¿^.

·K8. Riccati §

dy

dx= ay2 + bxm, a 6= 0, b,m ∈ R,

^ÐÈ©¦)=

m = 0, −2, − 4k

2k + 1, − 4k

2k − 1, k ∈ N.

18

Page 28: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

1Ù ~©§Ä:£

y: ¿©5´ Daniel Bernoulli u 1725 cy², ¯¢þ§±^ÐÈ©ØJy². 7

5´ Joseph Liouville u 1841 cy². [y²lÑ.

5: Louville (Ø­¿Â3u«µU^ÐÈ©¦)©§´~.

F"ÏL¦)ݺ¤k©§£ã¢S¯KÄåÆ ´Ø¢S, ÏdI&

¦#ÚnØ.ùÒíÄ©§ynØ),X Henry PoincareMá©

§½5nØ"

5. AÏC

k§vkÚ?n, IäN¯KäNé. e¡ÞAü~f.

1. §

dy

dx=f(x+ y2)

y,

ÏLC u = x+ y2 ±z¤Cþ©l§

du

dx= 1 + 2f(u).

2. §

dy

dx= sin(x+ y + 1),

ÏLC u = x+ y + 1 ±z¤Cþ©l§

du

dx= 1 + sinu.

3. §

(x− 2 sin y + 5)dx+ (2x− 3 sin y + 1) cos y dy = 0,

ÏLC u = sin y z¤

(x− 2u+ 5)dx+ (2x− 3u+ 1)du = 0.

§äk (1.2.14) /ª, Ï ¦).

19

Page 29: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

§1.2 ÐÈ©

§1.2.4 5©§~êC´

!2g£5©§,8´ùã¦)5©§~k^µ~

êC´. T3±¦)§|ék^. Ä5©§

dy

dx+ p(x)y = q(x), (1.2.18)

Ù¥ p(x), q(x) 3m«m (α, β) þëY. q(x) ≡ 0 , ¡ (1.2.18) àg5§.

q(x) 6≡ 0 , ¡ (1.2.18) àg5§.

5©§3¢S)¹¥þ/^, 'X RL £´>6§

LdI

dt(t) +RI(t) = E(t),

Ò´5©§, Ù¥ L ´>a, R ´>, I(t) ´>´>6, E(t) ´> >Ø.

e¡0~êC´. Äk|^Cþ©l¦àg5§

dy

dx+ p(x)y = 0, (1.2.19)

Ï)

y = ce−∫p(x)dx,Ù¥ c ´?¿~ê.

Ùgòàg5§Ï)¥?¿~ê c ¤'u x ¼ê c(x). ò¼ê

y = c(x)e−∫p(x)dx,

\§ (1.2.18), ¿z

c′(x)e−∫p(x)dx = q(x).

¤±

c(x) =

∫q(x)e

∫p(x)dxdx+ c,

Ù¥ c ´?¿~ê. àg5©§ (1.2.18) Ï)

y = e−∫p(x)dx

(c+

∫q(x)e

∫p(x)dxdx

),

Ù¥ c ´?¿~ê.

N5:

20

Page 30: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

1Ù ~©§Ä:£

• éu x0 ∈ (α, β), 5©§ (1.2.18) ÷vЩ^ y(x0) = y0 )

y = e−

∫ xx0p(s)ds

(y0 +

∫ x

x0

q(t)e∫ tx0p(s)ds

dt

), x ∈ (α, β).

• 5§ (1.2.18) Ï)^½È©5L«

y = e−

∫ xx0p(s)ds

(c+

∫ x

x0

q(t)e∫ tx0p(s)ds

dt

)= c e

−∫ xx0p(s)ds

+

∫ x

x0

q(t)e∫ txp(s)dsdt,

Ù¥ x0 ∈ (α, β) ´?¿½:, c ´?¿~ê.

dþãÏ)ÚЯK)Lª, N´

·K9. 5©§)äke5µ

• àg5§ (1.2.19) )½öðu"½öðØu";

• 5§ (1.2.18) )3 p(x), q(x) ëY«m (α, β) þ3ëY;

• àg5§ (1.2.19) )?¿5|ÜE´ (1.2.19) );

• àg5§ (1.2.19) )àg§ (1.2.18) )ÚE´ (1.2.18) );

• 5§ (1.2.18) ü)´ (1.2.19) );

• 5©§ (1.2.18) ЯK)3.

~K:

1. ¦5©§ xy′ + (1− x)y = e2x (0 < x <∞) ÷v limx→0+

y(x) = 1 ).

) : §±¤

y′ =x− 1

xy +

1

xe2x.

§kÏ)

y = x−1ex(c+ ex),

Ù¥ c ´?¿~ê. Ï limx→0+

ex(c+ ex) = c+ 1, ¦ x→ 0+ , y(x) 4

3, 7Lk c = −1. q

limx→0+

ex(ex − 1)

x= 1.

21

Page 31: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

§1.2 ÐÈ©

¤±§÷v½^)

y(x) = x−1ex(ex − 1).

2. a > 0, f(x) ´ëY 2π ±Ï¼ê, ¦©§

dy

dx+ ay = f(x), (1.2.20)

±Ï).

) : § (1.2.20) Ï)

y(x) = ce−ax +

∫ x

0

f(s)ea(s−x)ds. (1.2.21)

Äky² y(x) ´ 2π ±Ï) ⇐⇒ y(2π) = y(0). 75´w,. ey¿©5. -

z(x) = y(x+ 2π). K

dz

dx(x) =

dy

dx(x+ 2π) = −ay(x+ 2π) + f(x+ 2π) = −az(x) + f(x).

ùÒy² z(x) ´§ (1.2.20) ). q z(0) = y(2π) = y(0), d5§Ð¯K

)5 y(x+ 2π) = z(x) = y(x).

dÏ)Lª, l y(2π) = y(0) )

c =1

e2aπ − 1

∫ 2π

0

f(s)easds.

§ (1.2.20) k±Ï)

y(x) =1

e2aπ − 1

(∫ 2π

0

f(s)ea(s−x)ds+

∫ x

0

f(s)ea(2π+s−x)ds−∫ x

0

f(s)ea(s−x)ds

)=

1

e2aπ − 1

∫ x+2π

x

f(s)ea(s−x)ds.

3. f(x) 3 [0,∞) þëY, limx→∞

f(x) = b ∈ R. ¦y

(a) a > 0 , § (1.2.20) ¤k) x→∞ 4Ñ´ ba .

(b) a < 0 , § (1.2.20) k) x→∞ 4´ ba .

y : (a) d§ (1.2.20) Ï)Lª (1.2.21) , § (1.2.20) ?) y(x) 3 [0,∞)

þëY. ¤±k

limx→∞

y(x) = limx→∞

eaxy(x)

eax= limx→∞

y′(x) + ay(x)

a= limx→∞

f(x)

a=b

a,

22

Page 32: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

1Ù ~©§Ä:£

Ù¥1ª^ Hospital K, 1nª^ y(x) ´§ (1.2.20) ).

(b) a < 0 , dbÈ©∫∞

0f(s)easds Âñ. 3Ï) (1.2.21) ¥, -

c = c0 −∫ ∞

0

f(s)easds.

KÏ)±¤

y(x) = e−ax(c0 +

∫ x

∞f(s)easds

).

¤±d Hospital K

limx→∞

y(x) = limx→∞

c0 +∫ x∞ f(s)easds

eax=

b

a, c0 = 0,

∞ (−∞), c0 6= 0.

¤± a < 0§ (1.2.20)k) y(x) =∫ x∞ f(s)ea(s−x)ds x→∞4´ b

a.

§1.2.5 Ûª§

!ÄÛª§

F

(x, y,

dy

dx

)= 0. (1.2.22)

¦).

1. y )ѧ

§ (1.2.22) ¤

y = f(x, p), p =dy

dx, (1.2.23)

Ù¥ f(x, p)ëY.ò p#ÏCþ, é§ (1.2.23)ü>'u x¦, p'u

x êwª©§

(fx(x, p)− p)dx+ fp(x, p)dp = 0. (1.2.24)

• e§ (1.2.24) kÏ) p = u(x, c), K§ (1.2.23) kÏ) y = f(x, u(x, c)), Ù¥ c ´

?¿~ê. éA)kaq(Ø. 5¿: ØUé y′(x) = u(x, c) ¦È© y, Ïù

y ؽ´§). e¡ Clairaut §~fò`²ù:.

23

Page 33: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

§1.2 ÐÈ©

• e§ (1.2.24) kÏ) x = v(p, c), K§ (1.2.23) k¹ëê p Ï)

x = v(p, c),

y = f(v(p, c), p),

Ù¥ c ´?¿~ê. éA)kaq(Ø.

~K:

1. ¦) Clairaut §

y = xp+ f(p), p =dy

dx, f ′′(p) 6= 0.

): é Clairaut §ü>'u x ¦

(x+ f ′(p))dp

dx= 0.

d dpdx = 0 Clairaut §Ï)

y = cx+ f(c),

Ù¥ c ´?¿~ê. 5¿, Clairaut §Ï)dx¤.

d x+ f ′(p) = 0 Clairaut §A)

x = −f ′(p), y = xp+ f(p),

Ù¥ p ´ëê.

?Ú/, Ï f ′′(p) 6= 0, $^Û¼ê3½nl x = −f ′(p) )Ñ p = ω(x). K Clairaut

§A)¤

y = xω(x) + f(ω(x)). (1.2.25)

N5:

• Clairaut §´IêÆ[ Alexis Clairaut (1713–1765) ß 1734 cÚ\.

• L Clairaut§A)þ?:´Ï)¥^.¯¢þ, (x0, y(x0))´A

) (1.2.25) þ?:, Kk y′(x0) = ω(x0). ¤±A)L (x0, y(x0)) §

y − y(x0) = ω(x0)(x− x0),

=

y = c0x+ f(c0), c0 = ω(x0).

24

Page 34: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

1Ù ~©§Ä:£

• A) (1.2.25) ØU^Ï)L«, Ï ω(x) Ø´~ê. ¯¢þ, l x+ f ′(ω(x)) ≡ 0

ω′(x) = − 1

f ′′(ω(x))6= 0.

• þãü:`² Clairaut §A)éAÈ©­þ?:ÑkÏ)¥^È©­

ÏL, üö3T:.

2. ¦)§

y = p2 − xp+1

2x2, p = y′(x).

): éþã§ü>'u x ¦

(2p− x)

(1− dp

dx

)= 0.

|^T§A)ÚÏ)§A)ÚÏ)

y =1

4x2, y =

1

2x2 + cx+ c2,

Ù¥ c ´?¿~ê.

w,, A)ÚÏ)¥z^È©­Ñ´Ô. N´y, Ï)¥z^ÔÑA

)k:, Ø:Ï)È©­ uA)È©­þ.

dþãü~f¥A)¤äkÓ5Ú\­Vg.

y = φ(x), x ∈ J ´Ûª§ (1.2.22) ), Γ ´T)éAÈ©­. e

∀ q ∈ Γ, § (1.2.22) Ñk,^È©­3 q : Γ , ¡ y = φ(x), x ∈ J ´§

(1.2.22) Û).

2. Øw¹gCþ x ½ÏCþ y §

éuØw¹gCþ x §

F (y, p) = 0, p =dy

dx. (1.2.26)

Ï F (y, p) = 0 L« (y, p) ²¡eZ^­,

y = g(t), p = h(t), t ∈ J,

´ (1.2.26) ëêzL«, g(t), h(t) ëY, h(t) 6= 0. Kk

dx =1

pdy =

g′(t)

h(t)dt.

25

Page 35: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

§1.2 ÐÈ©

éþªÈ©§ (1.2.26) ¹ëê t Ï)

x =

∫g′(t)

h(t)dt+ c, y = g(t),

Ù¥ c ´?¿~ê.

éuØw¹ÏCþ y §

F (x, p) = 0, p =dy

dx. (1.2.27)

x = g(t), p = h(t), t ∈ J,

´ F (x, p) = 0 3 (x, p) ²¡ëêzL«, g(t), h(t) ëY. Kk

dy = pdx = g′(t)h(t)dt.

éþªÈ©§ (1.2.27) ¹ëê t Ï)

x = g(t), y =

∫g′(t)h(t)dt+ c,

Ù¥ c ´?¿~ê.

5: )/X (1.2.26) Ú (1.2.27) §'´XÛëêzùa§.

~K: ¦)e§

1) (y′)3 − y2(a− y′) = 0, a 6= 0;

2) ey′ − y′ = x.

): 1) - y′ = p, y = pt. §z

p2(p− t2(a− p)) = 0.

= p = 0 ½ p = at2

1+t2 . dcö§A) y = 0. dö

y =at3

1 + t2.

¤±

dx =1

pdy =

3 + t2

1 + t2dt.

26

Page 36: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

1Ù ~©§Ä:£

È©§¹ëê t Ï)

x = t+ 2 arctan t+ c, y =at3

1 + t2,

Ù¥ c ´?¿~ê.

2) - y′ = p, ¿± p ëê x = ep − p. k

dy = pdx = p(ep − 1)dp.

È©§¹ëê p Ï)

x = ep − p, y = pep − ep − 1

2p2 + c,

Ù¥ c ´?¿~ê.

§1.2.6 p©§

1. Øw¹gCþ n ©§

F

(y,dy

dx, . . . ,

dny

dxn

)= 0, (1.2.28)

¡g£©§. n = 1 , § (1.2.28) ¦)®²ùL. n > 1 , ±ÏL

é§ (1.2.28) ü5¦).

- z = y′(x), ¿ò y À#gCþ. Kk

d2y

dx2= z

dz

dy,

d3y

dx3= z

(dz

dy

)2

+ z2 d2z

dy2, . . .

n § (1.2.28) z± z ÏCþ, y gCþ n− 1 §

G(y, z, z′(y), . . . , z(n−1)(y)

)= 0. (1.2.29)

XJ§ (1.2.29) k) z = ψ(y), KÏL¦) y′(x) = z = ψ(y) § (1.2.28) ).

~K:

1. ¦)§ 2yy′′ = (y′)2 + y2.

): - z = y′(x), §z

2yzdy

dy= z2 + y2, = y

dw

dy= w + y2,

27

Page 37: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

§1.2 ÐÈ©

Ù¥ w = z2. w, y = 0 ´§). y 6= 0 , þ㧴5§, N´§

Ï)

w = cy + y2,

Ù¥ c ´?¿~ê.

du y = −c 6= 0 Ø´§), )§

y′(x) = z = ±√w = ±

√cy + y2,

§Ï)

ln |y +c

2+√cy + y2| = ±x+ c1,

Ù¥ c, c1 ´?¿~ê.

2. ¦)êƧ

x′′(t) = −a2 sinx, Ù¥ a2 = g/l.

): - v = x′(t), KlêƧ

v2 = 2a2 cosx− c,

Ù¥ c ´·~ê. k

x′(t) = ±√

2a2 cosx− c, (1.2.30)

= ∫dx√

2a2 cosx− c= ±

∫dt.

>´ýÈ©, Ã^мêL«Ñ5.

|x| 1 , sinx ≈ x. 3êƧ¥^ x O sinx

v2 = −a2x2 + c2,

=

x′(t) = ±√c2 − a2x2.

È©

x = A sin(at+D),

Ù¥ A ´Ì, D ´Ð© . ù´±Ï 2π/a Ä.

28

Page 38: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

1Ù ~©§Ä:£

²L², Ìé (0 < A < π/6) , x = A sin(at + D) O(/£ã¨$

Ä.

Ì, x = A sin(at + D) ãã¨$Ä. I?Úïħ (1.2.30).

du x = A x′ = 0, ¤± c = 2a2 cosA. ü$ıÏ

T (A) = 4

∫ A

0

dx√2a√

cosx− cosA=

2√

2

a

∫ 1

0

Adu√cosAu− cosA

.

?Ú±y²

limA→0

T (A) =2π

a, lim

A→πT (A) =∞.

cö´$ıÏ.

2. "$ê§

F (x, y(k)(x), y(k+1)(x), . . . , y(n)(x)) = 0,

3C z = yk(x) e=z n− k §

F (x, z, z′, . . . , z(n−k)) = 0.

XJ¦Ñù n− k §)

z = φ(x, c1, . . . , cn−k),

ÏL k gÈ©Ò±§).

~K: ¦e§)

1. (y′′′)2 + x2 = 1, 2. x2y′′ = (y′)2.

): 1. - z = y′′′, Kk

z2 + x2 = 1.

Tê§k¹ëê)

z = cos t, x = sin t.

é

y′′′ = z = cos t,

29

Page 39: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

§1.2 ÐÈ©

È©

y = − sin t+ c1t2 + c2t+ c3.

¤±§¹ëê t Ï)

x = sin t, y = − sin t+ c1t2 + c2t+ c3,

Ù¥ c1, c2, c3 ´?¿~ê.

2. - z = y′. §=z

x2z′ = z2.

È©

z =x

1 + cx, Ù¥ c ´?¿~ê.

é§

y′ =x

1 + cx,

驤)

y(x) =

1

2x2 + c1, c = 0,

x

c− 1

c2ln |1 + cx|+ c2, c 6= 0,

Ù¥ c1, c ´?¿~ê.

§1.2.7 Mathematica ¦)~©§

!0XÛ^Mathematica¦)~©§. Mathematica©a.´Math-

ematica Notebook, ©¶´ *.nb. |^ Mathematica '´Æ¬^èü¥ Help e

Find Selected Functions,l¥é¤I$.UìA$KÑ\,2ÏL Shift+Enter

$1O. e¡0Aü~f5`².

~K:

1. ^ Mathematica ¦§

y′ + 5xy = x3,

Ï).

): 1ÚÑ\§

DSolve[y′[x] + 5x y[x] == x∧3, y[x], x]

30

Page 40: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

1Ù ~©§Ä:£

5¿¦Èi1mk.

1ÚU Shift +Enter =ÑÑ(J

y[x]− > 1

25(−2 + 5x2) + e−

5x2

2 C[1]

5¿, Ù¥ C[1] ´?¿~ê. ùÒ§Ï).

2. ¦§

y′′(x) + ay′(x) + by(x) = 3,

Ï).

): 1ÚÑ\§

DSolve[y′′[x] + a y′[x] + b y[x] == 3, y[x], x]

1ÚU Shift +Enter =ÑÑ(J

y[x]− > 3b + e

12 (−a−

√a2−4b)xC[1] + e

12 (−a+

√a2−4b)xC[2]

5¿, Ù¥ C[1], C[2] ´?¿~ê. ùÒ§Ï).

3. ^ Mathematica ¦)ЯK

y′(x) = ay(x), y(0) = 1,

): Ñ\§

DSolve[y′[x] == a y[x], y[0] == 1, y[x], x]

$1ÑÑ(J

y[x]− > eax

4. ¦)ЯK

y′(x) = cosx sec(2y), y(π/4) = 0.

): Ñ\§

DSolve[y′[x] == Cos[x]Sec[2 y[x]], y[Pi/4] == 0, y[x], x]

$1ÑÑ(J

y[x]− > 12ArcSin[2(− 1√

2+ Sin[x])]

5. ¦)©§

(y′(x))2 + y2 = 1.

): Ñ\§

31

Page 41: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

§1.3 SK

DSolve[(y′[x])∧2 + (y[x])∧2 == 1, y[x], x]

$1ÑÑ(J

y[x]− > 1− 2Sin[ 12 (−x− iC[1])]2, y[x]− > 1− 2Sin[ 1

2 (x− iC[1])]2

Ù¥ i ´Jêü . dÑüÏ).

§1.3 SK

1. Ñe~©§ê.

1.

(xyd2y

dx2

)3

+ cos y5 = sec(xy), 2. tan

(dy

dx

)+ x2y2 = 1.

2. y½¼ê´A~©§)½Ï), ½Ð¯K).

2.1. ¼ê y(x) = 12 (x√

1− x2 + arcsinx) ´§(dy

dx

)2

+ x2 = 1,

);

2.2. ¼ê x = φ(t, c1, c2, c3) = c1e−3t + c2e

t cos(2t) + c3et sin(2t), c1, c2, c3 ∈ R ~ê, ´

§

x′′′(t) + x′′(t)− x′(t) + 15x(t) = 0,

3 t ∈ R þÏ);

2.3. ¼ê x = φ(t, c1, c2) = c1e−t + c2te

−t + et

4 + 12 sinx, c1, c2 ∈ R ~ê, ´§

x′′(t) + 2x′(t) + x(t) = et + cos t,

3 t ∈ R þÏ);

2.4. ¼ê

y(x) = e∫ xx0a(s)ds

(y0 +

∫ x

x0

b(t)e−

∫ tx0a(s)ds

dt

).

´Ð¯K

dy

dx= a(x)y + b(x), y(x0) = y0,

3 x ∈ (α, β) þ), Ù¥ a(x), b(x) 3 (α, β) ⊂ R þëY, x0 ∈ (α, β), y0 ∈ R.

32

Page 42: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

1Ù ~©§Ä:£

3. ¼ê f(x, y) 3m« Ω ⊂ R2 þëY, 'u y ÷vÛÜ Lipschitz ^. Áyé?

¿k.48 D ⊂ Ω, f(x, y) 3 D þ'u y ÷v Lipschitz ^, = ∃L > 0 ¦

|f(x, y1)− f(x, y2)| ≤ L|y1 − y2|, ∀ (x, y1), (x, y2) ∈ D.

4. ¼ê f(x, y) 3m« Ω ⊂ R2 þ'u y êëY. Áy f(x, y) 3 Ω þ'u y

÷vÛÜ Lipschitz ^.

5. y²Ð¯K

y′(x) = f(x, y), y(0) = y0, y0 ∈ R ´?¿½~ê,

)Ø3, Ù¥

f(x, y) =

−1, |x| ≥ 1,

(−1)n, 1n+1 ≤ |x| <

1n , n ∈ N,

0, x = 0.

6. ©§ï

6.1. þ m :ë3üཥ:. 5Xê k > 0.

ò:÷X.l¥%, tm¦:$Ä÷v©§.

6.2. &ì1º´^=­¡, ¦l:1 u1å²&ì1º

¤²11åÑ, Á¦&ì1º÷v©§.

6.3. ÓElôHW A :Ñu ué¡W B :Ê1, 3Ê1L§¥

EÞ©ª B :. bà° L, Y6Ý v, E3·YÊ1Ý V

(V > v). Á¦E$1÷v©§.

7. ^©½È©Ïf¦)e§

7.1. (x3 + xy2)dx+ (x2y + y3)dy = 0;

7.2. (y cosx− x sinx)dx+ (y sinx+ x cosx)dy = 0;

7.3. (x2 + y2 − 1)dx− 2xydy = 0;

7.4. 2xy ln ydx+ x2dy = 0;

33

Page 43: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

§1.3 SK

7.5. 2xy ln ydx+ (x2 + y2√

1 + y2)dy = 0;

7.6. 2xy3dx+ (x2y2 − 1)dy = 0;

7.7. y2dx+ (2x2 − xy)dy = 0.

8. y²·K 6.

9. b¼ê P (x, y), Q(x, y), µ1(x, y), µ2(x, y) 3,²¡« Ω þëY. e µ1, µ2 ´

§

P (x, y)dx+Q(x, y)dy = 0, (1.3.1)

3 Ω ¥üÈ©Ïf, µ1/µ2 6=~ê. Áy µ1/µ2 = c (c ~ê)´§ (1.3.1)

ÏÈ©.

10. ¦)e§

10.1. xy′ + 1 = ey;

10.2. y′ sinx sin y − 2 cosx cos3 y = 0;

10.3.∫ x

1

√1 + (y′(s))2ds = 3x

13 + y(x);

10.4. y′(x) = eyx + y

x ;

10.5. y′ + 3x2 =√x3 + y;

10.6. y3dx− 2(xy2 − x2)dy = 0;

10.7. (sinx− 2y + 3) cosxdx+ (2 sinx− 4y − 3)dy = 0;

10.8. y′ = y/(2y ln y + y − x);

10.9. y′ − y tanx = secx, y(0) = 0;

10.10. x2y′ + 2(xy − 3)2 = 0.

11. ѦЯK

y′(x) = yk, y(0) = 0, k ≥ 0

k)¤k k, ¿éù k ¦ÑA).

34

Page 44: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

1Ù ~©§Ä:£

12. b¼ê f(x) 3 R ,mf8þëY, f ′(0) 3, ÷v¼ê§

f(x+ y) = 2f(x)− f(x)f(y).

Áy²¼ê f(x) 3 R þëY, ¿¦¼ê f(x).

13. b¼ê f(x) 3(−π2 ,

π2

)þëY, f ′(0) 3, ÷v¼ê§

f(x+ y) =f(x) + f(y)

1− f(x)f(y).

Á¦¼ê f(x).

14. Áy²·K 8 ¿©5.

15. b¼ê p(x), q(x) 3 R þëY, y1(x), y2(x) ´5©§

y′ + p(x)y = q(x),

3 R þüØÓ). ÁyéuT§3 R þ?) y(x) Ñk

y(x)− y1(x)

y2(x)− y1(x)= c, x ∈ R,

Ù¥ c ´~ê.

16. b¼ê q(x) 3 R þëY, limx→0

q(x) = b, a ∈ R ´~ê. Áy5©§

xy′ + ay = q(x),

(a) a > 0 , k) x→ 0 43,

(b) a < 0 , ¤k) x→ 0 4Ñ3, 4Ó.

17. b¼ê q(x) 3 R þëY, k.. Áy5©§

y′ + y = q(x),

(a) 3 R þkk.), ¿¦ÑT);

(b) XJ q(x) ± ω ±Ï, KTk.)± ω ±Ï.

18. ®¼ê f(x) ÷v ∫ x

0

f(t)

f2(t) + tdt = f(x)− 1.

Á¦¼ê f(x).

35

Page 45: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

§1.3 SK

19. y²§

xy′ − (2x2 + 1)y = x2,

k) x→∞ kk4, ¿¦ù)Ú4.

20. ¦SK 6 ¥ïán§).

21. ¦)eÛª§

21.1. y = 2xy′ + (y′)2;

21.2. y = xy′ + y′ − (y′)2;

21.3. (x2 + 1)(y′)2 = 1;

21.4. (x2 − 4)(y′)2 + 2xyy′ + y2 = 0;

21.5. x√

1 + (y′)2 − y′ = 0;

21.6. (y′)3 − x3(1− y′) = 0;

21.7. y(1 + (y′)2) = 4;

21.8. y2(y′ − 1) = (2− y′)2.

22. ¦)ep©§

22.1. yy′′ + (y′)2 = 1;

22.2. (y′)2 = 1 + yy′′;

22.3. y′′ + (y′)2 = 2e−y;

22.4. y′ = xy′′ + (y′′)2;

22.5. y′′ = 2y′ + x;

22.6. y′′ − ex(y′)2 = 0.

36

Page 46: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

1Ù ©§)35Ú5

~©§Ð¯K)35y²kõ«,õêÖæ^´ Picard

Åg%C. Öò$^Cy²,|^ålm¥Ø Nny²

©§)35(Ø, dk0ùý£.

§2.1 ý£µålmØ Nn

§2.1.1 ålm

3È©¥·ÆL4Ú¼êëY5. ÃØ´?Ø4´ëY5,ÑIkå

l. ¢ê8 R ¥?¿ x, y ålÏ~½Â ρ(x, y) = |x− y|, Ù¥| · |L«R¥:ýé.

é Rn¥?¿ü: x = (x1, . . . , xn), y = (y1, . . . , yn), ρ(x, y) =√

(x1 − y1)2 + . . .+ (xn − yn)2

½Â x y mål. N´y, ¼ê ρ(·, ·) ÷ve5µé ∀x, y, z ∈ Rn k

ρ(x, y) ≥ 0; ρ(x, y) = ρ(y, x); ρ(x, y) ≤ ρ(x, z) + ρ(z, y).

$^ù5±3Ä8Üþ½Âål.

X´?¿8Ü. é∀x, y ∈ X, k¢ê ρ(x, y) éA, ÷v:

1) K5: ρ(x, y) ≥ 0§ρ(x, y) = 0⇐⇒ x = y;

2) é¡5: ρ(x, y) = ρ(y, x);

3) nت: é∀x, y, z ∈ Xk ρ(x, y) ≤ ρ(x, z) + ρ(z, y),

¡ ρ(x, y)x ymål. ¡ (X, ρ)± ρålålm. ±Bå§3ål

®^e§¡X´ålm. XJY ⊂ X§K (Y, ρ)´ålm, ¡X

fm.

~K:- C[a, b]L«½Â3 [a, b]þëY¼êN¤8Ü.é?¿x(t), y(t) ∈ C[a, b],

½Â

ρ(x, y) = maxt∈[a,b]

|x(t)− y(t)|. (2.1.1)

K ρ(x, y)´C[a, b]þål. l C[a, b]´± ρ(x, y)ålålm.

y: N´y ρ÷vål½Â¥K5Úé¡5. e¡y² ρ÷vnت.

37

Page 47: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

§2.1 ý£µålmØ Nn

é∀x(t), y(t), z(t) ∈ C[a, b]k

|x(t)− y(t)| ≤ |x(t)− z(t)|+ |z(t)− y(t)|

≤ maxt∈[a,b]

|x(t)− z(t)|+ maxt∈[a,b]

|z(t)− y(t)| = ρ(x, z) + ρ(z, y).

k ρ(x, y) ≤ ρ(x, z) + ρ(z, y). ùÒy² ρ´C[a, b]þål. l (C[a, b], ρ) ´å

lm.

aquîªmÈ©nØ¥4½Â, ±3ålm¥½Â4Vg.

(X, ρ)´?ålm.

• : xn ⊂ XÂñ, XJ3 z ∈ X§¦é ∀ ε > 0§3N ∈ N, n ≥ Nk

ρ(xn, z) < ε.

d¡: xnÂñ z, ½ z´ xn4. P

limn→∞

xn = z, ½ xn −→ z(n→∞).

• : xn ⊂ X´ Cauchy , XJé ∀ ε > 0, ∃N ∈ N ¦ n,m ≥ Nk

ρ(xn, xm) < ε.

e¡?Øålm¥45.

·K10. (X, ρ)´?ålm, xn ⊂ X´:"

(a) XJ xnÂñ, KÙ4;

(b) XJ xnÂñ, KÙ?¿fS7Âñ;

(c) XJ xnÂñ, KÙ7 Cauchy .

y: (a). z, y´ xn4. Ké∀ ε > 0, ∃N ∈ N, ¦n > Nk

ρ(xn, z) <ε

2, ρ(xn, y) <

ε

2.

é?¿n0 > Nk

ρ(z, y) ≤ ρ(z, xn0) + ρ(xn0

, y) < ε.

38

Page 48: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

1Ù ©§)35Ú5

d ε > 0?¿5 ρ(z, y) = 0§= z = y.

(b)Ú (c). d4½ÂÚ (a)y²N´. SK, ÖögC¤. y..

5µ¯¤±, îªm¥Âñ:=´ Cauchy . 3ålm¥, k~f

L² Cauchy 7Âñ.

ålm¡´, XJ§?¿ Cauchy ÑÂñ.

·K11. ρ ´ (2.1.1) ¥½Â C[a, b] þål, Kålm (C[a, b], ρ) ´.

y: xn ⊂ C[a, b] ´ Cauchy . Ké ∀ ε > 0, ∃N > 0 ¦ m,n > N

ρ(xn, xm) = maxt∈[a,b]

|xn(t)− xm(t)| < ε

2.

AO/k

|xn(t)− xm(t)| < ε

2, t ∈ [a, b].

de¡·K 13, ∃x(t)¦ xn(t) ⇒ x(t). ùp⇒L«Âñ. Ï xn(t) ∈ C[a, b],

de¡·K 14 , x(t) ∈ C[a, b]. ùÒy² C[a, b] ¥?¿ Cauchy ÑÂñ C[a, b]

¥:. Ï C[a, b] . y..

íØ12. K > 0 ´?½~ê. - C = x(t) ∈ C[a, b]; |x(t)| ≤ K, t ∈ [a, b], ρ ´

(2.1.1) ¥½Â C[a, b] þål, K (C, ρ) ´ålm.

·K13. E ⊂ R§fn(t) ´½Â3 E þ¼ê. K3 E þ¼ê f(t) ¦ fn(t) ⇒

f(t) [E] ⇐⇒ é ∀ ε > 0, ∃N > 0 ¦ n,m > N k |fm(t)− fn(t)| < ε, t ∈ E.

y: 75. é ∀ ε > 0. Ï fn(t) ⇒ f(t) [E], ∃N > 0 ¦ n > N

|fn(t)− f(t)| < ε

2, t ∈ E.

n,m > N k

|fm(t)− fn(t)| ≤ |fm(t)− f(t)|+ |f(t)− fn(t)| < ε, t ∈ E.

¿©5. é?¿½ t ∈ E, db fn(t) ⊂ R ´ Cauchy S, l Âñ. PÙ

4 f(t). K f(t) ´ E þ¼ê. ey fn(t) ⇒ f(t) [E].

é ∀ ε > 0. db, ∃N > 0, ¦ n > N , é¤k k ∈ N k

|fn+k(t)− fn(t)| ≤ ε

2, t ∈ E.

39

Page 49: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

§2.1 ý£µålmØ Nn

3þª¥- k →∞

|f(t)− fn(t)| ≤ ε

2< ε, t ∈ E.

= fn(t) ⇒ f(t) [E]. y..

·K14. fn(t) ⊂ C(E), fn(t) ⇒ f(t) [E]. K f(t) ∈ C(E).

y: é ∀ t0 ∈ E, ∀ ε > 0. du fn(t) ⇒ f(t) [E], ∃N > 0, ¦ n > N ,

|fn(t)− f(t)| < ε

3, t ∈ E.

Ï fN+1(t) 3 E þëY, ∃ δ > 0 ¦ t ∈ E |t− t0| < δ

|fN+1(t)− fN+1(t0)| < ε

3.

l |t− t0| < δ

|f(t)− f(t0)| ≤ |f(t)− fN+1(t)|+ |fN+1(t)− fN+1(t0)|+ |fN+1(t0)− f(t0)| < ε.

ùÒy² f(t) 3 t0 ëY. d t0 ∈ E ?¿5, f(t) ∈ C(E). y..

N5:

1) 3 C[a, b] þ½Â

ρ∗(x, y) =

∫ b

a

|x(t)− y(t)|dt, ∀x(t), y(t) ∈ C[a, b],

K ρ∗ ´ C[a, b] þål. C[a, b] 3ål ρ∗ eØ´.

2) Ω ⊂ Rn ´k.4«. 3 C(Ω) þ½Â

ρ(y1, y2) = maxx∈Ω|y1(x)− y2(x)|, ∀ y1, y2,∈ C(Ω).

K (C(Ω), ρ) ´ålm.

§2.1.2 Ø Nn

Ø Nn3yêƯõ©|¥åX­^. e!ò^Ø Nny²

©§)35.

(X, ρ) ´ålm, T : X → X ´N.

40

Page 50: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

1Ù ©§)35Ú5

• e ∃α ∈ [0, 1) ¦é ∀x, y ∈ X k

ρ(Tx, Ty) ≤ αρ(x, y),

¡ T ´ X þØ N, α Ø ~ê.

• e ∃x0 ∈ X ¦ Tx0 = x0, ¡ x0 ´ T ØÄ:.

·K15. ålmþØ N´ëY"

y: öSdÖögC¤.

e¡Ø Nn, q¡ Banach ØÄ:½n, ´ålmnØ¥­óä.

§´d Stefan Banach (1892õ1945,Å=êÆ[,y¼©ÛCÄ<)u 1922cÑ.

½n16. (Ø Nn) X ´ålm, T : X → X ´Ø N. K3

z ∈ X ¦ Tz = z, = T 3 X ¥kØÄ:.

y: α ´Ø N T Ø ~ê. Äky²ØÄ:35.

é ∀x0 ∈ X, -

xn = Tnx0 = T (Tn−1x0).

K xn ⊂ X ´ Cauchy . ¯¢þ, é ∀ ε > 0, N > 0 ¦

αN

1− αρ(x1, x0) < ε.

é ∀m ∈ N k

ρ(xm+1, xm) = ρ(Txm, Txm−1) ≤ αρ(xm, xm−1) = αρ(Txm−1, Txm−2)

≤ α2ρ(xm−1, xm−2) ≤ . . . ≤ αmρ(x1, x0).

n,m > N£Ø n > m¤

ρ(xm, xn) ≤ ρ(xm, xm+1) + ρ(xm+1, xm+2) + . . .+ ρ(xn−1, xn)

≤(αm + αm+1 + . . .+ αn−1

)ρ(x1, x0)

= αm1− αn−m

1− αρ(x1, x0) ≤ αm

1− αρ(x1, x0) < ε.

ùÒy² xn ´ X ¥ Cauchy .

41

Page 51: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

§2.2 )35: Picard ½n

Ï X , ∃ z ∈ X ¦ xn → z. d xn = Txn−1 Ú T ëY5 Tz = z, = z ´

T ØÄ:.

5. y ∈ X ´ T ØÄ:, = Ty = y. K

ρ(y, z) = ρ(Ty, Tz) ≤ αρ(y, z).

Ï α < 1, ¤± ρ(y, z) = 0, = y = z. ùÒy²ØÄ:5.

N5µ½ny²Jø¦ålm X ¥Ø N T ØÄ:CqOÚØ

O. z ´ T ØÄ:, Ké ∀x0 ∈ X k

ρ(z, Tmx0) ≤ αm

1− αρ(Tx0, x0).

íØ17. (X, ρ) ´ålm. éN T : X → X, e3 α ∈ [0, 1) 9 n ∈ N ¦é

∀x, y ∈ X k

ρ(Tnx, Tny) ≤ αρ(x, y).

K T 3 X þ3ØÄ:.

y: öSÖögC¤.

N5µ'uØÄ:½nkéõ´LSN,Öö±3٧ƥºYÆ,ë [14, 49,

59].

§2.2 )35: Picard ½n

!$^Ø Nny²©§Ð¯K)35.

½n18. (Picard½n) f(x, y) 3 R2 ,m« Ω þëY, 'u y ÷vÛÜ Lipschitz

^. Ké ∀ (x0, y0) ∈ Ω, ©§Ð¯K:

dy

dx= f(x, y), y(x0) = y0, (2.2.1)

kL (x0, y0) ØòÿëY).

y: ´Ð¯K (2.2.1) duÈ©§

y(x) = y0 +

∫ x

x0

f(t, y(t))dt. (2.2.2)

42

Page 52: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

1Ù ©§)35Ú5

Äky²È©§ (2.2.2) k½Â3 x0 ,þ).

Ý/«

R := (x, y); |x− x0| ≤ a, |y − y0| ≤ b ⊂ Ω,

Ù¥ a, b > 0. -

M = max(x,y)∈R

|f(x, y)|,

L ´ f(x, y) 3 R þ Lipschitz ~ê, =

|f(x, y1)− f(x, y2)| ≤ L|y1 − y2|, ∀ (x, y1), (x, y2) ∈ R.

δ ∈(0, min 1

L , a,bM ). Äålm (C, ρ), Ù¥

C = y(x) ∈ C[x0 − δ, x0 + δ]; |y(x)− y0| ≤ b.

½ÂN

(Ty)(x) = y0 +

∫ x

x0

f(t, y(t))dt, y(x) ∈ C.

K T ´ C þØ N. ¯¢þ, é ∀ y(x) ∈ C k (x, y(x)) ∈ R, x ∈ [x0 − δ, x0 + δ], ¤±d

y(x) Ú f(x, y) ëY5 (Ty)(x) ∈ C. qé ∀ y1(x), y2(x) ∈ C k

ρ(Ty1, T y2) = maxx∈[x0−δ,x0+δ]

∣∣∣∣∫ x

x0

(f(t, y1(t))− f(t, y2(t))) dt

∣∣∣∣≤ max

x∈[x0−δ,x0+δ]

∣∣∣∣∫ x

x0

|f(t, y1(t))− f(t, y2(t))| dt∣∣∣∣

≤ maxx∈[x0−δ,x0+δ]

∣∣∣∣∫ x

x0

L |y1(t)− y2(t)| dt∣∣∣∣

≤ L maxt∈[x0−δ,x0+δ]

|y1(t)− y2(t)| |x− x0| ≤ Lδρ(y1, y2).

T ´ C þØ N.

díØ 12 , C ´. ¤±dØ Nn, T 3 C þ3ØÄ:, P

φ0(x). =

φ0(x) = Tφ0(x) = y0 +

∫ x

x0

f(t, φ0(t))dt.

dþª, φ0(x) 3 [x0 − δ, x0 + δ] þëY. l φ0(x) ´Ð¯K (2.2.1) 3 [x0 −

δ, x0 + δ] þ).

Ùgy²þ¡Ð¯K (2.2.1) ÛÜ) φ0(x) ±òÿ3«mþ.

43

Page 53: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

§2.2 )35: Picard ½n

Ï Ω ´m«, ¤± (x1, φ0(x1)) ∈ Ω, Ù¥ x1 = x0 + δ ½ x1 = x0 − δ. A^þã

ÓyЯK

y′(x) = f(x, y(x)), y(x1) = φ0(x1),

3,«m [x1 − δ1, x1 + δ1] k), P φ1(x), Ù¥ δ1 > 0.

dЯKÛÜ)5 φ0(x) = φ1(x), x ∈ [x0 − δ, x0 + δ] ∩ [x1 − δ1, x1 + δ1]. -

φ1(x) =

φ0(x), x ∈ [x0 − δ, x0 + δ],

φ1(x), x ∈ [x1 − δ1, x1 + δ1].

K φ1(x) ´Ð¯K (2.2.1) ½Â3 [x0 − δ, x0 + δ] ∪ [x1 − δ1, x1 + δ1] þ).

­EþãL§±Ð¯K (2.2.1) 3) y = φ(x), x ∈ J , Ù¥ J ´

3«m. y..

N5:

1) Picard ½n¥« Ω ´XÛ(½? 5`¼ê f(x, y) Ѵмê, Ï Ω

Ò´¼ê f k½Â«.

2) ½Â3m« Ω þ©§²LÙ¥?:)3«mÑ´m«m. vk

½ny3«m. ~X©§

y′ = sec2 x,

Ï)´ y = tanx+ c. §?)3«mÝÑ´ π. ©§

y′ =1

1 + x2,

Ï)´ y = arctanx+ c. §?)3«mÑ´ R.

3) y = φ(x) ´Ð¯K (2.2.1) ), J = (α, β) ´T)3«m, K x → β− Ú

x→ α+ , (x, φ(x)) Ѫu«>. ∂Ω.

5¿: x→ β− ½ x→ α+ , φ(x) 4UØ3. ~X©§

y′ = − 1

x2cos

1

x,

½Â Ω = (R \ x = 0)× R. §)

y = sin1

x,

44

Page 54: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

1Ù ©§)35Ú5

½Â3 (−∞, 0) ½ (0,∞) þ. x→ 0 , T)4Ø3.

4) Picard ½n²;y²´ÏLE Picard Sµ

φ0(x) = y0, x ∈ [x0 − δ, x0 + δ]

φ1(x) = y0 +∫ xx0f(t, φ0(s))ds, x ∈ [x0 − δ, x0 + δ]

φn(x) = y0 +∫ xx0f(t, φn−1(s))ds, n = 2, 3, . . . , x ∈ [x0 − δ, x0 + δ],

¿y² PicardS3 [x0− δ, x0 + δ]þÂñ55y²Ð¯K (2.2.1))

35Ú5. ë [16, 53, 55, 56].

4) ½n 18ÑЯK)3¿©^.,kéõ'u Picard½ní2,

3Ù§f^ey²Ð¯K (2.2.1))35. ë [13, 16, 24, 26].

§2.3 )35µPeano ½n

þ!Ñ~©§Ð¯K)3Ú5^. !òy²ëY5=y

©§Ð¯K)35. dkO.

!Arzela–Ascoli Ún

¼ê fn(x), x ∈ I ⊂ R ¡3 I þ

• k., XJ ∃K > 0 ¦é¤k n ∈ N, x ∈ I Ñk |fn(x)| ≤ K;

• ÝëY,XJé ∀ ε > 0Ñ ∃ δ > 0¦é¤k n ∈ N, x1, x2 ∈ I, |x1−x2| < δ

Òk |fn(x1)− fn(x2)| ≤ ε.

e¡(JѼê3Âñf¿©^.

Arzela–AscoliÚn. XJ¼ê fn(x)3k.48 I þk.!ÝëY,K fn(x)

kf3 I þÂñ.

Arzela–Ascoli Úny²A3z¼©ÛÖÑk (ë [59]), y²Ñ

´3Äm¥Ñ. ÖöBÖN¹ §6.1 ÑÐy².

N5:

1) Arzela–Ascoli Ún¥k.48 I ¤km«m, (ØE,¤á.

45

Page 55: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

§2.3 )35µPeano ½n

2) Arzela–Ascoli Ún¥k.48 I ¤Ã¡«m, (Ø7¤á.

!)35: Peano ½n

½n19. f(x, y) 3m« Ω ⊂ R2 þëY, (x0, y0) ∈ Ω. KЯK (2.2.1) k

½Â33«mþëY).

y: l½n 18 y², IyЯK (2.2.1) 3 x0 ,S3ëY)=.

R := (x, y); |x− x0| ≤ a, |y − y0| ≤ b ⊂ Ω,

Ù¥ a, b > 0. -

M = max(x,y)∈R

|f(x, y)|, δ = min

a,

b

M

, I = [x0, x0 + δ].

XJ M = 0, = f(x, y) ≡ 0, (x, y) ∈ R, K y(x) = y0, x ∈ (x0− a, x0 + a), ´Ð¯K (2.2.1)

).

±eb M > 0. yЯK (2.2.1)3 I þ)35 (3 [x0− δ, x0] þ)

35aqy, lÑ).

1. 3 I þE Euler òS.

éz n, ò I ©¤ n °, P©: x0, x1, . . . , xn, Ù¥ xi < xj , 0 ≤ i < j ≤ n. 3

I þE Euler òXe: L (x0, y0) ã

ψ1(x) = y0 + f(x0, y0)(x− x0), x ∈ [x0, x1].

- y1 = ψ1(x1). L (x1, y1) ã

ψ2(x) = y1 + f(x1, y1)(x− x1), x ∈ [x1, x2].

d, 3z«m [xi, xi+1] þEã

ψi+1(x) = yi + f(xi, yi)(x− xi), x ∈ [xi, xi+1], yi = ψi(xi).

P γn ùã¿, ¡ I þ Euler ò.

2. Euler òLª.

46

Page 56: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

1Ù ©§)35Ú5

P φn(x), x ∈ I Euler òLª, K

φn(x) = y0 +

∫ x

x0

f(t, φn(t))dt+ σn(x), x ∈ I, (2.3.1)

Ù¥3 Iþ σn(x) ⇒ 0 (n→∞). ¯¢þ,é ∀x ∈ I, ∃ s ∈ 0, 1, . . . , n−1¦ x ∈ (xs, xs+1],

l

φn(x) = y0 +

s−1∑k=0

f(xk, yk)(xk+1 − xk) + f(xs, ys)(x− xs).

Ï

f(xk, yk)(xk+1 − xk) =

∫ xk+1

xk

f(t, φn(t))dt+

∫ xk+1

xk

(f(xk, yk)− f(t, φn(t)))dt,

f(xs, ys)(x− xs) =

∫ x

xs

f(t, φn(t))dt+

∫ x

xs

(f(xs, ys)− f(t, φn(t)))dt,

¤±

σn(x) =s−1∑k=0

rn(k) + r∗n(k),

Ù¥

rn(k) =

∫ xk+1

xk

(f(xk, yk)− f(t, φn(t)))dt,

r∗n(s) =

∫ x

xs

(f(xs, ys)− f(t, φn(t)))dt, x ∈ (xs, xs+1].

ey σn(x) ⇒ 0, x ∈ I. Ï f 3 R þëY (f ´k.48 R þëY¼ê),

x ∈ [xk, xk+1] k

|x− xk| ≤δ

n, |φn(x)− yk| = |f(xk, yk)(x− xk)| ≤M(x− xk) ≤ Mδ

n,

¤±é ∀ k ∈ 0, 1, . . . , n− 1, ∀ ε > 0 Ñ ∃N > 0 ¦ n > N k

|f(xk, yk)− f(x, φn(x))| < ε

δ, x ∈ [xk, xk+1].

|rn(k)| <∫ xk+1

xk

ε

δdx =

ε

n, |r∗n(k)| <

∫ x

xs

ε

δdx ≤ ε

n, x ∈ (xs, xs+1].

l k |σn(x)| < ε, x ∈ I, = σn(x) ⇒ 0.

3. ¼êS φn(x) 3 I þk.ÝëY.

â Euler òEk γn ⊂ R, ¤± |φn(x) − y0| ≤ b, = |φn(x)| ≤ |y0| + b. l

φn(x) 3 I þk..

47

Page 57: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

§2.3 )35µPeano ½n

eyÝëY. é ∀ ε > 0, δ = εM . é ∀ s, t ∈ I, ∀n ∈ N, Ïë: (s, φn(s)) Ú

(t, φn(t)) Ç0u −M Ú M m, ¤± |s− t| < δ Òk

|φn(s)− φn(t)| ≤M |s− t| < ε,

= φn(x) 3 I þÝëY.

4. 35y².

d Arzela–AscoliÚn,¼ê φn(x)3 I þ3Âñf,P φnk(x). -

φ(x) ´f4.

d (2.3.1) , φnk(x) ÷v

φnk(x) = y0 +

∫ x

x0

f(t, φnk(t))dt+ σnk(x), x ∈ I.

éþª- k →∞

φ(x) = y0 +

∫ x

x0

f(t, φ(t))dt, x ∈ I.

ùÒy² y = φ(x) ´Ð¯K (2.2.1) 3 I þ). y..

N5:

• éu½n 19 y²¥½ δ Ú I, ±9 I n + 1 ©: x0, x1, . . . , xn. E

¼êS φn(x) Xeµ

φn(x) =

yn0(x) := y0, x ∈ [x0, x1],

yn1(x) := y0 +∫ x− δ

n

x0f(s, yn0(s))ds, x ∈ (x1, x2],

yn2(x) := y0 +∫ x1

x0f(s, yn0(s))ds+

∫ x− δn

x1f(s, yn1(s))ds, x ∈ (x2, x3],

......

yn,n−1(x) := y0 +n−3∑i=0

∫ xi+1

xif(s, yni(s))ds

+∫ x− δ

n

xn−2f(s, yn,n−2(s))ds, x ∈ (xn−1, xn].

TS¡ Tonelli S. |^TSÚ Arzela–Ascoli Ún±y²½n 19.

• Peano ½nkéõ?Úí2, ë [20, 23] 9Ù¥ë©z.

3 Picard½nÚ Peano½n¥Ñ`²)½Â33«mþ. éuäN

§(½§)3«m¿ØN´.

48

Page 58: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

1Ù ©§)35Ú5

~K:

1. y²§

y′ = (1− y2)ex2+y2 ,

z)3«mѴá«m.

): ϧmà¼ê f(x, y) = (1 − y2)ex2+y2 3 R2 þëY, Ïd§l R2 ¥?

:Ñu)Ñ3.

Äk´ y = φ0(x) := ±1 ´§). w,ùü)3«mÑ´ R. ?Ú/k

limx→±∞

φ0(x) = ±1.

é ∀ (x0, y0) ∈ R2 \ y = ±1, P y = φ(x) ´§L (x0, y0) ), )3«m´

J = (a, b). d)5, φ(x) φ0(x) 3 J þØ.

e¡Ò (x0, y0) ¤3ØÓ«©O?Ø.

(a) −1 < y0 < 1. Ï f(x, y) > 0, ¤±ok φ′(x) > 0, x ∈ J . Ï φ(x) 3 J þüNOk

.. -

limx→b−

φ(x) = β ≤ 1, limx→a+

φ(x) = α ≥ −1.

ey a = −∞, b =∞. é b =∞ ¹±y². a = −∞ ¹±aq/y²,

lÑ. y, b b < ∞. d)5, (b, β) 6∈ y = 1. Ï L (b, β) §k½Â3

,«m [b, b + σ) (σ > 0) þ), = φ(x) ½Â3 (a, b + σ) þ, J ´3«mgñ.

¤± φ(x) 3«m´ (−∞,∞).

?Ú/y β = 1, α = −1. Ï limx→∞

φ(x) = β, ¤± limx→∞

φ′(x) = 0 (ùd

L’Hospital KN´y). ò φ(x) \§¿- x → ∞ β = 1. Óny

α = −1.

(b) y0 > 1. Ï f(x, y) < 0,¤±ok φ′(x) < 0, x ∈ J . Ï φ(x)3 J þüN~ek.. Ó

þy² φ(x) m3«m [x0,∞), limx→∞

φ(x) = 1.

(c) y0 < −1. Ï f(x, y) < 0, ¤±ok φ′(x) < 0, x ∈ J . Ï φ(x) 3 J þüN~þk..

Óþy² φ(x) 3«m (−∞, x0], limx→−∞

φ(x) = −1.

y..

49

Page 59: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

§2.4 )éÐÚëêëY65

§2.4 )éÐÚëêëY65

½©§ ¹këê,@o©§)Ùëêm'XXÛ?)qXÛ

6uЩ^? kwü~f. ЯK:

dx

dt= ax, x(t0) = x0,

) x(t) = x0ea(t−t0). §Ø=´gCþ t ¼ê, ´§ëê a ÚЩ^

(t0, x0) ¼ê. Ï)´§ëêÚЩ^¼ê, ±r) x(t) ¤ x(t, t0, x0, a).

ĹëꩧЯK:

dy

dx= f(x, y, λ), y(x0) = y0, (2.4.1)

Ù¥ λ ∈ K ⊂ Rm ´ m ëê. - t = x− x0, u = y − y0, KþãЯK=z

du

dt= f(t+ x0, u+ y0, λ), u(0) = 0.

=ЯK (2.4.1) Щ^=z¤#XÚëê. ÏdØ5, e¡Ä¹ë

êЯK:

dy

dx= f(x, y, λ), y(0) = 0. (2.4.2)

½n20. f(x, y, λ) 3« Ω×Λ ⊂ R2 ×Rm þëY, 'u y ÷vÛÜ Lipschitz ^,

=é ∀Z0 = (x0, y0, λ0) ∈ Ω× Λ, 3 Z0 3 Ω× Λ ¥ UZ0, 9~ê LZ0

¦

|f(x, y1, λ)− f(x, y2, λ)| ≤ LZ0 |y1 − y2|, ∀ (x, y1, λ), (x, y2, λ) ∈ UZ0 .

XJ (0, 0) ∈ Ω, KЯK (2.4.2) k), P y = φ(x, λ), φ(x, λ) 'uÙCþë

Y.

y: l½n 18 y², IyЯK (2.4.2) 3 x = 0 3). duëY´Û

Ü5, IyЯK)3 Λ ?:ëY=.

? λ0 ∈ Λ, 9± λ0 ¥%4¥ C0 ⊂ Λ. -

R = (x, y); |x| ≤ a, |y| ≤ b ⊂ Ω, M = maxR×C0

|f(x, y, λ)|.

db, f(x, y, λ) 3 R× C0 þk Lipschitz ~ê, P L.

50

Page 60: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

1Ù ©§)35Ú5

δ ∈(0, min 1

L , a,bM ), I = [−δ, δ]. -

C = y(x, λ) ∈ C(I × C0); |y(x, λ)| ≤ b.

3 C þ½Âål

ρ(y1, y2) = max(x,λ)∈I×C0

|y1(x, λ)− y2(x, λ)|, ∀ y1, y2 ∈ C.

Kaqu·K 11 y² (C, ρ) ´ålm.

duЯK (2.4.2) duÈ©§

y(x, λ) =

∫ x

0

f(t, y(t, λ), λ)dt. (2.4.3)

½ÂN

(Ty)(x, λ) =

∫ x

0

f(t, y(t, λ), λ)dt, y(x, λ) ∈ C.

Kaqu½n 18 y²y, T ´ C þØ N. l dØ Nn, T 3 C þ

3ØÄ:, =ЯK (2.4.2) k) y = φ(x, λ), 3 I × C0 þëY.

aqu½n 18 y²Ð¯K (2.4.2) )½Â33«mþ, P J , T

)3 J × C0 þëY. y..

§2.5 SK

1. y²·K 10 5 (b) Ú (c).

2. b > 0, a, α, β (α < β) ´?¿½~ê. -

C = y(x) ∈ C[α, β]; |y(x)− a| ≤ b,

ρ ´ C þål, =

ρ(x, y) = maxt∈[α,β]

|x(t)− y(t)|, ∀x(t), y(t) ∈ C.

K (C, ρ) ´ålm.

3. y²íØ 12.

51

Page 61: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

§2.5 SK

4. Ω ⊂ Rn ´k.4«, b > 0. -

C = y(x) ∈ C(Ω); |y(x)| ≤ b.

3 C þ½Â

ρ(y1, y2) = maxx∈Ω|y1(x)− y2(x)|, ∀ y1, y2 ∈ C.

K (C, ρ) ´ålm.

5. y²·K 15.

6. y²íØ 17.

7. y²½n 18 N5 2).

8. |^½n 18 N5 3) ¥ Picard Sy²½n 18.

9. |^Ø NnÚ½n 18 y²ÏL·Ð©¼êEЯK

y′(x) = y2 + x2, y(0) = 1,

3 Cq) (|^Ø Nn¥SECq)).

10. y² Arzela–Ascoli ÚnN5 1) Ú 2).

11. |^ Arzela–Ascoli ÚnÚ½n 19 N5¥ Tonelli Sy²½n 19.

12. b¼ê f(x, y), F (x, y) 3« Ω ⊂ R2 þëY,

f(x, y) < F (x, y), (x, y) ∈ Ω.

e φ(x), Φ(x) ©O´§

y′ = f(x, y), y′ = F (x, y),

LÓ: (x0, y0) ∈ Ω ), K3§Ó3«mþk

φ(x) < Φ(x), x > x0; φ(x) > Φ(x), x < x0.

52

Page 62: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

1Ù ©§)35Ú5

13. δ ∈ Q, ?ØЯK

dy

dx=

0, y = 0,

y lnδ |y|, y 6= 0,y(0) = 0,

δ > 0 Ûk).

14. ?Øe§¤k)3«mµ

14.1. y′ = y2;

14.2. y′ = x2 + y2;

14.3. y′ = 1/(x2 + y2)

53

Page 63: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

1nÙ p©§Ú§|)nØ

1Ù?Ø~©§)3Ú5, ±9)'uÐÚëêëY6

5. Ù=©§|Úp©§.

§3.1 p©§Ú§|: )5

Ĺëê n ©§Ð¯K

y(n)(x) = f(x, y, y′, . . . , y(n−1)(x), λ

), (3.1.1)

y(x0) = y0, y′(x0) = y1, . . . , y

(n−1)(x0) = yn−1, (3.1.2)

Ù¥ λ ´ m ëê, x0, y0, y1, . . . , yn−1 ´¢~ê. C

z1 = y(x), z2 = y′(x), . . . , zn = y(n−1)(x).

-

z =

z1

z2

...

zn−1

zn

, z0 =

y0

y1

...

yn−2

yn−1

, f =

z2

z3

...

zn

f(x, z, λ)

.

K n ©§Ð¯K (3.1.1) =z¤ n ©§|ЯK

z′(x) = f(x, z, λ), (3.1.3)

z(x0) = z0. (3.1.4)

l§ (3.1.1) Ú (3.1.3) m'X, N´Xe(Ø.

·K21. éup©§ (3.1.1) Ú©§| (3.1.3) ), e(ؤáµ

a) y = φ(x) ´p§ (3.1.1) ÷vЩ^ (3.1.2) ½Â3,«m J þ)=

z(x) = (φ(x), φ′(x), . . . , φ(n−1)(x))T ,

´§| (3.1.3) ÷vЩ^ (3.1.4) ½Â3 J þ), Ù¥ T L«Ý=.

54

Page 64: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

§3.1 p©§Ú§|: )5

b) y1 = φ1(x), . . . , yn = φn(x) ´p§ (3.1.1) 3,«m J þ5Ã')=

z1(x) = (φ1(x), φ′1(x), . . . , φ(n−1)1 (x))T , . . . , zn(x) = (φn(x), φ′n(x), . . . , φ

(n−1)n (x))T ´

§| (3.1.3) 3 J þ5Ã').

d·K 21, e¡ØüÕ?Øp§Ð¯K)nØ, ?ا|)nØ.

aquXþ§, §|ЯKЩ^±=z§|ëê. Ø5,

Ĺëê n ©§|ЯK

y′ = f(x,y, λ), y(0) = 0, (3.1.5)

Ù¥ (x,y) ∈ Ω ⊂ R1+n, λ ∈ Λ ⊂ Rm, Ω, Λ Ñ´m«.

PÒüå, e¡^ fy L« n þ¼ê f 'u n Cþ y Jacobi Ý.

aq/·^PÒ fλ.

½n22. f(x,y, λ), fy ∈ C(Ω × Λ). KЯK (3.1.5) k), P y = φ(x, λ),

(x, λ) ∈ J × Λ, Ù¥ J ´)3«m. ?Ú/, φ(x, λ) 'uÙCþëY.

y: y²aquXþ§, öSÖögC¤.

þã(Ø)û©§|ЯK)'ugCþ!ëêÚЩ^ëY65.

e¡?Ú?ØЯK (3.1.5) )'uÙCþëY5.

½n23. f(x,y, λ), fy, fλ ∈ C(Ω×Λ). KЯK (3.1.5) ), P y = φ(x, λ), '

uÙCþëY.

y: duЯK (3.1.5) ) φ(x, λ) ÷vÈ©§

φ(x, λ) =

∫ x

0

f(s, φ(s, λ), λ)ds, (3.1.6)

φ(x, λ) 'uÙCþëY, ¤± φx(x, λ) 'uÙCþëY.

du´ÛÜ5, ¤±Iy² φ(x, λ)3 Λ¥?: λ0 ,SëY.

duÄ φ 'uÙCþ λ êëY5, PÒüå, Øb λ ´üCþ. P

∆λ0 = λ− λ0. lÈ©§ (3.1.6)

φ(x, λ)− φ(x, λ0)

∆λ0=

∫ x

0

f(s, φ(s, λ), λ)− f(s, φ(s, λ0), λ0)

∆λ0ds (3.1.7)

=

∫ x

0

[(fy[s] + r1(s, λ, λ0))

φ(s, λ)− φ(s, λ0)

∆λ0+ fλ[s] + r2(s, λ, λ0)

]ds,

55

Page 65: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

1nÙ p©§Ú§|)nØ

Ù¥ [s] = (s, φ(s, λ0), λ0), r1 Ú r2 'uÙCþëY,

lim∆λ0→0

r1(s, λ, λ0) = 0, lim∆λ0→0

r2(s, λ, λ0) = 0.

P

z(x, λ, λ0) =φ(x, λ)− φ(x, λ0)

∆λ0.

Kk

dz(x, λ, λ0)

dx= (fy[x] + r1(x, λ, λ0)) z(x, λ, λ0) + fλ[x] + r2(x, λ, λ0), z(0, λ, λ0) = 0. (3.1.8)

Ï fy[x], fλ[x] 'uÙCþëY, ¤±d½n 22 , ЯK (3.1.8) ) z(x, λ, λ0) '

uÙCþëY. 4

lim∆λ0→0

φ(x, λ)− φ(x, λ0)

∆λ0= limλ→λ0

z(x, λ, λ0)∃,

= ê φλ(x, λ0) 3. d λ0 À?¿5, ê φλ(x, λ), λ ∈ Λ, 3.

é§ (3.1.7) 4 λ→ λ0 ,

φλ(x, λ0) =

∫ x

0

fy(s, φ(s, λ0), λ0)φλ(s, λ0) + fλ(s, φ(s, λ0), λ0)ds. (3.1.9)

Ïd^ λ O λ0, È©§ (3.1.9) duЯK

dφλ(x, λ)

dx= fy(x, φ(x, λ), λ)φλ(x, λ) + fλ(x, φ(x, λ), λ), φλ(0, λ) = 0. (3.1.10)

d φ(x, λ) ëY5Ú½n 22 φλ(x, λ) 'uÙCþëY. y..

aqu½n 23 y²Xe(Ø

íØ24. éuw¹Ð©^ЯK

y′ = f(x,y, λ), y(x0) = y0. (3.1.11)

b f(x,y, λ), fy ∈ C(Ω× Λ), y = φ(x, λ, x0,y0) ´ (3.1.11) ). K

(a) φ 'u x0 ê φx0´Ð¯K

dz

dx= fy(x, φ(x, λ, x0,y0), λ)z, z(x0) = −f(x0,y0, λ). (3.1.12)

). Ï φ(x, λ, x0,y0) 'u x0 këY ê.

56

Page 66: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

§3.2 )Û©§)nØ

(b) φ 'u y0 ê (O(/` Jacobi Ý) φy0´ÝЯK

dZ

dx= fy(x, φ(x, λ, x0,y0), λ)Z, Z(x0) = E. (3.1.13)

). Ï φ(x, λ, x0,y0) 'u y0 këY ê.

yµöS, ÖögC¤. J«: ЯK (3.1.12) Ú (3.1.13) ¥Ð©^dé

φ(x, λ, x0,y0)− y0 =

∫ x

x0

f(s, φ(s, λ, x0,y0), λ)ds,

'u x0 Ú y0 ©O¦ ê, 2- x = x0 .

N5: 5©§ (3.1.10), (3.1.12) Ú (3.1.13) ©O¡§ (3.1.5) 'uëê λ, Щ

x0 Ú y0 C©§. C©§3©§)5ïÄ¡åX~­^.

~K: b f(x, y) ∈ C1(Ω), Ω ⊂ R2 ´m«. e φ(x, x0, y0), x ∈ J ´Ð¯K

y′ = f(x, y), y(x0) = y0,

), K

∂φ(x, x0, y0)

∂x0+ f(x0, y0)

∂φ(x, x0, y0)

∂y0≡ 0, x ∈ J.

yµdíØ 24 ,∂φ(x, x0, y0)

∂x0Ú

∂φ(x, x0, y0)

∂y0©O÷vЯK

dz

dx= fy(x, φ(x, x0, y0))z, z(x0) = −f(x0, y0),

Ú

dz

dx= fy(x, φ(x, x0, y0))z, z(x0) = 1.

¦)ü5©§Ð¯K

∂φ(x, x0, y0)

∂x0= −f(x0, y0)e

∫ xx0fy(s,φ(s,x0,y0))ds

,

∂φ(x, x0, y0)

∂y0= e

∫ xx0fy(s,φ(s,x0,y0))ds

.

|^ùüª=(Ø. y..

½n 23 )û~©§)'uÙgCþ!ëê9Щ^ëY5.

, ·ke¡(Ø, Ùy²lÑ.

½n25. f(x,y, λ) ∈ Ck(Ω× Λ), k ∈ N ∪ ∞. KЯK (3.1.5) )'ugCþ x Ú

ëê λ Ñ´Ck ëY.

57

Page 67: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

1nÙ p©§Ú§|)nØ

§3.2 )Û©§)Û)

þ!?Ø1w©§1w)35. !?Ø)Û©§)Û)35.

éu n þ y Ú y0, e¡ò©O^ yi Ú yi0 L«§1 i ©þ.

¼ê f(x,y)3« Ω ⊂ R1+nS)Û,XJé ∀ (x0,y0) ∈ Ω, ∃α > 0, β > 0¦ f(x,y)

3

D := (x,y); |x− x0| ≤ α, |yi − yi0| ≤ β, i = 1, . . . , n ⊂ Ω,

S±Ðm¤ x− x0, y − y0 Âñ?ê

f(x,y) =

∞∑i,|j|=0

aij(x− x0)i(y − y0)j,

Ù¥ (y − y0)j = (y1 − y10)j1 · · · (yn − yn0)jn , |j| = j1 + . . .+ jn.

½?ê

∞∑i,|j|=0

aij(x− x0)i(y − y0)j, (3.2.1)

∞∑i,|j|=0

Aij(x− x0)i(y − y0)j, (3.2.2)

• XJ |aij| ≤ Aij, ¡ (3.2.2) ´ (3.2.1) `?ê;

• XJ (3.2.2)´ (3.2.1)`?ê, (3.2.2)3 DSÂñ,PÚ¼ê F (x,y),¡ F (x,y)

´ (3.2.1) 3 D S`¼ê.

e¡Ä)Û©§Ð¯K)Û)35. duЩ^o±ÏLC=z

§¥, Ø5·Ä)Û©§lI:Ñu).

½n26. fi(x,y), i = 1, . . . , n, 3 D SФÂñ?ê. KЯK

yi = fi(x,y), yi(0) = 0, i = 1, . . . , n, (3.2.3)

3 (0,0) ,SkÂñ?ê), Ù¥ 0 L« n "þ.

y: 1. y²é?¿ 0 < a < α, 0 < b < β, 73 M > 0 ¦

G(x,y) =M(

1− xa

) (1− y1

b

). . .(1− yn

b

) ,58

Page 68: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

§3.2 )Û©§)nØ

´ fi(x,y), i = 1, . . . , n, 3

D0 = (x,y); |x| ≤ a, |yi| ≤ b, i = 1, . . . , n ⊂ D,

þ`¼ê. ¯¢þ, db

fi(x,y) =

∞∑k0+|k|=0

a(i)k0k

xk0yk, i = 1, . . . , n, (3.2.4)

3 D þÂñ. ¤±∞∑

k0+|k|=0

∣∣∣a(i)k0k

∣∣∣ ak0bk1 . . . bkn , i = 1, . . . , n,

Âñ. - M ù n þ. Ké¤k k0,k Ú i Ñk

∣∣∣a(i)k0k

∣∣∣ ≤ M

ak0bk1 . . . bkn.

l (x,y) ∈ D0 \ ∂D0

G(x,y) =

∞∑k0+|k|=0

M

ak0bk1 . . . bknxk0yk =

M(1− x

a

) (1− y1

b

). . .(1− yn

b

) ,´ fi(x,y), i = 1, . . . , n, `¼ê.

2. ´

dz

dx=

M(1− x

a

) (1− z

b

)n , z(0) = 0,

3«m |x| < ρ := a(

1− e−b

(n+1)aM

)Sk)Û)

z(x) = b

(1−

(abM(n+ 1) ln

(1− x

a

)+ 1) 1n+1

).

l d)5½n, y = (y1, . . . , yn) = (z(x), . . . , z(x)) ´Ð¯K

y′i(x) = G(x,y), yi(0) = 0, i = 1, . . . , n, (3.2.5)

3 |x| < ρ S)Û).

3. y (3.2.3) 3 |x| < ρ Sk/ª?ê).

yi(x) =

∞∑j=0

c(i)j xj , i = 1, . . . , n, (3.2.6)

59

Page 69: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

1nÙ p©§Ú§|)nØ

´Ð¯K (3.2.3) /ª). K

c(i)j =

1

j!

dj yidxj

∣∣∣∣x=0

, j = 0, 1, . . . ,

ò/ª) (3.2.6)\ЯK (3.2.3), |^ fi Ðmª (3.2.4), ¿é§ (3.2.3)ü>'u

x Åg¦ê

c(i)0 = yi(0) = 0,

c(i)1 =

dyidx

∣∣∣∣x=0

= fi(x, y)|x=0 = a(i)000...0,

c(i)2 =

1

2!

d2yidx2

∣∣∣∣x=0

=1

2!

(∂fi∂x

+∂fi∂y1

dy1

dx+ . . .+

∂fi∂yn

dyndx

)∣∣∣∣x=0

=1

2!

(a

(i)100...0 + a

(i)010...0a

(1)000...0 + . . .+ a

(i)000...1a

(n)000...0

),

c(i)j =

1

j!

dj yidxj

∣∣∣∣x=0

= P(i)j

(a

(1)00...0, . . . , a

(n)00...0, a

(1)10...0, . . . , a

(n)10...0, . . . , a

(n)00...j−1

),

Ù¥ j ≥ 2, P(i)j ´± f1, . . . , fn ÐmªXê a

(s)k0k

, k0 + |k| ≤ j − 1, s ∈ 1, . . . , n, Cþ

(½Xêõª.

4. y (3.2.3) 3 |x| < ρ S/ª?ê)Âñ.

G(x,y) 3 |x| < ρ S?êÐmª

G(x,y) =

∞∑k0+|k|=0

gk0kxk0yk.

ЯK (3.2.5) 3 |x| < ρ S)Û)?êÐmª

yi(x) =

∞∑j=0

c(i)j xj , i = 1, . . . , n.

Kaqu (3.2.3) /ª)¦

c(i)j = P

(i)j (g00...0, . . . , g00...0, g10...0, . . . , g10...0, . . . , g00...j−1) , i = 1, . . . , n, j = 0, 1, . . .

du c(i)j Ú c

(i)j ´Xêõª P

(i)j 3ØÓ:, ∣∣∣a(i)

k0k

∣∣∣ ≤ gk0k =M

ak0bk1 . . . bkn, k = (k1, . . . , kn),

¤± |c(i)j | ≤ c(i)j . ùÒy²Ð¯K (3.2.5) )Û) yi(x), i = 1, . . . , n, ´Ð¯K

(3.2.3) /ª) yi(x), i = 1, . . . , n, 3 |x| < ρ S`¼ê. (3.2.3) /ª?ê)

(3.2.6) 3 |x| < ρ SÂñ, l ЯK (3.2.3) 3 |x| < ρ Sk)Û). y..

60

Page 70: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

§3.2 )Û©§)nØ

N5: þãy²/©z [16] é)Û©§)Û)35y².

~K:

1. ©§|

dy1

dx= ex

2+y21+y21 + 5 cos(y1y2),dy2

dx= lnx+ ln(y2

1 + y22),

l (0,∞)×(R2 \ (0, 0)

)¥?: (x0, y

01 , y

02) ÑuÑk½Â3 x0 ,S

)Û). ù´Ï§|¥¼êѱ3 (x0, y01 , y

02) ,SФÂñ?

ê, l d½n 26 =y.

e(JéaAÏ)Û©§|Ø=Ñ)3«m Ñ?ê)Â

ñ».

½n27. b A(x) Ú f(x) ©O´ n ݼêÚ n þ¼ê, §z©þ3

|x− x0| < ρ SÑФ'u x− x0 Âñ?ê, K©§|ЯK

dy

dx= A(x)y + f(x), y(x0) = y0, (3.2.7)

3 |x− x0| < ρ SkÂñ?ê).

y: PÒüå, Ø5, ·b x0 = 0,y0 = 0. P

A(x) = (aij(x))n×n, f(x) = (f1(x), . . . , fn(x))T ,

Ù¥ T L«=. db, é i, j ∈ 1, . . . , n k

aij(x) =

∞∑k=0

a(ij)k xk, fj(x) =

∞∑k=0

f(j)k xk, |x| < ρ.

é?¿ b ∈ (0, ρ), e~ê?ê

∞∑k=0

|a(ij)k |b

k,

∞∑k=0

|f (j)k |b

k, i, j ∈ 1, . . . , n,

Âñ. - M §. Ké¤k i, j ∈ 1, . . . , n, k ∈ 0, 1, 2, . . . k

|a(ij)k |, |f

(j)k | ≤

M

bk.

Ï

g(x) =M

1− xb

=

∞∑k=0

M(xb

)k, |x| < b,

61

Page 71: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

1nÙ p©§Ú§|)nØ

´ aij(x) Ú fj(x) 3 |x| < b þ`¼ê. ?Ú/k

g(x)(y1 + . . .+ yn + 1),

´n∑j=1

aij(x)yi + fi(x), i = 1, . . . , n,

`¼ê.

O, ЯK

du

dx= g(x)(nu+ 1), u(0) = 0,

k)

u(x) = n−1(

1− x

b

)−nMb

− n−1.

dêÆ©Û£, u(x) 3 |x| < b þФÂñ?ê.

d)5nØ, y∗(x) = (u(x), . . . , u(x)) ´©§|ЯK

dyidx

= g(x)(y1 + . . .+ yn + 1), yi(0) = 0, i = 1, . . . , n,

).

-

y(x) = (y1(x), . . . , yn(x))T , yi(x) =

∞∑k=0

c(i)k xk, i = 1, . . . , n,

´Ð¯K (3.2.7) /ª). K½n 26 Óy², u(x) ´ yi(x), i = 1, . . . , n, 3

|x| < b þ`¼ê. Ï yi(x), i = 1, . . . , n, ´ |x| < b þÂñ?ê. d)5,

y(x) ´Ð¯K (3.2.7) 3 |x| < b þÂñ?ê). d b ∈ (0, ρ) ?¿5, ЯK

(3.2.7) 3 |x| < ρ þkÂñ?ê). y..

§3.3 ©§ÈnØ

©§ÈnØQ´²;, q´y. §éXyêÆ©|, X²;

Úy©Û, ©AÛÚ Riemann AÛ, êÿÀÚêAÛ. k,Ööë

[5–7, 9, 12, 18, 38, 47, 52] 9Ù¥ë©z. !0Ù¥ÄVgÚnØ.

62

Page 72: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

§3.3 ©§ÈnØ

Ä n ©§|

dyidx

= fi(x,y), (x,y) ∈ D, i = 1, . . . , n, (3.3.1)

Ù¥ D ⊂ R1+n´m«.y)35,!©ªb fi ∈ C1(D), i = 1, . . . , n.

G ´ D f«. ½Â3 G þ¼ê V (x,y) ¡§ (3.3.1) ÄgÈ©, XJ

• V (x,y) ∈ C(G), 3 G ?¿f«¥ÑØð~ê,

• § (3.3.1) 3 G ¥?Û^È©­ Γ := φ(x) = (y1(x), . . . , yn(x)); x ∈ J Ñk

V (x, φ(x)) ≡ CΓ, x ∈ J , Ù¥ CΓ ´6u Γ ~ê.

N5:

1) XJ3ÄgÈ©½Â¥, V (x,y) 3 G ,f« Ω ¥ðu~ê, Kl V Ø

§ (3.3.1) 3 Ω ¥?Û&E.

2) ¦+§| (3.3.1) ½Â3 D þ, ÙÄgÈ©7U½Â3 D þ (e¡~

2). ù´3 D f«þ½Â (3.3.1) ÄgÈ©Ï.

3) XJ V (x,y) ´ (3.3.1) 3 G þÄgÈ©, h(z) ´?ëY¼ê¦ h(V (x,y))

3 G ?¿f«þØðu~ê, K h(V (x,y)) ´ (3.3.1) 3 G þÄgÈ

©.

e¡(ØÑëYÄgÈ©d½.

·K28. b V 3 G ¥ëY, 3 G ?Ûf«þØðu~ê. K V ´§

(3.3.1) 3 G ¥ÄgÈ©¿^´

∂V (x,y)

∂x+∂V (x,y)

∂y1f1(x,y) + . . .+

∂V (x,y)

∂ynfn(x,y) ≡ 0, (x,y) ∈ G.

y: öSÖögC¤.

~K:

1. ©§|

dx

dt= −y, dy

dt= x,

3 R2 ¥kÄgÈ© V (t, x, y) = x2 + y2. Ù?Û^È©­Ñd, V (t, x, y) = c Ñ,

l ½ö´ x = 0, y = 0, ½ö´±:¥%±.

63

Page 73: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

1nÙ p©§Ú§|)nØ

2. ¦©§|

dx

dt= y − x(x2 + y2 − 1)(x2 + y2 − 2),

dy

dt= −x− y(x2 + y2 − 1)(x2 + y2 − 2), (3.3.2)

ÄgÈ©, ¿^ÄgÈ©½§| (3.3.2) È©­.

): l§| (3.3.2) Lª

xx′(t) + yy′(t) = −(x2 + y2)(x2 + y2 − 1)(x2 + y2 − 2), yx′(t)− xy′(t) = x2 + y2.

éþªÈ© (3.3.2) ÄgÈ©

V1(t, x, y) = (x2 + y2)(x2 + y2 − 2)(x2 + y2 − 1)−2e4t, V2(t, x, y) = arctany

x+ t.

5¿: ¦+§| (3.3.2)3 R3 þk½Â)Û,ÙÄgÈ©3 R3 f«þk½Â.

|^4IC x = r cos θ, y = r sin θ, l V1 = c1 Ú V2 = c2 )

x =

√1± 1√

1− c1e−4tcos(c2 − t), y =

√1± 1√

1− c1e−4tsin(c2 − t). (3.3.3)

¤±§| (3.3.2) È©­©ÙXeµ

• c1 = 0, (3.3.3) éA (3.3.2) ~ê)µx = 0, y = 0 Ú È©­µ± Γ2 := x =√

2 cos(c2 − t), y =√

2 sin(c2 − t).

• c1 > 0, (3.3.3) éA (3.3.2) ^È©­, T­ t→∞ ^%C Γ2.

• c1 < 0, (3.3.3) éA (3.3.2) ü^È©­. Ù¥^ uü ± Γ1 Ú Γ2 m,

t → ∞ ^%C Γ2, t → −∞ ^%C Γ1. ,^ uI:Ú Γ1

m, t→∞ ^%CI:, t→ −∞ ^%C Γ1.

• c1 = −∞, (3.3.3) éA (3.3.2) È©­ Γ1.

N5:

1) ~ 2¥È©­ Γ1 Ú Γ2 Ñ´§| (3.3.2)±Ï),3ùü±Ï)

SvkÙ§±Ï). ù±Ï)¡4.

2) þã~fÖöùéuµ½§|võÄgÈ©,Ò±|^

§é§¦). e¡ò?ØÄgÈ©35.

64

Page 74: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

§3.3 ©§ÈnØ

3) p©§

y(n)(x) = f(x, y, y′, . . . , y(n−1)

),

±ÏLC y1 = y, y2 = y′, . . . , yn = y(n−1) =z§|, Ïd§ÄgÈ© (b

3) /ª V (x, y, y′, . . . , y(n−1)).

§3.3.1 ÈÄ:nصÄgÈ©35

V1(x,y), . . . , Vk(x,y)´§| (3.3.1)3 GSëYÄgÈ©. XJ V1, . . . , Vk

'u y Jacobi Ý´÷, =

rank∂(V1, . . . , Vk)

∂(y1, . . . , yn)= k,

¡ V1, . . . , Vk ´§| (3.3.1) 3 G S k ¼êÕáÄgÈ©.

N5: ¼êÕáÄgÈ©AÛ)º.

1) V (x,y)´§| (3.3.1)3 GSÄgÈ©. XJ Sc := (x,y) ∈ G; V (x,y) =

c ´­¡, ¡ V ³¡. üå, ±^ V = c L«³

¡ Sc. ´l V ,³¡þÑuÈ©­©ª±3T³¡þ. äkù5

­¡¡§ (3.3.1) ØC­¡.

2) V1(x,y), . . . , Vk(x,y) ´§| (3.3.1) 3 G SëY¼êÕáÄgÈ©, K

§³¡3:?Ñ´î, =­¡Ø. ù³¡8´ n− k

­¡.

½n29. fi(x,y) ∈ C1(D), i = 1, . . . , n. Ké ∀P0 = (x0,y0) ∈ D, 3 P0

G0 ⊂ D ¦ (3.3.1) 3 G0 Sk=k n ¼êÕáÄgÈ©.

y: 1. y²§| (3.3.1) 3 P0 ,k n ¼êÕáÄgÈ©.

é P0 ? D0 ⊂ D, ? (x0, c) ∈ D0. §| (3.3.1) ÷vЩ^

y(x0) = c,

)3 D0 ¥3'uÙCþëY, P y = φ(x, c), x ∈ J .

65

Page 75: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

1nÙ p©§Ú§|)nØ

Ï φ = (φ1, . . . , φn),

φi(x, c) = φi(x0, c) + ∂xφi(x0 + θ(x− x0), c)(x− x0)

= ci + ∂xφi(x0 + θ(x− x0), c)(x− x0),

¤± φ 'u c Jacobi 1ª

∂φ(x, c)

∂c

∣∣∣∣x=x0

= E,

Ù¥ E ´ü Ý. q

φ(x0,y0) = y0,

¤±dÛ¼ê3½n, 3 P0 G0 ⊂ D0 ¦3Ù¥¼ê§ φ(x, c) = y k

ëY)

c = V(x,y).

ey V ¥ n ¼ê´¼êÕáÄgÈ©. Ï

φ(x,V(x,y)) ≡ y, (x,y) ∈ G0, (3.3.4)

¤±éT¼ê§ü>'u y ¦ê

∂V

∂y=

(∂φ

∂c

)−1

.

ùÒy² V ¥ n ¼ê´¼êÕá. é¼ê§ (3.3.4) ü>'u x ¦ê

∂φ

∂c

∂V1

∂x

...

∂Vn∂x

=

−∂φ1

∂x

...

−∂φn∂x

=

−f1

...

−fn

,

¤± ∂V1

∂x

...

∂Vn∂x

=

(∂φ

∂c

)−1

−f1

...

−fn

=∂V

∂y

−f1

...

−fn

.

ùÒy² Vi(x,y), i = 1, . . . , n, ´ (3.3.1) n ÄgÈ©.

2. y§| (3.3.1) õk n ¼êÕáÄgÈ©.

66

Page 76: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

§3.3 ©§ÈnØ

bk n+ 1 ÄgÈ© Vi(x,y), i = 1, . . . , n+ 1. du§'u y Jacobi Ý

∂V1

∂y1. . . ∂V1

∂yn...

. . ....

∂Vn∂y1

. . . ∂Vn∂yn

∂Vn+1

∂y1. . . ∂Vn+1

∂yn

,

≤ n, ¤± V1, . . . , Vn+1 3?Û«¥ÑØU¼êÕá.

½ny..

N5:

1) XJ f(x,y) = (f1(x,y), . . . , fn(x,y)) 6≡ 0, § (3.3.1) عgCþ¼êÕáÄg

È©õk n− 1 .

2) ½n 29 ѧ| (3.3.1) 3½Â D ¥,:¥ÄgÈ©ÛÜ35.

3 D ¥, ½3 D ,½«¥ÄgÈ©N35´~(J¯K.

3) ½n 29 y²þ´|^§| (3.3.1) )ÏLÛ¼ê3½nE n ¼ê

ÕáÄgÈ©. éA, ·ke¡(Ø.

½n30. Vi(x,y), i = 1, . . . , n, ´§| (3.3.1) 3 G þëY¼êÕáÄgÈ

©. KdÛ¼ê3½nl Vi(x,y) = ci, i = 1, . . . , n, )Ѽê

y = φ(x, c), x ∈ Jc, Ù¥ c ´?¿~êþ, (3.3.5)

´ (3.3.1) 3 G SÏ), ¹ (3.3.1) 3 G S¤k).

y: 1. y (3.3.5) ´§| (3.3.1) Ï).

Ï Vi (i = 1, . . . , n) ëY, ¤± φ = (φ1, . . . , φn) 'uÙCþëY. é¼ê

§

Vi(x, φ(x, c)) ≡ ci, i = 1, . . . , n,

ü>'u x ¦ê

∂Vi∂x

+∂Vi∂y1

∂φ1

∂x+ . . .+

∂Vi∂yn

∂φn∂x≡ 0, i = 1, . . . , n.

q Vi ´ëYÄgÈ©, ¤±k

∂Vi∂x

+∂Vi∂y1

f1 + . . .+∂Vi∂yn

fn ≡ 0, i = 1, . . . , n.

67

Page 77: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

1nÙ p©§Ú§|)nØ

lþãü¼ê§|

∂V

∂y

∂φ1

∂x − f1

...

∂φn∂x − fn

= 0.

du V1, . . . , Vn ´¼êÕá, þãàg5§|k)

dφidx− fi = 0, i = 1, . . . , n,

ùÒy² (3.3.5) ´ (3.3.1) ). (3.3.5) ´ (3.3.1) Ï)d

det∂φ

∂c=

(det

∂V

∂y

)−1

6= 0,

.

2. y (3.3.5) ¹ (3.3.1) ¤k).

y = ψ(x) ´ (3.3.1) ). - y0 = ψ(x0), K y = ψ(x) ´ (3.3.1) ÷vЩ^

y(x0) = y0 ).

- c0 = V(x0,y0). KdÛ¼ê3½nl¼ê§

V(x,y) = c0,

) y = φ(x, c0) ´©§| (3.3.1) ), ÷v φ(x0, c0) = y0. d)5

φ(x, c0) = ψ(x). ½ny..

N5:

½Â3« D þ©§| (3.3.1) ÄgÈ©73 D þk½Â. Ïd3

ÄgȩýÂ8Ü¥§| (3.3.1) )I,?Ø. X~ 2 ¥ÄgÈ© V1 3

x2 + y2 = 1 þýÂ, ÄgÈ© 1/V1 3 x2 + y2 = 1 þk½Â, %3 x2 + y2 = 0 Ú

x2 + y2 = 2 þýÂ.

½n 29)û n©§|ÛÜÄgÈ©ê¯K.e¡½n?Úx¼

êÕáÄgÈ©.

½n31. V1(x,y), . . . , Vn(x,y)´ (3.3.1)3 G¥ëY¼êÕáÄgÈ©, Φ(x,y)

´ (3.3.1) 3 G ¥?ëYÄgÈ©. Ké ∀P0 = (x0,y0) ∈ G, 3 P

G0 ⊂ G, 9ëY¼ê h(z) ¦ Φ(x,y) = h(V1(x,y), . . . , Vn(x,y)), (x,y) ∈ G0.

68

Page 78: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

§3.3 ©§ÈnØ

y: du V1(x,y), . . . , Vn(x,y) 3 G ¥ëY¼êÕá, ¤±¼ê§

Vi(x,y) = ui, i = 1, . . . , n, Ù¥ u = (u1, . . . , un) ÕáCþ,

3 P0 ,, P G0, ¥këY), P

y = φ(x,u), x ∈ J, u ∈ Ω := V(x,y); (x,y) ∈ G0.

d½n 30 , φ(x,u) ´§ (3.3.1) 3 G S), =

∂φi(x,u)

∂x= fi(x, φ(x,u)), (x,u) ∈ J × Ω, i = 1, . . . , n,

Ù¥ u ´ëê.

- h(x,u) = Φ(x, φ(x,u)), (x,u) ∈ J × Ω, ¿é h 'u x ¦ ê

∂h(x,u)

∂x=

∂Φ[x,u]

∂x+∂Φ[x,u]

∂y1

∂φ1(x,u)

∂x+ . . .+

∂Φ[x,u]

∂yn

∂φn(x,u)

∂x

=∂Φ[x,u]

∂x+∂Φ[x,u]

∂y1f1[x,u] + . . .+

∂Φ[x,u]

∂ynfn[x,u] ≡ 0, (x,u) ∈ J × Ω,

Ù¥ðªd [x,u] = (x, φ(x,u)) ∈ G0 ⊂ G Ú Φ(x,y) ´ (3.3.1) 3 G ¥Äg

È©. ùÒy² (x,y) ∈ G0 k

Φ(x,y) = Φ(x, φ(x,u)) = h(u) = h(V1(x,y), . . . , Vn(x,y)).

½ny..

N5:

1) lþã½n(Ø, §| (3.3.1) 3 G ⊂ R1+n ¥k n ¼êÕáÄgÈ©,

K§È©­dùÄgÈ©³¡(½. d¡§| (3.3.1) 3 G ¥

È.

2) XJÄÏCþ y ¤3m Ξ ⊂ Rn (¡m, AO/ n = 2 ¡

²¡), §| (3.3.1) 3 Ξ ¥k n− 1 عgCþ x ¼êÕáÄgÈ©, K

m Ξ ¥È©­ (¡;) dù n− 1 ¼êÕáÄgÈ©(½. d

¡§| (3.3.1) 3 Ξ ¥È.

3) ¦+3 1) Ú 2) ¥ÑÈü½Â, 7L`²8cÈvk

Ú½Â,lØÓÝÑukØÓ½Â.e!?Ø HamiltonXÚ,é

ÈÑ#½Â.

69

Page 79: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

1nÙ p©§Ú§|)nØ

4) §| (3.3.1) 3 G ¥k 1 ≤ k < n ëY¼êÕáÄgÈ©, K3

ù k ÄgÈ©³¡(½ n − k ØC­¡þ, §| (3.3.1) ±z¤

n − k ©§|. X3~ 1 ÄgÈ©(½³­ x2 + y2 = c > 0, =

y =√c− x2 þ, §|z©§

x′(t) = −√c− x2, x ∈ (−

√c,√c).

¯¢þ, 3þã³­þ1§±d1§, Ï

y′(t) =−xx′(t)√c− x2

= x.

5) 'ug£©XÚÄgÈ©m'X, ©z [38] k?ÚïÄ.

6) ©z [21]éa²;¿ÂeÈk¡0,Ï´Ã.íéÈk,

ÖöÖ.

§3.3.2 ÄgÈ©3 ©§¦)¥A^

ÈnØ3 ©§¦)¥A^, !Ì?Øàg5 ©§

n∑i=1

ai(x)∂u

∂xi= 0, x = (x1, . . . , xn) ∈ D ⊂ Rn m«, (3.3.6)

Ú[5 ©§

n∑i=1

ai(x, u)∂u

∂xi= b(x, u), (x, u) ∈ G ⊂ Rn+1 m«, (3.3.7)

¦)¯K.

§3.3.2.1 àg5 ©§ (3.3.6) )nØ

©§ (3.3.6) éAA§´

dx1

a1= . . . =

dxnan

. (3.3.8)

b

a1, . . . , an ∈ C1(D), n∑i=1

|ai(x)| > 0, x ∈ D. (3.3.9)

70

Page 80: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

§3.3 ©§ÈnØ

K (3.3.8) ´ n− 1 ~©§|. ~X an(x) 6= 0 , (3.3.8) ±¤

dxidxn

=ai(x)

an(x), i = 1, . . . , n− 1.

Ïd§| (3.3.8) l D ¥?:Ñu)Ñ3. ?Ú/, (3.3.8) ÛÜ/k n − 1

¼êÕáÄgÈ©.

½n32. b (3.3.8) ÷v (3.3.9), 3 D ¥k n− 1 ¼êÕáÄgÈ©

φ1(x) = c1, . . . , φn−1(x) = cn−1.

K5 ©§ (3.3.6) Ï)

u = Ψ(φ1(x), . . . , φn−1(x)),

Ù¥ Ψ(·, . . . , ·) ´?¿ n− 1 ëY¼ê.

y: d®^, Ø an 6= 0. Ï A§ (3.3.8) du~©§|

dxidxn

=ai(x)

an(x), i = 1, . . . , n− 1. (3.3.10)

âëYÄgÈ©d½, φ(x) ´ (3.3.10) ÄgÈ©= φ(x) ´

©§

∂φ

∂xn+a1(x)

an(x)

∂φ

∂x1+ . . .+

an−1(x)

an(x)

∂φ

∂xn−1= 0,

i.e.

a1(x)∂φ

∂x1+ . . .+ an−1(x)

∂φ

∂xn−1+ an(x)

∂φ

∂xn= 0,

). Ïd¦ ©§ (3.3.6) Ï)du¦~©§| (3.3.10) ¤kÄgÈ©.

e φ(x) ´ (3.3.10) ÄgÈ©, Kd½n 31 , 3ëY n− 1 ¼ê Ψ ¦

φ(x) = Ψ(φ1(x), . . . , φn−1(x)).

ùÒy² (3.3.6) Ï)´'u φ1(x), . . . , φn−1(x) ?¿ëY¼ê. ½ny..

N5µ

• ½n 32 ¥Ï)Lª´ÛÜ.

71

Page 81: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

1nÙ p©§Ú§|)nØ

• 5 ©§Ï)dÙA§ n − 1 ¼êÕáÄgÈ©?¿

ëY¼ê5L«.

~K:

1. ¦e ©§Ï)µ

x∂u

∂x+ y

∂u

∂y+ (z −

√x2 + y2 + z2)

∂u

∂z= 0. (3.3.11)

)µ ©§ (3.3.11) A§

dx

x=dy

y=

dz

z −√x2 + y2 + z2

.

l

dx

x=dy

y,

A§ÄgÈ© φ1(x, y, z) = xy . òA§C/

xdx

x2=ydy

y2=

(z +√x2 + y2 + z2)dz

−(x2 + y2).

l k

xdx+ ydy + (z +√x2 + y2 + z2)dz = 0, = d(x2 + y2 + z2) + 2

√x2 + y2 + z2dz = 0.

ùA§1ÄgÈ©

φ2(x, y, z) = z +√x2 + y2 + z2.

N´y φ1 φ2 ´¼êÕá. Ï ©§ (3.3.11) Ï)

u(x, y, z) = ψ

(x

y, z +

√x2 + y2 + z2

),

Ù¥ ψ ´?¿ëY¼ê.

2. ¦ ©§

y∂u

∂x+ z

∂u

∂z= 0, (3.3.12)

ÏL­¡ x = 1, u = ln z − 1y ).

72

Page 82: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

§3.3 ©§ÈnØ

): ©§ (3.3.12) A§

dx

y=dy

0=dz

z.

´ φ1(x, y, z) = y ´A§ÄgÈ©. duA§?^È©­Ñ

uÄgÈ©,³¡þ, ¤±3³¡ y = c1 þ, l

dx

y=dz

z,

)

x

c1= ln z + c.

¤±A§,¼êÕáÄgÈ©

φ2(x, y, z) =x

y− ln z.

§Ï)

u = ψ

(y,x

y− ln z

),

Ù¥ ψ ´?¿ëY¼ê.

d®^

ψ

(y,

1

y− ln z

)= ln z − 1

y.

3¼ê ψ ¥- ξ = y, η = 1y − ln z , Kk y = ξ, z = e

1ξ−η. l ¼ê

ψ(ξ, η) = −η.

§÷v½^)

u = −η = ln z − x

y.

§3.3.2.2 [5 ©§ (3.3.7) )nØ

?Ø[5 ©§ (3.3.7), =

n∑i=1

ai(x, u)∂u

∂xi= b(x, u), (x, u) ∈ G ⊂ Rn+1 m«,

73

Page 83: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

1nÙ p©§Ú§|)nØ

)35, b

a1, . . . , an, b ∈ C1(G), n∑i=1

|ai(x, u)| > 0, (x, u) ∈ G. (3.3.13)

~©§|

dx1

a1(x, u)= . . . =

dxnan(x, u)

=du

b(x, u), (3.3.14)

¡[5 ©§ (3.3.7) A§.

½n33. b (3.3.14) ÷v (3.3.13), 3 D ¥k n ¼êÕáÄgÈ©

φ1(x, u) = c1, . . . , φn(x, u) = cn.

K[5 ©§ (3.3.7) Ï)

Ψ(φ1(x, u), . . . , φn(x, u)) = 0, (3.3.15)

Ù¥ Ψ(·, . . . , ·) ´?¿ n ëY¼ê.

y: dbÚ½n 31 , A§ (3.3.14) ¤kÄgÈ©

V (x, u) = Ψ(φ1(x, u)), . . . , φn(x, u)),

Ù¥ Ψ ´?¿ëY n ¼ê. l½n 32 9Ùy², V (x, u) ´5 ©§

a1(x, u)∂V

∂x1+ . . .+ an(x, u)

∂V

∂xn+ b(x, u)

∂V

∂u= 0, (3.3.16)

Ï).

e¡Äky²l (3.3.15) âÛ¼ê3½n(½¼ê u = φ(x) ´ (3.3.7) )(

,¦∂V

∂u6= 0). dÛ¼ê§(½¼êê÷v

∂φ(x)

∂xi= − ∂V

∂xi/∂V

∂u, i = 1, . . . , n.

òþãLª\ (3.3.16)

a1(x, φ(x))∂φ

∂x1+ . . .+ an(x, φ(x))

∂φ

∂xn= b(x, φ(x)).

ùÒy² u = φ(x) ´[5 ©§ (3.3.7) ).

74

Page 84: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

§3.3 ©§ÈnØ

y² (3.3.7) ?)±L«¤ (3.3.15) /ª. u = ψ(x) ´ (3.3.7) ?

). -

Φi(x) = φi(x, ψ(x)), i = 1, . . . , n.

Ké i = 1, . . . , n k

a1∂Φi∂x1

+ . . .+ an∂Φi∂xn

= a1∂φi∂x1

+ . . .+ an∂φi∂xn

+∂φi∂u

(a1∂ψ

∂x1+ . . .+ an

∂ψ

∂xn

)= a1

∂φi∂x1

+ . . .+ an∂φi∂xn

+ b∂φi∂u

= 0,

Ù¥1ª¥^ ψ(x)´ (3.3.7)),1nª¥^ φi(x, u)´A§ (3.3.14)

ÄgÈ©.

ùÒy² Φ1(x), . . . ,Φn(x) ´ n− 1 ~©§|

dx1

a1= . . . =

dxnan

,

ÄgÈ©, ÏdÙ¥,ÄgÈ©´Ù§ÄgÈ©ëY¼ê. Ø

Φn(x) = Γ(Φ1(x), . . . ,Φn−1(x)),

Ù¥ Γ ´ëY¼ê. -

Ψ(φ1(x, u), . . . , φn(x, u)) = φn(x, u)− Γ(φ1(x, u), . . . , φn−1(x, u)).

K u = ψ(x) ´§

Ψ(φ1(x, u), . . . , φn(x, u)) = 0,

). y..

~Kµ

1. ¦) ©§Ð¯Kµ

√x∂z

∂x+√y∂z

∂y= z,

z|y=1 = cos(ωx).

): A§

dx√x

=dy√y

=dz

z,

75

Page 85: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

1nÙ p©§Ú§|)nØ

kü¼êÕáÄgÈ©

φ1(x, y, z) =√x−√y, φ2(x, y, z) = 2

√y − ln |z|.

©§Ï)

Φ(√x−√y, 2

√y − ln |z|) = 0, (3.3.17)

Ù¥ Φ ´?¿ëY¼ê, ¹k1C.

é¼ê§ (3.3.17) $^Û¼ê3½n)

2√y − ln |z| = g(

√x−√y).

l k

z = e2√yψ(√x−√y).

|^Щ^

ψ(√x− 1) = e−2 cos(ωx).

k

ψ(ζ) = e−2 cos(ω(1 + ζ)2)

ÏdЯK)´

z = e2(√y−1) cos(ω(1 +

√x−√y)2).

2. ¦) ©§

x∂u

∂x+ y

∂u

∂y+ z

∂u

∂z= u+

xy

z.

): ÄA§

dx

x=dy

y=dz

z=

du

u+ xyz

.

´§kü¼êÕáÄgÈ©

φ1(x, y, z, u) =z

x, φ2(x, y, z, u) =

y

z.

duA§È©­Ñ u³¡þ, Ïd¦Ù§¼êÕáÄgÈ©±

ò zx

yz ~êw.

76

Page 86: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

§3.3 ©§ÈnØ

3A§¥, Ä

dx

x=

du

u+ xyz

,

¿- yz = c1, Kk

du

dx=

1

xu+ c1.

ù´'u u 5©§, §kÏ)

u = x(c1 ln |x|+ c).

Ï A§kÄgÈ©

φ3(x, y, z, u) =u

x− y

zln |x|.

N´y φ1, φ2, φ3 ´¼êÕá. ¤±§Ï)´

Φ( zx,y

z,u

x− y

zln |x|

)= 0,

Ù¥ Φ(ξ, η, ζ) ´?¿ëY¼ê, Φζ Øðu". |^Û¼ê3½n,

§Ï)¤

u = xψ( zx,y

z

)+xy

zln |x|,

Ù¥ ψ ´?¿ëY¼ê.

§3.3.3 Hamilton XÚÈ

È Hamilton XÚäk4Ù´LSN, §Ø=éX²;©Û, éXêAÛ

[52], Riemann AÛÚêÿÀ [7, 8], "AÛÚ"ÿÀ [5, 63] . !0Ù¥f

wÄ:£.

H(q,p) ´ 2n m¥ëY¼ê, Ù¥ q = (q1, . . . , qn), p = (p1, . . . , pn).

©§|

dqi(t)

dt=∂H

∂pi,

dpi(t)

dt= −∂H

∂qi, i = 1, . . . , n,

¡ n gdÝ Hamilton XÚ, H ¡ Hamilton ¼ê. Hamilton ¼êo´A

Hamilton XÚÄgÈ©. þã Hamilton XÚ^Ý/ª¤ q

p

= J∇H, J =

0 E

−E 0

, (3.3.18)

77

Page 87: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

1nÙ p©§Ú§|)nØ

Ù¥ 0 ´ n "Ý, E ´ n ü Ý, ∇H L« H FÝ, =

∇H = (Hq1 , . . . ,Hqn , Hp1 , . . . ,Hpn)T ,

Ù¥ T L«Ý=.

±þ½Â´ R2n ¥IO Hamilton XÚ. R2n ¥ Hamilton XÚ´ÏL"

ÝOÝ J ½^ Poisson )Ò5½Â Hamilton XÚ. ù£ÑÖ, Ø3

dQã. k,Ööë [1, 4, 6, 7, 44].

Hamilton XÚþ/Ñy3¢SåÆXÚ¥, ´cÄåXÚÌïÄé.

~K:

1. gdáN$ħ x(t) = g ÏLC q = x, p = mx =z Hamilton XÚ

q =∂H

∂p, p = −∂H

∂q,

Ù¥ Hamilton ¼ê H(q, p) = 12mp

2 −mgq dÄUÚ­å³U¤, Ù¥ m ´:

þ.

2. ü$ħ x(t) = −a2 sinx (a2 = g/l) ÏLC q = x, p = mx =z Hamilton X

Ú

q =∂H

∂p, p = −∂H

∂q,

Ù¥ Hamilton ¼ê H(q, p) = 12mp

2 − a2m cos q, Ù¥ m ´:þ.

3. üN¯K.^ S L«, E L«/¥,§þ©O´ mS Ú mE . S u.5X

¥%,^ q = (q1, q2, q3) L«.5XI.^ p = (p1, p2, p3) = (mE q1,mE q2,mE q3)

L«Äþ. 3X¥, éuÙ§(¥é/¥^åé, üå±

Ñ. K/¥7$=oUþdÄUÚÚå³U¤

H(q,p) =1

2mE(p2

1 + p22 + p2

3)− GmSmE√q21 + q2

2 + q23

, Ù¥ G ´kÚå~ê.

¤±A Hamilton XÚ

q1 =1

mEp1, p1 = − GmSmEq1

(q21 + q2

2 + q23)

32

,

q2 =1

mEp2, p2 = − GmSmEq2

(q21 + q2

2 + q23)

32

,

q3 =1

mEp3, p3 = − GmSmEq3

(q21 + q2

2 + q23)

32

.

(3.3.19)

78

Page 88: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

1nÙ p©§Ú§|)nØ

N´yT Hamilton XÚkÄgÈ©

H1 = q3p2 − q2p3, H2 = q1p3 − q3p1, H3 = q2p1 − q1p2.

du3/¥$1;þzÄgÈ©Ñ~, P

q3(t)p2(t)− q2(t)p3(t) =: c1, q1(t)p3(t)− q3(t)p1(t) =: c2, q2(t)p1(t)− q1(t)p2(t) =: c3.

K

c1q1(t) + c2q2(t) + c3q3(t) ≡ 0.

ùÒy²/¥$1;©ª u.5X¥ÏLI:²¡þ.

e¡?ØBå, Øb/¥3 q3 = 0 ²¡þ$1. l p3 = 0. 3

/¥$1;þ

H(q(t),p(t)) =: c.

du H3(q(t),p(t)) = c3, Kk

q21 + q2

2 − 2µ√q21 + q2

2 = ν, q2q1 − q1q22 = ν1,

Ù¥ ν = 2cm−1E , ν1 = c3m

−1E . |^ÎIC q1 = r cos θ, q2 = r sin θ, ±9 x2 + y2 =

r2 + r2θ2

r2 + r2θ2 − 2µ

r= ν, r2 dθ

dt= −ν1.

k

r = ±√ν + 2µr−1 − ν2

1r−2, θ = −ν1r

−2,

Ù¥ µ = GmS . Øb ν1 > 0, éT§È©

r =ρ

1 + e cos(θ − θ0), ρ =

ν21

µ, e =

ν1

µ

√ν +

µ2

ν21

, (3.3.20)

Ù¥ θ0 ´È©~ê. d²¡)ÛAÛ£, 4I¼ê (3.3.20) 0 < e < 1 ´ý

, e = 1 ´Ô, e > 1 ´V­. Ïd/¥$1;´ý.

þã~fL²vê8ÄgÈ©35é Hamilton XÚÄåÆn)å~

Ï. 3²;åÆ¥, Hamilton XÚ (3.3.18) ¡È (½ Liouville È), XJ

• §k n ¼êÕáÄgÈ© H1 = H(q,p), H2(q,p), . . . , Hn(q,p),

79

Page 89: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

§3.4 SKn

• ù n ÄgÈ©üüéÜ, = (∇Hi)TJ∇Hj ≡ 0, 1 ≤ i, j ≤ n.

Liouville–Arnold ½nÑÈ Hamilton XÚx. duVyêÆ

õVgÚâ, ÖòØѧQãÚy². k,Ööë [4, 17, 21, 63].

§3.4 SKn

1. y²·K 21.

2. y²½n 22.

3. y²íØ 24.

4. b f(x, y) ∈ C1(Ω), Ω ⊂ R2 ´m«. e φ(x, x0, y0), x ∈ J ´Ð¯K

y′ = f(x, y), y(x0) = y0,

), K

∂φ(x, x0, y0)

∂x0= −f(x0, y0)e

∫ xx0fy(s,φ(s,x0,y0))ds

, x ∈ J,

∂φ(x, x0, y0)

∂y0= e

∫ xx0fy(s,φ(s,x0,y0))ds

, x ∈ J.

5. b y = φ(x, x0, y0) ´Ð¯K

y′ = sin(xyλ), y(x0) = y0,

). Á¦

∂φ(x, x0, y0)

∂λ

∣∣∣∣x0=0,y0=0

,∂φ(x, x0, y0)

∂x0

∣∣∣∣x0=0,y0=0

,∂φ(x, x0, y0)

∂y0

∣∣∣∣x0=0,y0=0

.

6. b p(x), q(x), f(x) 3«m |x − x0| < r þФÂñ?ê. K©§Ð

¯K

y′′ + p(x)y′ + q(x)y = f(x), y(x0) = y0, y′(x0) = y1,

k½Â3 |x− x0| < r þ), T)3 |x− x0| < r þФÂñ?ê.

7. y²·K 28.

80

Page 90: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

1nÙ p©§Ú§|)nØ

8. ¦§|

dx

dt= −y + x(x2 + y2)(x2 + y2 − 1),

dy

dt= x+ y(x2 + y2)(x2 + y2 − 1),

ÄgÈ©, ¿(ÜùÄgÈ©½T§|3²¡þ;9Ù5.

9. y²½n 29 N5 1).

10. y²½n 31 N5 4).

11. Φ1(y), . . . ,Φk(y), k < n− 1, ´g£©§|

y′(x) = f(y),

3m« Ω ⊂ Rn þëY¼êÕáÄgÈ©. Φ(y) ´T§|3 Ω þ

,ëYÄgÈ©,

∇yΦ(x,y) = c1(y)∇yΦ1(x,y) + . . .+ cn(y)∇yΦn(x,y).

Ù¥

∇yΦ(x,y) =

(∂Φ(x,y)

∂y1, . . . ,

∂Φ(x,y)

∂yn

),

L« Φ 'u y FÝ. Áyþª¥Xê¼ê ci(y) eØ´~ê, K7´ÄgÈ©.

13. ¦e ©§Ï)

13.1. x∂u∂x + y ∂u∂y + z ∂u∂z = 0;

13.2. (x− z)∂u∂x + (y − z)∂u∂y + 2z ∂u∂z = 0;

13.3. 2x∂u∂x + (y − x)∂u∂y − x2 ∂u∂z = 0;

13.4. x ∂z∂x + 2y ∂z∂y = x2y + z;

13.5. (x2 + y2) ∂z∂x + 2xy ∂z∂y = −z2;

13.6. (y + z)∂u∂x + (z + x)∂u∂y + (x+ y)∂u∂z = u.

14. ¦e ©§÷v½^)

14.1. ∂u∂x + (2ex − y)∂u∂y = 0, u|x=0 = y;

81

Page 91: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

§3.4 SKn

14.2.√x∂u∂x +

√y ∂u∂y + z ∂u∂z = 0, u|x=1 = yz + 1;

14.3. x∂u∂x + y ∂u∂y + xy ∂u∂z = z − x2 − y2, u|z=0 = x2 + y2;

14.4. xy ∂z∂x + x2 ∂z∂y = y, z|y=0 = x2;

14.5. xz ∂z∂x + yz ∂z∂y = −xy, y = x2, z = x3;

14.6. x ∂z∂x + y ∂z∂y = z − x2 − y2, x = −2, z = y − y2;

14.7. z ∂z∂x + (z2 − x2) ∂z∂y = −x, y = x2, z = 2x.

15. <E/¥¥(Ï~37/¥,²¡þ$Ä. Á¦<E/¥¥(7/¥$1

;.

82

Page 92: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

1oÙ 5©§ÄnØÚ)

Ù8¥?Ø5©§|Úp5©§)nØÚ).

§4.1 5©§)ÄnØ

Ä5©§|

dy

dx= A(x)y + f(x), x ∈ J := (α, β) ⊂ R, (4.1.1)

Ù¥ A(x) = (aij(x))n×n ´ n ,

y =

y1

...

yn

, f(x) =

f1(x)

...

fn(x)

.

• XJ f(x) 6≡ 0, x ∈ J , ¡ (4.1.1) n àg5©§|.

• XJ f(x) ≡ 0, x ∈ J , =

dy

dx= A(x)y, (4.1.2)

¡ n àg5©§|.

éuXþ5©§, ÏL¦)5©§)3Xê¼êëY«m

þÑ3ëY.!ò?Ø5©§|)3«m. Öy²ò^3éõêÆ

Æ¥2¦^ Gronwall ت. §kéõØÓ/ª (k,Öö±ë[??]),

e¡´Ù¥Ä:.

·K34. b c(t), φ(t), g(t) ´ [a, b] þëY¼ê, g(t), c(t) ≥ 0, t ∈ [a, b]. e

φ(t) ≤ c(t) +

∫ t

a

g(s)φ(s)ds, t ∈ [a, b], (4.1.3)

K

φ(t) ≤ c(t)e∫ tag(s)ds, t ∈ [a, b]. (4.1.4)

83

Page 93: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

1oÙ 5©§ÄnØÚ)

y: -

Φ(t) = c(t) +

∫ t

a

g(s)φ(s)ds.

K

Φ′(t) = c′(t) + g(t)φ(t) ≤ c′(t) + g(t)Φ(t).

l k (Φ(t) e−

∫ tag(s)ds

)′≤ c′(t)e−

∫ tag(s)ds ≤ c′(t).

ü>l a t È©§

Φ(t) e−∫ tag(s)ds − Φ(a) ≤ c(t)− c(a).

du Φ(a) = c(a), ¤±dþªÚ (4.1.3) = (4.1.4). y..

§4.1.1 5©§|)3«m

½n35. A(x), f(x) ∈ C(J), (x0,y0) ∈ J × Rn. K©§| (4.1.1) ÷vЩ^

y(x0) = y0 )3 J þ3!ëY.

y: du©§| (4.1.1) mà¼ê F(x,y) = A(x)y + f(x) 3 J × Rn þëY,

'u y Jacobi Ý A(x) ëY, ¤±d½n 22 , ЯK)3¹ x0 ,«m

I = (α0, β0) ⊂ J þ3!ëY, Ù¥ I ´3«m. P y = φ(x) ´T). XJ I 6= J ,

Ø β0 < β.

l φ(x) ´§| (4.1.1) )

φ(x)− φ(x0) =

∫ x

x0

A(s)φ(s)ds+

∫ x

x0

f(s)ds, x ∈ [x0, β0), (4.1.5)

du A(x), f(x) 3 [x0, β0] þëY, ¤±

A0 := max1≤i,j≤n

maxx∈[x0,β0]

|aij(x)| <∞, B0 := max1≤i≤n

maxx∈[x0,β0]

|fi(x)| <∞.

- ψ(x) = ‖φ(x)‖ := |φ1(x)|+ . . .+ |φn(x)|. l (4.1.5) , φ(x) z©þ φi(x) Ñ÷v

|φi(x)| ≤ A0

∫ x

x0

ψ(s)ds+B0(β0 − x0) + |φi(x0)|, x ∈ [x0, β0).

ψ(x) ≤ c+

∫ x

x0

nA0 ψ(s)ds, x ∈ [x0, β0),

84

Page 94: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

§4.1 5©§)ÄnØ

Ù¥ c = nB0(β0 − x0) + ψ(x0) ≥ 0. l d Gronwall ت

ψ(x) ≤ cenA0(x−x0), x ∈ [x0, β0),

Ïd

limx→β−0

‖φ(x)‖ = limx→β−0

ψ(x) <∞.

ù I = (α0, β0) ´§ (4.1.1) L (x0,y0) ) φ(x) 3«mgñ. ùgñ`²§

(4.1.1) L (x0,y0) )3«m J . y..

§4.1.2 5©§|Ï)(

½Â3«m J þ n þ¼ê y1(x), . . . ,yk(x), k ∈ N,

• ¡3 J þ5', XJ3Ø"~ê c1, . . . , ck ¦

c1y1(x) + . . .+ ckyk(x) ≡ 0, x ∈ J.

• ¡3 J þ5Ã', XJ

c1y1(x) + . . .+ ckyk(x) ≡ 0, x ∈ J,

7k c1 = . . . = ck = 0.

e¡(JÑ5©§|Ï)(.

½n36. b A(x), f(x) 3m«m J þëY, e(ؤá.

(a) àg5©§| (4.1.2))N¤8Ü3þ\Úêþ¦e

¤ n 5m.

(b) y1(x), . . . , yn(x) ´àg5©§| (4.1.2) 5Ã'), y∗(x) ´àg

5©§| (4.1.1) ), K

(b1) àg5©§| (4.1.2) Ï)

y(x) = c1y1(x) + . . .+ cnyn(x), x ∈ J, (4.1.6)

Ù¥ c1, . . . , cn ´?¿~ê, ¹ (4.1.2) ¤k).

85

Page 95: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

1oÙ 5©§ÄnØÚ)

(b2) àg5©§| (4.1.1) Ï)

y(x) = c1y1(x) + . . .+ cnyn(x) + y∗(x), x ∈ J, (4.1.7)

Ù¥ c1, . . . , cn ´?¿~ê, ¹ (4.1.1) ¤k).

y: (a). ^ S L«àg5©§| (4.1.2) )N¤8Ü. é ∀y1(x),y2(x) ∈

S, ∀ c1, c2 ∈ R, N´y c1y1(x) + c2y2(x) ∈ S, = S ´5m.

e¡Äky² S ¹k n 5Ã', =§| (4.1.2) 3 J þk n 5Ã'

). ½ x0 ∈ J , ej , j = 1, . . . , n ´1 j ©þ 1 , Ù§Ñ" n ü þ.

d½n 35, àg§| (4.1.2) ÷vЩ^ y(x0) = ej )3 J þ3ëY,

P yj(x), x ∈ J , j = 1, . . . , n. K y1(x), . . . , yn(x) 3 J þ5Ã'. ¯¢þ, XJk

c1y1(x) + . . .+ cnyn(x) ≡ 0, x ∈ J,

K

c1e1 + . . .+ cnen = c1y1(x0) + . . .+ cnyn(x0) = 0.

w,ùàg5ê§|k) c1 = . . . = cn = 0. ùÒy² S ¥k n 5

Ã')þ.

Ùgy² S ¥?±d y1(x), . . . , yn(x) 3 J þ5L«. y(x) ´ (4.1.2)

3 J þ?). - y0 = y(x0). c1, . . . , cn ´àg5ê§|

c1e1 + . . .+ cnen = y0,

). Kd)5

y(x) = c1y1(x) + . . .+ cnyn(x), x ∈ J,

ù´Ï§Ñ´àg5©§| (4.1.2) )÷vÓЩ^. ùÒy² S

´ n 5m.

(b). (b1) y²d (a) N´.

(b2) y, é?¿~ê c1, . . . , cn, ¼ê

Φ(x, c) = c1y1(x) + . . .+ cnyn(x) + y∗(x), x ∈ J,

86

Page 96: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

§4.1 5©§)ÄnØ

´àg5©§| (4.1.1) ), Ù¥ c = (x1, . . . , cn). q∂Φ

∂c= (y1(x), . . . , yn(x)),

¤±~êþ c ´Õá. Ï Φ(x, c) ´5©§| (4.1.1) Ï).

ey

c1y1(x) + . . .+ cnyn(x) + y∗(x); x ∈ J, c1, . . . , cn ´?¿~ê,

¹5©§| (4.1.1) ¤k). y(x), x ∈ J ´§| (4.1.1) ). K

y(x)− y∗(x) ´àg5©§| (4.1.2) ). d (a) 3 c1, . . . , cn ¦

y(x)− y∗(x) = c1y1(x) + . . .+ cnyn(x), x ∈ J.

ùÒy² (4.1.7) ¹àg5©§| (4.1.1) ¤k). y..

½n 36 ( n àg©§| (4.1.2) n 5Ã')35. àg5

©§| (4.1.2) ?¿ n 5Ã')¡§Ä)|.

XÛ^'½ n )´Ä5Ã'?

y1(x) =

y11

...

yn1

, . . . , yn(x) =

y1n

...

ynn

, (4.1.8)

´ (4.1.2) n ).

• ݼê Y(x) = (yij)1≤i,j≤n ¡§| (4.1.2) )Ý.

• XJ y1(x), . . . ,yn(x) 5Ã', ¡ Y(x) §| (4.1.2) Ä)Ý.

• )Ý1ª det Y(x) ¡)| (4.1.8) Wronsky 1ª, P W (x).

·K37. 'uàg5©§| (4.1.2) )| (4.1.8), e(ؤá.

(a) ©§| (4.1.2) )| (4.1.8) 5Ã'= W (x) 6= 0, x ∈ J ;

(b) ©§| (4.1.2) )| (4.1.8) 5'= W (x) ≡ 0, x ∈ J .

y: Äkyé ∀x0 ∈ J k

W (x) = W (x0)e∫ xx0

trA(s)ds, ¡ Liouville úª,

87

Page 97: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

1oÙ 5©§ÄnØÚ)

Ù¥ trA(x) = a11(x) + . . .+ ann(x) ݼê A(x) ,. ¯¢þ, é W (x) ¦ê, ¿|

^1ª¦K

dW (x)

dx=∑

1≤i≤n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

y11 · · · y1n

... · · ·...

n∑j=1

aijyj1 · · ·n∑j=1

aijyjn

.... . .

...

yn1 · · · ynn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣= (trA(x))W (x).

éþã'u W Cþ©l§l x0 x È©, = Liouville úª.

·K (a) Ú (b) (Øl Liouville úªN´. y..

~K: ^·K 37 ½e¼ê| 1

x

,

x

x3

, (4.1.9)

´Ä´,àg5©§|3 R þü).

): Ï

W (x) =

∣∣∣∣∣∣∣1 x

x x3

∣∣∣∣∣∣∣ = x3 − x2,

3 RQk":k":, Ïd (4.1.9)¥¼ê|ØU´?Ûàg5©§|

3 R þ).

e¡(ØÑàg5©§| (4.1.2) Ä)Ý5.

íØ38. Φ(x) ´§| (4.1.2) Ä)Ý, e(ؤá:

(a) y(x) = Φ(x)c ´ (4.1.2) Ï), Ù¥ c ∈ Rn ´?¿~êþ;

(b) C ´ n ÛÉ~êÝ, K Φ(x)C ´ (4.1.2) Ä)Ý;

(c) e Ψ(x) ´ (4.1.2) Ä)Ý, K3ÛÉ n ~êÝ C ¦ Ψ(x) =

Φ(x)C.

½n 36Ñàg©§| (4.1.1)Ï)dàg©§| (4.1.2)Ï)à

g©§| (4.1.1) ?)Ú¤. e¡½nÑXÛlàg5©§|

Ï)àg5©§|Ï).

88

Page 98: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

§4.1 5©§)ÄnØ

½n39. Φ(x) ´àg5©§| (4.1.2) Ä)Ý, Kàg5©§|

(4.1.1) Ï)

y(x) = Φ(x)

(c +

∫ x

x0

Φ−1(s)f(s)ds

), (4.1.10)

Ù¥ c ∈ Rn ´?¿~êþ.

y: ±y (4.1.10)´ (4.1.1)), c´Õá~êþ, Ï (4.1.10) ´àg

5©§| (4.1.1) Ï).

e¡Ñ (4.1.10) íL§. - y∗(x) = Φ(x)c(x), òÙ\§| (4.1.1), ¿z

Φ(x)c′(x) = f(x).

éT§l x0 x È©

c(x) =

∫ x

x0

Φ−1(s)f(s)ds+ c,

Ù¥ c ´È©~ê. §| (4.1.1) k)

y∗(x) = Φ(x)

∫ x

x0

Φ−1(s)f(s)ds,

ÚÏ) (4.1.10). y..

N5:

1. 3½n 39 y²L§¥, ÏLòàg§| (4.1.2) Ï)¥?¿~êC¤'u

x ¼ê, l ¦Ñàg§| (4.1.1) Ï). ù«¡~êC´. Ï)úª

(4.1.10) ¡~êC´úª.

2. dÏ)úª (4.1.10)N´¦§| (4.1.1)÷vЩ^ y(x0) = y0 ЯK)

~êC´úª

y(x) = Φ(x)

(Φ−1(x0)y0 +

∫ x

x0

Φ−1(s)f(s)ds

).

3. ~êC´úª$^u5©§|. A(x) 3 J þëY, Φ(x) ´ (4.1.2)

Ä)Ý. XJ f(x,y) 3 J × Rn þëY, KЯK

y′ = A(x)y + f(x,y), y(x0) = y0,

89

Page 99: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

1oÙ 5©§ÄnØÚ)

) y = φ(x) ÷vÈ©§

φ(x) = Φ(x)

(Φ−1(x0)y0 +

∫ x

x0

Φ−1(s)f(s, φ(s))ds

).

þã½nL², ¦)àg5©§|, 7LÄkÙAàg5

©§|Ä)Ý. 5`, ¦)àg5©§|Ä)Ý´~(J.

e!òÑ~Xêàg5©§|Ä)ݦ. e¡Þ¦)àg5©

§|ü~f.

~K: ¦)eàg5©§|ЯK:

x′(t) = −2

tx+ 1, x(1) =

1

3,

y′(t) =

(1 +

2

t

)x+ y − 1, y(1) = −1

3.

): làg§

x′(t) = −2

tx, y′(t) =

(1 +

2

t

)x+ y.

1§k)Ñ x = c1t−2, 2\1§)Ñ y = −c1t−2 + c2e

t. l àg

§|Ä)Ý

Φ(t) =

t−2 0

−t−2 et

§) x

y

= Φ(t)

Φ−1(1)

3−1

−3−1

+

∫ t

1

s2 0

e−s e−s

1

−1

ds

=

13 t

− 13 t

.

§4.1.3 p5©§Ï)(

¦+p5©§±=z¤5©§|, dup5©§g

A:, ±$^B, !üÕ?Ø.

n 5©§

y(n) + a1(x)y(n−1) + . . .+ an−1(x)y′ + an(x)y = f(x), x ∈ J, (4.1.11)

• ¡àg, XJ f(x) 6≡ 0.

90

Page 100: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

§4.1 5©§)ÄnØ

• ¡ àg, XJ f(x) ≡ 0, =

y(n) + a1(x)y(n−1) + . . .+ an−1(x)y′ + an(x)y = 0, x ∈ J. (4.1.12)

p§ (4.1.11) 3C y1 = y(x), y2 = y′(x), . . . , yn = y(n−1)(x) ez§|

dy

dx= A(x)y + f(x), (4.1.13)

Ù¥

A(x) =

0 1 0 · · · 0

0 0 1 · · · 0

......

.... . .

...

0 0 0 · · · 1

−an(x) −an−1(x) −an−2(x) · · · −a1(x)

,

y(x) =

y1

y2

...

yn−1

yn

, f(x) =

0

0

...

0

f(x)

.

l n 5§ (4.1.11) n 5§| (4.1.13) m'XN´,

• y = φ(x) ´ (4.1.11) )= y = (φ(x), φ′(x), . . . , φ(n−1)(x))T ´ (4.1.13) ),

Ù¥ T L«þ=.

aq/, éuàg5§ (4.1.12) ) φ1(x), . . . , φn(x) ±½Â§ Wronsky 1

ª

W (x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

φ1(x) φ2(x) · · · φn(x)

φ′1(x) φ′2(x) · · · φ′n(x)

......

. . ....

φ(n−1)1 (x) φ

(n−1)2 (x) · · · φ

(n−1)n (x)

∣∣∣∣∣∣∣∣∣∣∣∣∣,

÷v

W (x) = W (x0)e−

∫ xx0a1(s)ds

, x ∈ J, ¡ Liouville úª.

2l5©§|)nØ·±e¡(Ø.

91

Page 101: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

1oÙ 5©§ÄnØÚ)

½n40. éu n àg5©§ (4.1.11) Úàg5©§ (4.1.12), e(ؤ

áµ

(a) b a1(x), . . . , an(x), f(x) ∈ C(J), Ké ∀ (x0, y0, y1, . . . , yn−1) ∈ J × Rn, § (4.1.11)

÷vЩ^

y(x0) = y0, y′(x0) = y1, . . . , y

(n−1)(x0) = yn−1,

)3 J þ3ëY.

(b) φ1(x), . . . , φn(x) ´àg§ (4.1.12) ). K§3 J þ5Ã'¿^´

Wronsky 1ª W (x) 6= 0, x ∈ J . d¡ φ1(x), . . . , φn(x) àg§ (4.1.12) Ä

)|.

(c) φ1(x), . . . , φn(x) ´àg§ (4.1.12) Ä)|, K

(c1) àg§ (4.1.12) Ï)

y(x) = c1φ1(x) + . . .+ cnφn(x), x ∈ J,

Ù¥ c1, . . . , cn ´?¿~ê;

(c2) àg§ (4.1.11) Ï)

y(x) = c1φ1(x) + . . .+ cnφn(x) + φ∗(x), x ∈ J,

Ù¥ c1, . . . , cn´?¿~ê, φ∗´ (4.1.11)?).AO/, φ∗d φ1(x), . . . , φn(x)

L«, =

φ∗(x) =

n∑k=1

φk(x)

∫ x

x0

Wk(s)

W (s)f(s)ds,

Wk(x) ´ W (x) (n, k) êfª, =

Wk(x) = (−1)n+k

∣∣∣∣∣∣∣∣∣∣φ1(x) · · · φk−1(x) φk+1(x) · · · φn(x)

......

......

......

φ(n−2)1 (x) · · · φ

(n−2)k−1 (x) φ

(n−2)k+1 (x) · · · φ

(n−2)n (x)

∣∣∣∣∣∣∣∣∣∣.

92

Page 102: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

§4.1 5©§)ÄnØ

y: (a), (b), (c1) y²±d§|)nØN´, ÖögC¤. ey (c2). -

Φ(x) =

φ1(x) φ2(x) · · · φn(x)

φ′1(x) φ′2(x) · · · φ′n(x)

......

. . ....

φ(n−1)1 (x) φ

(n−1)2 (x) · · · φ

(n−1)n (x)

.

K§| (4.1.13) Ï)

y(x) =

y(x)

y′(x)

...

y(n−1)(x)

= Φ(x)c + Φ(x)

∫ x

x0

Φ−1(s)f(s)ds.

e¡¦ y(x) Lª. w, Φ(x)c 11 c1φ1(x) + . . .+ cnφn(x). d_Ý

êfªL«

Φ−1(s) =1

W (s)

∗ · · · ∗ W1(s)

.... . .

......

∗ · · · ∗ Wn(s)

,

Ù¥ ∗ ´vkÑwªLªþ©l k

Φ−1(s)f(s) =1

W (s)

f(s)W1(s)

...

f(s)Wn(s)

,

Φ(x)∫ xx0

Φ−1(s)f(s)ds 11 φ∗(x). y.©

N5:

1. n = 2 , § (4.1.11) Ï)±¤

y(x) = c1φ1(x) + c2φ2(x) +

∫ x

x0

φ1(s)φ2(x)− φ2(s)φ1(x)

φ1(s)φ′2(s)− φ2(s)φ′1(s)f(s)ds. (4.1.14)

2. n àg§ (4.1.11) Ï)±làg§ (4.1.12) Ï)ÏL~êC´

µ-

φ(x) = c1(x)φ1(x) + . . .+ cn(x)φn(x).

93

Page 103: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

1oÙ 5©§ÄnØÚ)

é φ(x) Åg¦ê, 3 φ(k)(x), k = 1, . . . , n− 1, ¥-

c′1(x)φ(k−1)1 (x) + . . .+ c′n(x)φ(k−1)

n (x) = 0, k = 1, . . . , n− 1, (4.1.15)

¿ò φ(k)(x), k = 0, 1, . . . , n, \§ (4.1.11) ÏLz

c′1(x)φ(n−1)1 (x) + . . .+ c′n(x)φ(n−1)

n (x) = f(x). (4.1.16)

l n àg5ê§ (4.1.15) Ú (4.1.16) ¥)Ñ c′1(x), . . . , c′n(x), ¿È©=

(4.1.11) Ï).

~K: y = φ(x) ´§

y′′ + p(x)y′ + q(x)y = 0, x ∈ (a, b) (4.1.17)

"), p(x), q(x) 3 (a, b) þëY, K

(a) φ(x)3 (a, b)?¿4f«mþõkk":, 3 φ(x)":?ÙêØ";

(b) § (4.1.17) Ï)

y(x) = φ(x)

(c1 + c2

∫ x

x0

1

φ2(s)e−

∫ sx0p(t)dt

ds

),

Ù¥ c1, c2 ´?¿~ê. XJ3 x0, x mk φ(s) ":, Ø x0 < x1 < . . . <

xk < x, KþãÈ©´d©ãÈ©½Â.

y: db, (4.1.17) )3 (a, b) þëY.

(a) y. XJ φ(x) 3 (a, b) ,4f«mþkáõ":, K φ(x) ù":7

kà:, P x∗. xn ´ φ(x) ":, limn→∞

xn = x∗. K

φ(x∗) = limn→∞

φ(xn) = 0, φ′(x∗) = limn→∞

φ(xn)− φ(x∗)

xn − x∗= 0.

d)5 φ(x) ≡ 0, bgñ. l φ(x) 3 (a, b) ?Û4f«mþõkk

":.

XJ x∗ ´ φ(x) ":, K φ′(x∗) 6= 0. ÄKd)5 φ(x) ≡ 0, x ∈ (a, b), gñ.

(b) Äkb φ(x) 6= 0, x ∈ (a, b). y(x) ´§ (4.1.17) ?). Kd Liouville úª

φ(x)y′(x)− y(x)φ′(x) = ce−

∫ xx0p(t)dt

=⇒ d

dx

(y

φ

)=

c

φ2e−

∫ xx0p(t)dt

.

94

Page 104: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

§4.2 ~Xê5©§|)

y

φ= c

∫ x

x0

1

φ2(s)e−

∫ sx0p(t)dt

ds+ c1.

ùÒ§ (4.1.17) Ï).

XJ φ(x) k":, x∗ ´l x0 C":. Ø x0 < x∗ x0 Ø´":. K

4

limx→x−∗

φ(x)

∫ x

x0

1

φ2(s)e−

∫ sx0p(t)dt

ds = limx→x−∗

φ−2(x)e−

∫ xx0p(t)dt

−φ−2(x)φ′(x)= −e

−∫ x∗x0

p(t)dt

φ′(x∗),

3. Ï é ∀x ∈ (a, b), XJ x1, . . . , xk ´ φ(x) 3 x0 x m":, Ø x0 <

x1 < . . . < xk < x, K¼ê

y(x) = φ(x)

(c1 + c2

(∫ x1

x0

+ . . .+

∫ xk

xk−1

+

∫ x

xk

)1

φ2(s)e−

∫ sx0p(t)dt

ds

),

´k½Â, § (4.1.17) Ï). y..

N5:

• aquCXêàg5©§|, pCXêàg5©§vk).

XJÙ"), Kp§±ü$. öSÖögC¤.

• Euler §

xndny

dxn+ a1x

n−1 dn−1y

dxn−1+ . . .+ an−1x

dy

dx+ any = 0,

Ù¥ a1, . . . , an ∈ R ´~ê, ±ÏLgCþC x = et z~Xê5©§.

eü!?Ø~Xê5©§).

§4.2 ~Xê5©§|)

Ä~Xê5©§|

dy

dx= Ay + f(x), x ∈ J = (a, b), (4.2.1)

Ù¥ A ´ n ¢~êÝ, f(x) ∈ C(J). n = 1 , P A = a, § (4.2.1) éAàg

§kÏ) y = ceax. Á n > 1 àg5©§| (4.2.1) éAàg5©

§|Ï)´Äkaq/ª?

95

Page 105: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

1oÙ 5©§ÄnØÚ)

§4.2.1 Ýê¼ê~Xê5©§|)

^ML« n¢~êÝN¤8Ü.KM3Ý\ÚÝ¢ê¦

e¤5m. é A = (aij) ∈M, ½Â A

‖A‖ =

n∑i,j=1

|aij |.

KÝ÷ve5µé ∀A,B ∈M, ∀λ ∈ R,

1) ‖A‖ ≥ 0, ‖A‖ = 0 ⇐⇒ A = 0;

2) ‖λA‖ = |λ|‖A‖, λ ∈ R;

3) ‖A + B‖ ≤ ‖A‖+ ‖B‖;

4) ‖AB‖ ≤ ‖A‖ ‖B‖, ‖Ak‖ ≤ ‖A‖k, k ∈ N.

c 3 ^5´w,. ey1 4 ^µé A = (aij), B = (bij), - cij =n∑k=1

aikbkj . K

AB = (cij). l

‖AB‖ =

n∑i,j=1

|cij | ≤n∑i=1

n∑j=1

n∑k=1

|aik||bkj | =n∑i=1

n∑k=1

|aik|n∑j=1

|bkj |

≤n∑i=1

n∑k=1

|aik|n∑

k,j=1

|bkj | = ‖A‖ ‖B‖.

?Ú/, ‖Ak‖ ≤ ‖Ak−1‖ ‖A‖ ≤ ‖A‖k.

·K41. é ∀A,B ∈M, e(ؤáµ

(a) Ý?ê

E + A +1

2!A2 + . . .+

1

k!Ak + . . . ,

ýéÂñ. PÙ eA ½ exp(A), ¡Ýê¼ê;

(b) XJ A,B , = AB = BA, K eA+B = eAeB;

(c) é?¿ A ∈M, K eA _, (eA)−1

= e−A;

(d) é?¿_Ý P ∈M k ePAP−1

= PeAP−1.

96

Page 106: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

§4.2 ~Xê5©§|)

y: (a) P a = ‖A‖. K ∥∥∥∥∥∞∑k=0

Ak

k!

∥∥∥∥∥ ≤∞∑k=0

‖Ak‖k!≤∞∑k=0

ak

k!<∞.

¤±Ý?êýéÂñ, l ∞∑k=0

Ak

k! ∈ M. þãتy²Ý?êz©þ

ÑýéÂñ.

(b) O

eA+B =

∞∑k=0

(A + B)k

k!=

∞∑k=0

k∑i=0

k

i

AiBk−i

k!=

∞∑k=0

k∑i=0

AiBk−i

i!(k − i)!= eAeB,

Ù¥

k

i

=k!

i!(k − i)!.

(c) Ú (d) y²N´, lÑ. y..

½n42. éu~Xê5©§|, e(ؤáµ

(a) Ýê¼ê Y(x) = exA ´~Xêàg5©§|

dY

dx= AY, (4.2.2)

Ä)Ý;

(b) f(x) ∈ C(J), x0 ∈ J , K~Xêàg5©§| (4.2.1)

– Ï)

y(x) = exAc +

∫ x

x0

e(x−s)Af(s)ds,

Ù¥ c ´?¿ n ~êþ.

– L (x0,y0) ∈ J × Rn ⊂ Rn+1 ЯK)

y(x) = e(x−x0)Ay0 +

∫ x

x0

e(x−s)Af(s)ds.

y: (a) é?¿ x ∈ R, - I ⊂ R ´± x S:k.m«m. Ï

exA =

∞∑k=0

xkAk

k!,

97

Page 107: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

1oÙ 5©§ÄnØÚ)

3 I þýéÂñ, ¤±éÝê¼êŦ

dexA

dx=

∞∑k=1

xk−1Ak

(k − 1)!= A

∞∑k=1

xk−1Ak−1

(k − 1)!= A exA,

= exA ´àg5©§| (4.2.2) )Ý. q e0A = E, ¤± exA ´àg5©

§| (4.2.2) Ä)Ý.

(b) d (a) Úàg5©§|~êC´úªá. y..

N5:

• ½n 42 lnØþ)û~Xê5©§|¦)¯K.

• éu½ A ∈M, XÛ¦ exA k)û?

§4.2.2 ~Xêàg5©§|Ä)ݦ

1. ^ Jordan IO.¦Ä)Ý

é ∀A ∈M, d5ê Jordan IO.nØ, 3ÛÉÝ P ∈M ¦

A = PJP−1,

Ù¥

J = diag(J1, . . . ,Jm) =

J1

J2

. . .

Jm

,

Ji = λiEni + Ni, Ni =

0 0 0 · · · 0 0

1 0 0 · · · 0 0

0 1 0 · · · 0 0

.... . .

. . .. . .

......

0 0 0. . . 0 0

0 0 0 . . . 1 0

,

Ù¥ λi, i = 1, . . . ,m, ´ A A, ni ´Ý Ji ê, n1 + . . .+ nm = n, Eni ´ ni

ü Ý.

exA = PexJP−1 = P diag(exJ1 , . . . , exJm

)P−1.

98

Page 108: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

§4.2 ~Xê5©§|)

qé i = 1, . . . ,m,

exJi = exλiEni exNi = eλixexNi = eλix

1 0 0 · · · 0 0

x 1 0 · · · 0 0

x2

2! x 1 · · · 0 0

......

. . .. . .

......

xni−2

(ni−2)!xni−3

(ni−3)!xni−4

(ni−4)!

. . . 1 0

xni−1

(ni−1)!xni−2

(ni−2)!xni−3

(ni−3)! . . . x 1

.

ùÒlnØþ)ûÄ)Ý exA ¦¯K.

N5: lÝê¼ê¦Ä)Ý, ±9 exAP E´Ä)Ý, àg5©§|

(4.2.2) kÄ)Ý PexJ. w,, §zþ´d eλix gêØL ni − 1 õª

¦È¤. Ä)Ýù«(e¡Ïé#¦)Jøg´.

~K: ¦)e~Xêàg5©§|

dy

dx= Ay + f(x), y =

y1

y2

y3

, A =

2 0 0

0 −1 0

0 1 −1

, f(x) =

0

1

x

,

): O

exA =

e2x 0T

0 e−x exp

x 0 0

1 0

=

e2x 0 0

0 e−x 0

0 xe−x e−x

.

¤±d~êC´úª§Ï)

y(x) = exAc +

∫ x

0

e(x−s)Af(s)ds = exAc +

0

1− e−x

x− xe−x

,

Ù¥ c ´?¿ 3 ~êþ.

¦+Ýê¼ê)û~Xê5©§Ä)ݦ¯K, ¢SO%

´~(J, Ï¦Ý Jordan IO.5Ò´©(J¯. e¡Jø,

´uO.

99

Page 109: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

1oÙ 5©§ÄnØÚ)

2. AAþ¦Ä)Ý

ãTI5êe(Ø (ë [35, § 6.1,½n 3])µ

·K43. λ1, . . . , λs ´Ý A¤kpØÓA,§­ê©O n1, . . . , ns

n1 + . . .+ ns = n. K

• 5ê§|

(A− λiE)nir(i)0 = 0, (4.2.3)

k ni 5Ã'), P r(i)j0 , j = 1, . . . , ni;

• n þ r(1)10 , . . . , r

(1)n10, . . . , r

(s)10 , . . . , r

(s)ns05Ã'.

½n44. λ1, . . . , λs ´Ý A ¤kpØÓA, §­ê©O n1, . . . , ns

n1 + . . . + ns = n. P r(i)10 , . . . , r

(i)ni0àg5ê§| (4.2.3) ni 5Ã'),

i = 1, . . . , s. Ke(ؤá.

(a) XJ s = n, K ni = 1, i = 1, . . . , n, r(i)10 ´ λi Aþ. ݼê

Φ(x) =(eλ1xr

(1)10 , . . . , e

λnxr(n)10

),

´~Xêàg5©§| (4.2.2) Ä)Ý;

(b) XJ s < n, é ni > 1, j = 1, . . . , ni, -

r(i)jl = (A− λiE)r

(i)j,l−1, l = 1, . . . , ni − 1.

Kݼê

Φ(x) =(eλ1xP

(1)1 (x), . . . , eλ1xP(1)

n1(x), . . . , eλsxP

(s)1 (x), . . . , eλsxP(s)

ns (x)),

´~Xêàg5©§| (4.2.2) Ä)Ý, Ù¥

P(i)j (x) =

ni−1∑k=0

xk

k!r

(i)jk , i = 1, . . . , s, j = 1, . . . , ni.

y: (a). duéAØÓAAþ5Ã', ¤±

Φ(0) =(r

(1)10 , . . . , r

(n)10

),

100

Page 110: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

§4.2 ~Xê5©§|)

´ÛÉÝ. q

dΦ(x)

dx=(eλ1xλ1r

(1)10 , . . . , e

λnxλnr(n)10

)=(eλ1xAr

(1)10 , . . . , e

λnxAr(n)10

)= AΦ(x).

ùÒy² Φ(x) ´~Xêàg5©§| (4.2.2) Ä)Ý.

(b). d·K 43

Φ(0) =(r

(1)10 , . . . , r

(1)n10, . . . , r

(s)10 , . . . , r

(s)ns0

),

ÛÉ.e¡Iy² eλixP(i)j (x), i = 1, . . . , s, j = 1, . . . , ni ´àg5©§| (4.2.2)

). ¯¢þ,

d

dx

(eλixP

(i)j (x)

)= λie

λixni−1∑k=0

xk

k!r

(i)jk + eλix

ni−1∑k=1

xk−1

(k − 1)!r

(i)jk

= λieλix

ni−1∑k=0

xk

k!r

(i)jk + eλix

ni−1∑k=1

xk−1

(k − 1)!(A− λiE) r

(i)j,k−1

= λieλix

xni−1

(ni − 1)!r

(i)j,ni−1 + eλix

ni−2∑k=0

xk

k!Ar

(i)jk

= Aeλixni−1∑k=0

xk

k!r

(i)jk = AeλixP

(i)j (x),

Ù¥31 4 ª¥^ λir(i)j,ni−1 = Ar

(i)j,ni−1, ù´du

(A− λiE)r(i)j,ni−1 = (A− λiE)2r

(i)j,ni−2 = . . . = (A− λiE)nir

(i)j0 = 0.

ùÒy² Φ(x) ´~Xêàg5©§| (4.2.2) Ä)Ý. y..

N5:

1. ½n 44 (a)¦ npØÓA,Ù¢ly²±µXJ Ak n5Ã

'Aþ r1, . . . , rn, éAA´ λ1, . . . , λn (§kU), K

Φ(x) =(eλ1xr1, . . . , e

λnxrn),

´©§| (4.2.2) Ä)Ý.

2. e¢Ý A kEA λi, K λj = λi ´A (îL«Ý). P r(i)m0, r

(j)m0 = r

(i)m0,

m ∈ 1, . . . , ni©O´5ê§| (4.2.3)éAu λi Ú λj ). KÄ)Ý Φ(x)

´E. ¡±l exA = Φ(x)Φ−1(0) ¢Ä)Ý. ,¡éuàg5

101

Page 111: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

1oÙ 5©§ÄnØÚ)

©§| (4.2.2) ?éÝE) eλixP(i)m (x) Ú eλjxP

(j)m (x) = eλixP

(i)

m (x), ±ÏL

-

eλixP(i)m (x) = u(x) +

√−1v(x), eλixP

(i)

m (x) = u(x)−√−1v(x),

àg5©§| (4.2.2) ü¢) u(x) Ú v(x). 2^ùü¢)OÄ)

Ý¥ùéÝE)=¢Ä)Ý.

~K:

1. ¦~Xêàg5©§|

dy

dx= Ay, A =

2 −1 −1

−2 1 3

0 −1 1

,

Ä)Ý.

): Ï det(A−λE) = (2−λ)((λ− 1)2 + 1

),¤±AA λ1 = 2, λ2 = 1+

√−1,

λ3 = 1−√−1. §éAAþ©O

r1 =

2

−1

1

, r2 =

1

−√−1

1

, r3 =

1

√−1

1

.

e(1+√−1)xr2 ½ e(1−

√−1)xr3 ¢ÜÚJܧü5Ã'¢)

ex

cosx

sinx

cosx

, ex

sinx

− cosx

sinx

.

§kÄ)Ý

Φ(x) =

2e2x ex cosx ex sinx

−e2x ex sinx −ex cosx

e2x ex cosx ex sinx

.

102

Page 112: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

§4.2 ~Xê5©§|)

2. ¦~Xêàg5©§|

dy

dx= Ay, A =

0 1 0 0

−1 2 0 0

−2 2 1 0

0 1 0 −1

,

Ä)Ý.

): Ï det(A − λE) = (λ + 1)(λ − 1)3, ¤± A A λ1 = −1, λ2 = 1 (n­).

λ1 = −1 éAAþ r1 = (0, 0, 0, 1)T .

éu λ2 = 1, l5ê§|

(A−E)3r = 0,

)

r(2)10 =

−1

1

0

0

, r

(2)20 =

0

0

1

0

, r

(2)30 =

4

0

0

1

.

?Ú/,

r(2)11 = (A−E)r

(2)10 =

2

2

4

1

, r

(2)12 = (A−E)r

(2)11 =

0

0

0

0

,

r(2)21 = (A−E)r

(2)20 =

0

0

0

0

,

r(2)31 = (A−E)r

(2)30 =

−4

−4

−8

−2

, r

(2)32 = (A−E)r

(2)31 =

0

0

0

0

.

103

Page 113: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

1oÙ 5©§ÄnØÚ)

¤±§kÄ)Ý

Φ(x) =(e−xr1 ex(r

(2)10 + xr

(2)11 ) exr

(2)20 ex(r

(2)30 + xr

(2)31 ))

=

0 −ex + 2xex 0 4ex − 4xex

0 ex + 2xex 0 −4xex

0 4xex ex −8xex

e−x xex 0 ex − 2xex

.

e¡|^½n 44 Ñ~Xêàg5©§|)O.

íØ45. A ∈M. XJ A A¢ÜÑK, Ké ∀v ∈ Rn, ∃ ρ > 0, a > 0 ¦

‖exAv‖2 ≤ ae−ρx‖v‖2, x ≥ 0.

Ù¥ ‖v‖2 =√v2

1 + . . .+ v2n.

y: d½n 44,

Φ(x) =(eλ1xP

(1)1 (x), . . . , eλ1xP(1)

n1(x), . . . , eλsxP

(s)1 (x), . . . , eλsxP(s)

ns (x)),

´§| (4.2.2) Ä)Ý, ¤±3ÛÉÝ C ∈M ¦

exA = Φ(x)C =: (w1(x), . . . ,wn(x)) ,

Ù¥

wi(x) =s∑j=1

Pij(x)eλj x, i = 1, . . . , n,

Pij(x) ´gê ≤ n− 1 n þõª.

P λj = αj +√−1βj , α = max

1≤j≤sαj , KdnØªÚ Cauchy ت

n∑i=1

‖wi(x)‖22 ≤n∑i=1

s∑j=1

‖Pij(x)eλjx‖2

2

=

n∑i=1

s∑j=1

‖Pij(x)‖2eαjx2

≤n∑i=1

s∑j=1

‖Pij(x)‖22s∑j=1

e2αjx ≤ ne2αxn∑i=1

s∑j=1

‖Pij(x)‖22

≤ ne2αxn∑i=1

s∑j=1

nM2

(n−1∑k=0

|x|k)2

≤ n4M2e2αx

(n−1∑k=0

|x|k)2

,

104

Page 114: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

§4.2 ~Xê5©§|)

Ù¥ M ´ Pij(x), i = 1, . . . , n, j = 1, . . . , s Xêýé. ¤±2dnت

Ú Cauchy ت

‖exAv‖2 ≤n∑i=1

‖wi(x)‖2 |vi| ≤ ‖v‖2

(n∑i=1

‖wi(x)‖22

) 12

≤ ‖v‖2 n2Mexαn−1∑k=0

|x|k.

ρ ∈ (0,−α). du

limx→∞

ex(α+ρ)n−1∑k=0

|x|k = 0,

¤±3 K0 > 0 ¦

exαn−1∑k=0

|x|k ≤ K0e−ρx, x ∈ [0,∞).

- a = n2MK0 =íØy². y..

§4.2.3 A^µ²¡~Xê5©XÚÛÜ(

~Xêàg5©§|)A^, !?ز¡~Xê5©§|

d

dt

x

y

= A

x

y

, A =

a b

c d

6= 0, (4.2.4)

3Û: (0, 0) ;ÛÜ(, Ù¥ 0 L« 2 "Ý.

éu©§|

dx

dt= P (x, y),

dy

dt= Q(x, y),

• : (x0, y0) ∈ R2 ¡T§|Û:, XJ P (x0, y0) = 0, Q(x0, y0) = 0.

• Û: (x0, y0) ¡ÐÛ: (½pÛ:), XJ P,Q 3 (x0, y0) Jacobi Ý

∂(P,Q)

∂(x, y)

∣∣∣∣(x0,y0)

,

AkØ" (½Ñ").

• XJÐÛ:üAÑØ", ¡òz. ÄK¡òz.

• XJòzÐÛ:A¢ÜÑØ", ¡V­. ÄK¡V­.

105

Page 115: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

1oÙ 5©§ÄnØÚ)

ã 4.1 ­½.(:Ø­½.(:

d JordanIO.nØ,3¢_Ý P¦ P−1APe JordanIO.µ λ 0

0 µ

,

λ 0

1 λ

,

α −β

β α

,

λ 0

0 0

,

0 0

1 0

,

Ù¥ λ, µ, β 6= 0. N´y3C x

y

= P

ξ

η

,

e, §| (4.2.4) z

d

dt

ξ

η

= P−1AP

ξ

η

.

du5Cå.Ú^=^, ÏdØ5, e¡?Ø A äkþãIO

.§| (4.2.4) 3Û: (0, 0) 5.

(I) A =

λ 0

0 µ

.

àg5©§| (4.2.4) Ï)

x = c1eλt, y = c2e

µt,

Ù¥ c1, c2 ´?¿~ê. ?Ú/, §| (4.2.4) )L«¤

x = 0, ½ y(x) = c|x|µλ ,

Ù¥ c ´?¿~ê.

1) λ = µ. §| (4.2.4) ) x = 0, ½ y = cx, Ù¥ c ´?¿~ê. ©§|

(4.2.4) )3 (0, 0) ÛÜ(Xã 4.1. d (0, 0) ¡.(:. λ = µ < 0

, ¡­½.(:; λ = µ > 0 , ¡Ø­½.(:.

106

Page 116: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

§4.2 ~Xê5©§|)

ã 4.2 ­½ü(:Ø­½ü(:

ã 4.3 Q:

2) λ 6= µ, λµ > 0. µ

λ> 1 , ¤k; (Ø x = 0 ) 3:? x ¶.

µ

λ< 1 , ¤k; (Ø y = 0 ) 3:? y ¶. ©§| (4.2.4) )

3 (0, 0) ÛÜ(Xã 4.2. d (0, 0) ¡ü(:, ½¡(:. λ > 0

(½ λ < 0) , ¡Ø­½(: (½­½(:).

3) λµ < 0. du

limx→±∞

c|x|µλ = 0, lim

x→±0c|x|

µλ =∞,

¤±©§| (4.2.4) )3 (0, 0) ÛÜ(Xã 4.3. d (0, 0) ¡Q:.

(II) A =

λ 0

1 λ

.

àg5©§| (4.2.4) )

x = 0, ½ y(x) = cx+x

λln |x|,

Ù¥ c ´?¿~ê. q

limx→0

y(x) = 0, limx→0

dy(x)

dx= limx→0

(c+

1

λln |x|+ 1

λ

)=

−∞, λ > 0,

∞, λ < 0,

¤±©§| (4.2.4) )3 (0, 0) ÛÜ(Xã 4.4. d (0, 0) ¡òz(:

(½ü(:).

ã 4.4 ­½òz(:Ø­½òz(:

107

Page 117: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

1oÙ 5©§ÄnØÚ)

ã 4.5 ¥%!­½:Ø­½:

ã 4.6 5áV­òzÐÛ:

(III) A =

α −β

β α

.

ÏL4IC x = r cos θ, y = r sin θ, àg5©§| (4.2.4) z

dr

dt= αr,

dt= β.

§k)

r = c exp

βθ

),

Ù¥ c ≥ 0 ´?¿~ê. ¤±©§| (4.2.4) )3 (0, 0) ÛÜ(Xã 4.5. ?

Ú/,

– α = 0 , r = c, (0, 0) ¡¥%. d (0, 0) ¿÷±Ï;.

– α > 0 , (0, 0) ¡Ø­½:. d (0, 0) ; t O\Ñ^

/lmTÛ:.

– α < 0 , (0, 0) ¡­½:. d (0, 0) ; t O\Ñ^/

%CTÛ:.

(IV) A =

λ 0

0 0

.

d y ¶þ:Ñ´Û:. àg5©§| (4.2.4) Ï)

x = c1eλt, y = c2,

Ù¥ c1, c2 ´?¿~ê. ¤±©§| (4.2.4) )3 (0, 0) ÛÜ(Xã 4.6. d

y ¶þ¿÷Û:, ùÛ:¡á, V­òzÐÛ:.

108

Page 118: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

§4.2 ~Xê5©§|)

ã 4.7 5ápÛ:

(V) A =

0 0

1 0

.

d y ¶þ:EÑ´Û:. àg5©§| (4.2.4) Ï)

x = c1, y = c1t+ c2,

Ù¥ c1, c2 ´?¿~ê. ¤±©§| (4.2.4) )3 (0, 0) ÛÜ(Xã 4.7. d

y ¶þ¿÷Û:, ùÛ:´á, §üAÑ", §Ñ´p

Û:.

o(þã©ÛXe(Ø.

½n46. P det(A− λE) = λ2 + pλ+ q, Ù¥ p = −trA = −(a+ d), q = det A = ad− bc. ~

Xêàg5©§| (4.2.4) :ke5.

(a) q < 0 (A küÉÒA), (0, 0) ´Q:;

(b) q = 0 (A k"A), (0, 0) ´òzÐÛ:½pÛ:;

(c) q > 0, p2 > 4q (A küØÓÒA), (0, 0) ´(:;

(d) q > 0, p2 = 4q (A küA), (0, 0) ´.(:½òz(:;

(e) q > 0, 0 < p2 < 4q (A ké¢ÜØ"A), (0, 0) ´:;

(f) q > 0, p = 0 (A kéXJA), (0, 0) ´¥%.

éu AØäkIO.,©§| (4.2.4)3:ÛÜã(JÌ´Q:Ú(:

¹. XÛÑùA«¹e@A^AÏ), ¶Ó;Úo«£ÇÖ [16] ¥k

B. Öý­0XÛ$^ Mathematica 5©§|ÛÜã.

109

Page 119: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

1oÙ 5©§ÄnØÚ)

§4.2.4 ^ Mathematica ¦§|)Ú²¡©§)ÛÜã

e¡ÏLü~f`²XÛ^ Mathematica ¦)©§|, ±9^ Mathematica

²¡©§|3Û:ÛÜã.

~K:

1. ^ Mathematica ¦©§|Ï)

x′(t) = 2x− y, y′(t) = x− 2y.

Ñ\µ

DSolve[x′[t] == 2x[t]− y[t], y′[t] == x[t]− 2 y[t], x[t], y[t], t]

Shift+Enter ÑÑ(J

x[t]→ 16e−√

3t(3− 2√

3 + 3e2√

3t + 2√

3e2√

3t)C[1]− e−√

3t(−1+e2√

3t)C[2]

2√

3,

y[t]→ e−√

3t(−1+e2√

3t)C[1])

2√

3− 1

6e−√

3t(−3− 2 3√−3e2

√3t + 2

√3e2√

3t)C[2]

2. ^ Mathematica ¦©§|ЯK)

x′(t) = 2x− 3y + e−t, y′(t) = x− 2y + e2t, x(0) = 1, y(0) = −1

Ñ\µ

DSolve[x′[t] == 2x[t]− 3 y[t] + Exp[−t], y′[t] == x[t]− 2 y[t] + Exp[2 t],

x[0] == 1, y[0] == −1, x[t], y[t], t]

Shift+Enter ÑÑ

x[t]→ − 14e−t(13− 21e2t + 4e3t + 2t), y[t]→ 1

4e−t(−11 + 7e2t − 2t)

3. ^ Mathematica Ѳ¡©§|

x′(t) = x− y, y′(t) = x+ y,

3:ã. 5µN´O, :´:.

Ñ\µ

s1 = NDSolve[x′[t] == x[t]−y[t], y′[t] == x[t]+y[t], x[0] == 0.5, y[0] == 0.5, x[t], y[t], t,−15, 15];

s2 = NDSolve[x′[t] == x[t]−y[t], y′[t] == x[t]+y[t], x[0] == 1.1, y[0] == 0.0, x[t], y[t], t,−15, 15];

s3 = NDSolve[x′[t] == x[t]−y[t], y′[t] == x[t]+y[t], x[0] == −1.1, y[0] == 1.1, x[t], y[t], t,−15, 15];

ParametricPlot[Evaluate[x[t], y[t]/.s1],Evaluate[x[t], y[t]/.s2],Evaluate[x[t], y[t]/.s3],

t,−15, 15, ImageSize→ 500,PlotRange→ −1.5, 1.5]

110

Page 120: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

§4.3 ~Xêp5©§)

Shift+Enter =ÑÑn^;.

N5: ~ 3 ¥xÑn^;. XJF"ÏLõ;5)©§|3:

(, ±õЩ:, ±ò$m t .

~¥Jø«xÛÜã, Öö±&¢Ù§x.

§4.3 p~Xê5©§)

dup©§±=z¤§|, Ïdp~Xê5©§¦)¯K

)û. òp5©§=z¤§|3Oþ5éõØB.up~Xê

5©§gA:, I&¦¦)B.

Ä n ~Xêàg5©§

L(y) := y(n) + a1y(n−1) + . . .+ an−1y

′ + any = f(x), (4.3.1)

ÚÙéAàg5©§

y(n) + a1y(n−1) + . . .+ an−1y

′ + any = 0, (4.3.2)

Ù¥ a1, . . . , an ∈ R, f(x) 3m«m J = (a, b) þëY. e¡?ا#).

§4.3.1 ~Xêàg5©§)

ÏLò n~Xê5©§=z¤§|,±9§|A§,·±

p5©§ (4.3.1) ½ (4.3.2) A§

P (λ) = λn + a1λn−1 + . . .+ an−1λ+ an = 0. (4.3.3)

dd, p~Xê5©§A§ÃIOÒ±l§.

e¡(JÑp~Xêàg5©§Ä)|.

½n47. (4.3.3) k s pØ λ1, . . . , λs ∈ C, §­ê©O´ n1, . . . , ns,

n1 + . . .+ ns = n. K¼ê|

eλ1x, xeλ1x, . . . , xn1−1eλ1x, . . . , eλsx, xeλsx, . . . , xns−1eλsx, (4.3.4)

´ n ~Xêàg5©§ (4.3.2) Ä)|.

111

Page 121: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

1oÙ 5©§ÄnØÚ)

y: PÒBå,e¡P a0 = 1. Äky²z xkeλlx, l = 1, . . . , s, k = 0, 1, . . . , nl−1,

´àg5©§ (4.3.2) ).

du λl, l = 1, . . . , s, ´A§ (4.3.3) nl ­, k

dj

dλj

(n∑i=0

aiλn−i

)∣∣∣∣∣λ=λl

= 0, j = 0, 1, . . . , nl − 1,

=

n∑i=0

ai(n− i)!

(n− i− j)!λn−i−jl = 0, l = 1, . . . , s, j = 0, 1, . . . , nl − 1.

d¦È¼êê Leibniz úª

(f(x)g(x))(m) =

m∑j=0

m

j

f (j)g(m−j),

n∑i=0

ai(xkeλlx

)(n−i)=

n∑i=0

ai

n−i∑j=0

n− i

j

(xk)(j)(eλlx)(n−i−j)

=

n∑i=0

ai

k∑j=0

n− i

j

k!

(k − j)!xk−jλn−i−jl eλlx (4.3.5)

=

n∑i=0

ai

k∑j=0

k

j

(n− i)!(n− i− j)!

xk−jλn−i−jl eλlx

=

k∑j=0

k

j

xk−jeλlx

(n∑i=0

ai(n− i)!

(n− i− j)!λn−i−jl

)= 0,

Ù¥31ª¥^¯¢ (xk)(j) = 0, j > k;

n− i

j

= 0, j > n − i. ùÒy²

xkeλlx, l = 1, . . . , s, k = 0, 1, . . . , nl − 1, ´§ (4.3.2) ).

Ùgy²)| (4.3.4) 3 R þ5Ã'. P (4.3.4) ¥¼êg y1(x), . . . , yn(x).

112

Page 122: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

§4.3 ~Xêp5©§)

K§3 R þ5Ã'=§ Wronsky 1ª

W (x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

y1(x) y2(x) . . . yn(x)

y′1(x) y′2(x) . . . y′n(x)

......

...

y(n−2)1 (x) y

(n−2)2 (x) . . . y

(n−2)n (x)

y(n−1)1 (x) y

(n−1)2 (x) . . . y

(n−1)n (x)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣6= 0, x ∈ R.

y. d Liouville úª, b W (x) ≡ 0, x ∈ R. x0 6= 0. Kþã Wronsky 1ª¥1

þ3 x0 5'. l 3Ø"~ê b0, b1, . . . , bn−1 ¦

b0y(n−1)j (x) + b1y

(n−2)j (x) + . . .+ bn−2y

′j(x) + bn−1yj(x)

∣∣∣x=x0

= 0, j = 1, . . . , n.

du yj(x) ∈ xkeλlx; l = 1, . . . , s, k = 0, 1, . . . , nl − 1, ¤±lª (4.3.5)

n−1∑i=0

bi(xkeλlx

)(n−1−i)=

k∑j=0

k

j

xk−jeλlx

(n−1∑i=0

bi(n− 1− i)!

(n− 1− i− j)!λn−1−i−jl

).

é l = 1, . . . , s, k = 0, 1, . . . , nl − 1 k

k∑j=0

k

j

xk−jeλlx

(n−1∑i=0

bi(n− 1− i)!

(n− 1− i− j)!λn−1−i−jl

)∣∣∣∣∣∣∣x=x0

= 0. (4.3.6)

é ∀ l ∈ 1, . . . , s, 3 (4.3.6) ¥ k = 0, l j = 0, Kk

n−1∑i=0

bi(n− 1− i)!(n− 1− i)!

λn−1−il = 0.

3 (4.3.6) ¥ k = 1, (Üþª

n−1∑i=0

bi(n− 1− i)!(n− 2− i)!

λn−2−il = 0.

Uìþãg

n−1∑i=0

bi(n− 1− i)!

(n− 1− i− j)!λn−1−i−jl = 0, j = 2, . . . , nl − 1.

l é ∀ l ∈ 1, . . . , s

dj

dλj

(n−1∑i=0

biλn−1−i

)∣∣∣∣∣λ=λl

= 0, j = 0, 1, . . . , nl − 1.

113

Page 123: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

1oÙ 5©§ÄnØÚ)

ù`² λl, l ∈ 1, . . . , s ´ê§

n−1∑i=0

biλn−1−i = 0,

nl ­. Ï Tê§k n1 + . . . + ns = n (O­ê). gê

õ n − 1 gê§ØUk n . ùgñ`²)| (4.3.4) Wronsky 1ª

W (x) 6= 0, x ∈ R. ¤± (4.3.4) ´àg5§ (4.3.2) Ä)|. y..

N5:

1. XJkEA, 'X λl, λl, xkeλlx ½ xkeλlx ¢ÜÚJÜ=é¢).

~K:

1. ¦§

y(7) + 3y(6) + 5y(5) + 7y(4) + 7y′′′ + 5y′′ + 3y′ + y = 0,

Ï).

): A§

λ7 + 3λ6 + 5λ5 + 7λ4 + 7λ3 + 5λ2 + 3λ+ 1 = (λ+ 1)3(λ2 + 1)2 = 0,

= λ1 = −1 (n­), λ2 = ±√−1 (­ÝE). §kÄ)|

e−x, xe−x, x2e−x, e√−1x, xe

√−1x, e−

√−1x, xe−

√−1x.

¤±§Ï)

y(x) = c1e−x + c2xe

−x + c3x2e−x + c4 cosx+ c5x cosx+ c6 sinx+ c7x sinx,

Ù¥ c1, . . . , c7 ´?¿~ê.

2. β ∈ R ´"~ê, f(x) ´± ω ±ÏëY¼ê. y²©§

y + 2βy + y = f(x),

kk±Ï ω ±Ï).

y: ´uO§éAA§A λ1,2 = −β ±√β2 − 1.

114

Page 124: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

§4.3 ~Xêp5©§)

i) |β| = 1. K λ = −β (­). dàg5©§Ï)úª (4.1.14)

§Ï)

y(x) = c1e−βx + c2xe

−βx +

∫ x

0

(x− s)eβ(s−x)f(s)ds,

Ù¥ c1, c2 ´?¿~ê.

du

y(x+ ω) = c1e−β(x+ω) + c2(x+ ω)e−β(x+ω) +

∫ x

−ω(x− t)eβ(t−x)f(t)dt, x ∈ R,

y(x) ´±Ï ω ±Ï)¿^´

y(x+ ω) ≡ y(x), x ∈ R,

¤±éªz y(x) ´± ω ±Ï±Ï)¿^´[c1(e−βω − 1) + c2ωe

−βω −∫ 0

−ωteβtf(t)dt

]+

[c2(e−βω − 1) +

∫ 0

−ωeβtf(t)dt

]x ≡ 0, x ∈ R.

d§du

c1(e−βω − 1) + c2ωe−βω −

∫ 0

−ωteβtf(t)dt = 0,

c2(e−βω − 1) +

∫ 0

−ωeβtf(t)dt = 0.

Ï βω 6= 0, ¤±þã5ê§|k)

c1 =1

1− e−βω

∫ 0

−ω

eβω − 1− t)eβtf(t)dt, c2 =

1

1− e−βω

∫ 0

−ωeβtf(t)dt.

§k± ω ±Ï±Ï).

ii) |β| 6= 1. - % =√β2 − 1. K§Ï)

y(x) = c1e(−β+%)x + c2e

(−β−%)x +1

2%

∫ x

0

(e(−β+%)(x−s) − e(−β−%)(x−s)

)f(s)ds,

Ù¥ c1, c2 ´?¿~ê. du

y(x+ω) = c1e(−β+%)(x+ω) +c2e

(−β−%)(x+ω) +1

2%

∫ x

−ω

(e(−β+%)(x−t) − e(−β−%)(x−t)

)f(t)dt,

115

Page 125: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

1oÙ 5©§ÄnØÚ)

¤±é y(x+ ω) ≡ y(x) z, y(x) ´± ω ±Ï±Ï)¿^´

e%x[c1(e(−β+%)ω − 1) +

1

2%

∫ 0

−ωe(β−%)tf(t)dt

]+e−%x

[c2(e(−β−%)ω − 1)− 1

2%

∫ 0

−ωe(β+%)tf(t)dt

]≡ 0, x ∈ R.

d§du

c1(e(−β+%)ω − 1) +1

2%

∫ 0

−ωe(β−%)tf(t)dt = 0,

c2(e(−β−%)ω − 1)− 1

2%

∫ 0

−ωe(β+%)tf(t)dt = 0.

§k)

c1 =1

2%(1− e(−β+%)ω)

∫ 0

−ωe(β−%)tf(t)dt, c2 =

−1

2%(1− e(−β−%)ω)

∫ 0

−ωe(β+%)tf(t)dt.

§k± ω ±Ï±Ï).

§4.3.2 ~Xêàg5©§½Xê

!?Ø©§ (4.3.1)5 f(x)äkAÏ/ª,ÏL½Xê¦

(4.3.1) )µ

1.

f(x) = Pm(x)eµx,

Ù¥ Pm(x) ´ m gõª, ©§ (4.3.1) k/X

φ∗(x) = xkQm(x)eµx,

),Ù¥ k ´ µA§ (4.3.3)­ê (XJ µØ´A§ (4.3.3)

, K k = 0), Qm(x) ´½ m gõª.

2.

f(x) = (Am(x) cos(βx) +Bm(x) sin(βx))eαx,

Ù¥ Am(x), Bm(x) ´õª, maxdegAm,degBm = m, ©§ (4.3.1) k/X

φ∗(x) = xk(Cm(x) cos(βx) +Dm(x) sin(βx))eαx,

116

Page 126: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

§4.3 ~Xêp5©§)

), Ù¥ k ´ α+√−1β A§ (4.3.3) ­ê (XJ α+

√−1β Ø´

A§ (4.3.3) , K k = 0), Cm(x), Dm(x) ´½ m gõª.

N5: XJ©§ (4.3.1) ¥ f(x) Øäkþ¡½/ª, §±©¤AÚ, X

f(x) = f1(x) + . . .+ fk(x),

Ù¥z fi(x) (i = 1, . . . , k) Ñäkþã½/ª, KÏL¦ L(y) = fi(x) ) φ∗i (x),

±§ (4.3.1) )

φ∗(x) = φ∗1(x) + . . .+ φ∗k(x).

~K: ¦§

y′′ + 2y′ + y = (x2 − 5)e−x + sin(2x), (4.3.7)

Ï).

): dA§ λ2 + 2λ+ 1 = 0 A λ = −1 (­). l àg§Ï)

y(x) = c1e−x + c2xe

−x,

Ù¥ c1, c2 ´?¿~ê.

Äàg§

y′′ + 2y′ + y = (x2 − 5)e−x. (4.3.8)

du µ = −1 ´­A, ¤±©§ (4.3.8) k/X

φ∗1(x) = x2(ax2 + bx+ c)e−x,

). òÙ\ (4.3.8) ¿z

12ax2 + 6bx+ 2c = x2 − 5.

'T§ü> x ÓgXê a = 1/12, b = 0, c = −5/2. § (4.3.8) k)

φ∗1(x) = x2

(1

12x2 − 5

2

)e−x.

Äàg§

y′′ + 2y′ + y = sin(2x). (4.3.9)

117

Page 127: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

1oÙ 5©§ÄnØÚ)

du α+√−1β = 0 + 2

√−1 Ø´A§, ¤±©§ (4.3.9) k/X

φ∗2(x) = a cos(2x) + b sin(2x),

). òÙ\ (4.3.9) ¿z

(−3a+ 4b) cos(2x)− (4a+ 3b) sin(2x) = sin(2x).

'T§ü> sin(2x), cos(2x) Xê a = −4/25, b = −3/25. § (4.3.9) k)

φ∗2(x) = − 4

25cos(2x)− 3

25sin(2x).

nÜþãü©§), § (4.3.7) Ï)

y(x) = c1e−x + c2xe

−x + x2

(1

12x2 − 5

2

)e−x − 4

25cos(2x)− 3

25sin(2x),

Ù¥ c1, c2 ´?¿~ê.

§4.4 CXê5©§Ä:nØ

cü!Ñ~Xê5©§|Úp~Xê5©§). éCXê

5©§Ú§|%vk), !éAaAϹ\±?Ø.

§4.4.1 ±ÏXê5©§|µFloquet nØ

éuCXê5©§| (4.1.1), XJ§éAàg§|Ä)ÝÒ±

^~êC´¦§Ï).vk¦CXêàg5©§|Ä)Ý.

!ıÏXêàg5©§|

x = A(t)x, x ∈ Rn, (4.4.1)

Ù¥ A(t) ´± T > 0 ±Ï±Ïݼê.

e¡½n (¡ Floquet ½n) ´IêÆ[ Gaston Floquet (1847–1920) 3 1883

cïá, ¦Ñ±ÏXê5©§|Ä)ÝIO..

½n48. (Floquet ½n) A(t) ´± T > 0 ±Ï¢ëY±Ïݼê, Φ(t) ´ (4.4.1)

Ä)Ý. Ke(ؤá.

118

Page 128: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

§4.4 CXê5©§Ä:nØ

(a) Ä)Ý Φ(t) ÷v

Φ(t+ T ) = Φ(t)Φ−1(0)Φ(T ), t ∈ R.

(b) 3ÛÉ!!T ±Ïݼê Q(t), 9~êÝ B (U´¢U´E

) ¦

Φ(t) = Q(t)etB.

?Ú/, 3C x = Q(t)y e, àg5©§| (4.4.1) =z~Xê5©

§|

y = By. (4.4.2)

(c) 3ÛÉ!!2T ±Ïݼê P(t), 9¢~êÝ R ¦

Φ(t) = P(t)etR.

?Ú/, 3C x = P(t)y e, àg5©§| (4.4.1) =z~Xê5©

§|

y = Ry. (4.4.3)

y: du A(t)3 RþëY,¤±§| (4.4.1)3 RþkëY¢Ä)Ý,P Φ(t).

- Ψ(t) = Φ(t+ T ), K Ψ(t) ´ (4.4.1) Ä)Ý. 3ÛÉ¢~êÝ C ¦

Φ(t+ T ) = Φ(t)C.

(a) 3þª¥- t = 0 C = Φ−1(0)Φ(T ).

(b) du C´ÛÉ,¤±l [15]½ [10, 37],3Ý B (U´¢U´E)

¦

C = eTB.

þªy²ëN¹ §6.2.

-

Q(t) = Φ(t)e−tB.

119

Page 129: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

1oÙ 5©§ÄnØÚ)

K§´ÛÉ!ëY!T ±Ïݼê. ¯¢þ, Q(t)ëY5d Φ(t)

Ú e−tB ëY5. Q(t) ÛÉ5d Φ(t) Ú e−tB ÛÉ5,

e−tB ÛÉ5d§´ x = −Bx Ä)Ý. Q(t) ´ T ±Ï, Ï

Q(t+ T ) = Φ(t+ T )e−(t+T )B = Φ(t)Ce−TBe−tB = Φ(t)e−tB = Q(t).

C x = Q(t)y, Kk

x = Q′(t)y + Q(t)y =(Φ′(t)e−tB −Φ(t)Be−tB

)y + Q(t)y

=(A(t)Φ(t)e−tB −Q(t)B

)y + Q(t)y = A(t)Q(t)y + Q(t)(y −By)

= A(t)x + Q(t)(y −By).

d Q(t) _5, x(t) ´±ÏXê5©§| (4.4.1) )= y(t) ´

(4.4.2) ).

(c) Ï C ´ÛÉ, ¤±l [15] ½ [10, 37] 3¢Ý R ¦

C2 = e2TR.

þªy²ëN¹ §6.2. -

P(t) = Φ(t)e−tR.

K§´ÛÉ!ëY!2T ±Ïݼê. P(t) ´ 2T ±Ï, Ï

P(t+ 2T ) = Φ(t+ 2T )e−(t+2T )R = Φ(t)C2e−2TRe−tR = Φ(t)e−tR = P(t),

Ù¥^¯¢

Φ(t+ 2T ) = Φ(t+ T )C = Φ(t)C2.

C x = P(t)y, aqu (b) y² (c) y².

y..

N5: ¢Ý C ∈M ´ÛÉ, K

1. C okÝéê, =3Ý B ¦ C = eB, P B = ln C. ¢Ý C éê B U

´¢U´E.

120

Page 130: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

§4.4 CXê5©§Ä:nØ

2. C2 ok¢Ýéê, =3¢Ý B ¦ C2 = eB.

3. C k¢Ýéê¿^´ C vkKA, ½ C Jordan IO.¥äkKA

Jordan ¬¤éÑy (ë [37]).

4. ½n 48 y²¥Ä)ÝüL« Φ(t) = Q(t)etB Ú Φ(t) = P(t)etR, §Ñ

¡Ä)Ý Φ(t) Floquet 5..

Floquet ½n«±ÏXêàg5©§|Ä)ÝA. |^ Floquet

½n±?رÏXêàg5©§3:)5. ~Xàg5©§

x′ = a(t)x,

Ù¥ a(t) ´±Ï T ëY±Ï¼ê, k")

x(t) = e∫ t0a(s)ds.

â Floquet ½n, 3 T ±Ï¼ê p(t), 9ê b ¦

x(t) = p(t)etb.

du x(t+ T ) = x(t)c = x(t)eTb, ¤±k

e∫ t+T0

a(s)ds = e∫ t0a(s)dseTb.

qdu∫ t+Tt

a(s)ds =∫ T

0a(s)ds, ±

b =1

T

∫ T

0

a(s)ds.

5¿, b T¼ê a(s) 3±Ïþ²þ. þ b = 0 , x(t) ´±Ï). þ

b < 0 , x(t) t→∞ ªu".

e¡?رÏXêàg5©§|±Ï)35. é ∀v ∈ Rn, ©§|

(4.4.1) L (τ,v) )

x(t) = Φ(t)Φ−1(τ)v.

5¿: é ∀v ∈ Rn, þª(½©§| (4.4.1) ¤k), Ïàg5©§|

)d§Ä)ÝÚЩþ(½. 5f

v −→ Φ(T + τ)Φ−1(τ)v,

121

Page 131: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

1oÙ 5©§ÄnØÚ)

½ÂЩ v ÷X)²L±Ï T ¤3 . ùf­53u: §^u

?Ø©§| (4.4.1)±Ï)35¯K.ùf¡©§| (4.4.1)ü

f. üfA¡©§| (4.4.1) A¦ê½Floquet ¦ê.

du Φ(t+ T ) = Φ(t)Φ−1(0)Φ(T ), ¤±

Φ(T + τ)Φ−1(τ) = Φ(τ)Φ−1(0)Φ(T )Φ−1(τ).

ùÒy²A¦ê´ C = eTB A.

Eê µ ¡©§| (4.4.1) Aê½Floquet ê, XJ ρ := eµT ´

A¦ê. 5¿: A¦êTk n (O­ê), Floquet ê%káõ.

~K:

1. ¦e§A¦ê

x′(t) = (cos2 t)x.

): ù´±Ï π ±ÏXê5©§. §k²)

x(t) = φ(t) = e12 t+

14 sin(2t).

¤±

c := φ−1(0)φ(π) = eπ2 .

Ïd§A¦ê eπ2 .

2. ¦e§|A¦ê

x′(t) = (cos(2πt) + 1)x, y′(t) = cos(2πt)x+ y.

): ù´±Ï 1 ±ÏXê5©§|. §kÄ)Ý

Φ(t) =

et+sin(2πt)

2π 0

et+sin(2πt)

2π + et et

, 9 Φ−1(t) =

e−t−sin(2πt)

2π 0

−e−t − e−t−sin(2πt)

2π e−t

.

¤±

C := Φ−1(0)Φ(1) =

e 0

0 e

.

Ïd©§|küA¦ê e.

122

Page 132: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

§4.4 CXê5©§Ä:nØ

e¡(JÑA¦ê±ÏXê5©§| (4.4.1) ±Ï)m'X. ±

XJvkAO`²,·` T > 0´¼ê f(t)±Ï´ T ´±Ï,= f(t+T ) ≡

f(t), t ∈ R, é?¿½ S ∈ (0, T ) Ñk f(t+ S) 6≡ f(t), t ∈ R.

½n49. éu±Ï T ±ÏXêàg5©§| (4.4.1), e¡(ؤá.

(a) λ ´©§| (4.4.1) A¦ê¿^´©§| (4.4.1) 3")

φ(t) ¦

φ(t+ T ) = λφ(t).

(b) ©§| (4.4.1) 3" 2T ±Ï)¿^´ −1 ©§| (4.4.1)

A¦ê.

(c) ©§| (4.4.1) 3" T ±Ï)¿^´ 1 ©§| (4.4.1)

A¦ê.

y: Φ(t) ´©§| (4.4.1) Ä)Ý, C = Φ−1(0)Φ(T ).

(a) 75. λ´©§| (4.4.1)A¦ê, = λ´Ý CA.P v ´ Cé

Au λ Aþ. K©§| (4.4.1) ") φ(t) = Φ(t)v ÷v

φ(t+ T ) = Φ(t+ T )v = Φ(t)Cv = Φ(t)λv = λφ(t).

¿©5. v ∈ Rn ¦ φ(t) = Φ(t)v. Ïφ(t + T ) = λφ(t), K Φ(t + T )v = λΦ(t)v.

k Cv = λv. l λ ´©§| (4.4.1) A¦ê.

(b) ¿©5. Ï −1 ´©§| (4.4.1) A¦ê, ¤±3§| (4.4.1) "

) φ(t) ¦ φ(t+ T ) = −φ(t). k φ(t+ 2T ) = −φ(t+ T ) = φ(t), = φ(t) ´ 2T ±Ï

).

75. φ(t) ´©§| (4.4.1) " 2T ±Ï), P φ(t) = Φ(t)v,

v ∈ Rn \ 0. K Φ(t+ 2T )v = Φ(t)v, l C2v = v.

du 0 = (C2 −E)v = (C + E)(C−E)v, XJ −1 Ø´ C A, K C + E

_, l (C−E)v = 0. ù`² 1´ CA. φ(t+ T ) = Φ(t+ T )v = Φ(t)Cv =

Φ(t)v = φ(t). ù φ(t) ´ 2T ±Ï)gñ. ùgñ`² −1 ´ C A, l ´

©§| (4.4.1) A¦ê.

123

Page 133: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

1oÙ 5©§ÄnØÚ)

(c) y²aqu (b). öS3Öö. y..

N5: ±þ|^±ÏXê5©§|A¦êÑ T ±Ï)Ú 2T ±Ï)3

½. Ù¢±|^A¦ê½©§| (4.4.1)²) x = 0 ­½5. k'­

½5Vgò31ÊÙ¥Ñ.

e¡(JѱÏXê5©§|A¦êXêÝ A(t) ,'X.

·K50. b λ1, . . . , λn ´±Ï T ±ÏXê5©§| (4.4.1) A¦ê, K

λ1 · · ·λn = e∫ T0

tr[A(t)]dt

y: |^A¦ê½ÂÚ Liouville úª±N´y. öSÖögC¤.

~K: Hill §

x′′ + q(t)x = 0,

´ George W. Hill [28] ïÄ3±ÏÚå|^e$Ä, Ù¥ q(t) ´±Ï T

ëY±Ï¼ê. - y = x′, ±ÏXê5©§| x′

y′

=

0 1

−q(t) 0

x

y

.

|^·K 50 , T§|A¦ê¦È 1.

N5µHill §3U©!åÆ!>fó§¯õÆ¥k2A^. ©z [42] é Hill

§k~¦ïÄ.

§4.4.2 CXêàg5©§: '½nÚ Sturm-Liouville >¯K

e¡Äk?ØCXêàg5©§)":¯K.

!Sturm '½n

!ÌÄCXêàg5©§

y′′ + p(x)y′ + q(x)y = 0, (4.4.4)

)":5, Ù¥ p(x), q(x) 3m«m J = (a, b) ⊂ R þëY. T¯K3ÄïÄ

¡²~.

124

Page 134: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

§4.4 CXê5©§Ä:nØ

3 §4.1.3 ¥®²y²µ§ (4.4.4) ?) φ(x) 3 J ?4f«mþõkk

":,3 φ(x)": x0 k φ′(x0) 6= 0. e¡?Ú?Ø©§ (4.4.4))":5

.

¡ x1, x2 ∈ J ´¼ê φ(x) ü":, XJ x1, x2 Ñ´ φ(x) ":, 3 x1

x2 mvk φ(x) Ù§":.

ÄkÏLü~fwàg5©§ü)":m'X. à

g5©§

y′′ + ω2y = 0, ω > 0 ´?¿½~ê,

Ï)

y = c1 cos(ωx) + c2 sin(ωx),

Ù¥ c1, c2 ´?¿~ê. §ü5Ã')

y1(x) = cos(ωx), y2(x) = sin(ωx),

":3 R þü. ±y, Ï)¥?ü5Ã')Ñäkù«5; ?ü

5')ÑäkÓ":.

þã~f¥ü)":5´àg5©¤äkA5.

·K51. y = φ1(x) Ú y = φ2(x) ´àg5©§ (4.4.4) ü"), Ñ

k":. Ke(ؤá.

(a) y = φ1(x) y = φ2(x) 3 J þ5Ã'=§":p.

(b) y = φ1(x) y = φ2(x) 3 J þ5'=§kÓ":.

y: P W (x) φ1(x), φ2(x) Wronsky 1ª.

(a) 75. du φ1(x), φ2(x) 3 J þ5Ã', ¤± W (x) 6= 0, x ∈ J . db,

φ1(x), φ2(x) 3 J þÑk":.

XJ φ1(x), φ2(x) kÓ":, P x0 ∈ J . K

W (x) = W (x0)e−

∫ xx0p(s)ds

= 0, x ∈ J,

bgñ. φ1(x), φ2(x) 3 J þvkÓ":.

125

Page 135: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

1oÙ 5©§ÄnØÚ)

XJ φ1(x) φ2(x) Ñk":, Ïùü":ØÓ, (Øw,¤á. Øb

φ1(x) kü":, x1, x2 ´ φ1(x) ü":. 2Ø x1 < x2

φ1(x) > 0, x ∈ (x1, x2).

K

φ′1(x1) > 0, φ′1(x2) < 0.

Ï W (x) 6= 0, ¤± W (x1)W (x2) > 0. q

W (x1) = −φ2(x1)φ′1(x1), W (x2) = −φ2(x2)φ′1(x2),

k

φ2(x1)φ2(x2) < 0.

d φ2(x) ëY5: φ2(x) 3 (x1, x2) þ7k":k":. ÄKÓþy²,

φ1(x) 3 φ2(x) u (x1, x2) þ":mk":, x1, x2 ´ φ1(x) ":gñ. ù

Òy² φ1(x) φ2(x) ":p.

¿©5. y. XJ φ1(x) φ2(x) 5', K3Ø"~ê c1, c2 ¦

c1φ1(x) + c2φ2(x) ≡ 0, x ∈ J.

¯¢þ c1, c2 ÑØ", ÄK φ1(x) φ2(x) ¥7kð", ù φ1(x) Ú φ2(x) Ñ´

")bgñ. l

φ2(x) = cφ1(x), c 6= 0, x ∈ J.

ù`² φ1(x) φ2(x) ":Ó, bgñ.

(b) d (a) y²N´. öSdÖögC¤. y..

e¡0àg5©§¥~­(صSturm'½n,§Ñü

àg5©§)":m'X.

½n52. (Sturm '½n) Äàg5©§

y′′ + p(x)y′ + q(x)y = 0, (4.4.5)

y′′ + p(x)y′ + r(x)y = 0, (4.4.6)

Ù¥ p(x), q(x), r(x) 3m«m J þëY. y = φ(x) Ú y = ψ(x) ©O´§ (4.4.5) Ú

(4.4.6) "), φ(x) kü": x1, x2 ∈ J . Ø x1 < x2. Ke(ؤá.

126

Page 136: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

§4.4 CXê5©§Ä:nØ

(a) XJ r(x) ≥ q(x), x ∈ J , K ψ(x) 3 [x1, x2] þk":.

(b) XJ r(x) ≥ q(x), x ∈ J , q(x) 6≡ r(x), x ∈ (x1, x2), K ψ(x) 3 (x1, x2) þk

":.

y: (a) Ø φ(x) > 0, x ∈ (x1, x2). K

φ′(x1) > 0, φ′(x2) < 0.

y, b ψ(x) 6= 0, x ∈ [x1, x2]. Ø

ψ(x) > 0, x ∈ [x1, x2].

-

V (x) = ψ(x)φ′(x)− φ(x)ψ′(x).

K

V (x2) = ψ(x2)φ′(x2) < 0, V (x1) = ψ(x1)φ′(x1) > 0. (4.4.7)

qO

V ′(x) + p(x)V (x) = ψ(x)φ′′(x)− φ(x)ψ′′(x) + p(x)V (x)

= (r(x)− q(x))φ(x)ψ(x) ≥ 0, x ∈ [x1, x2].

ü>¦± e∫ xx1p(s)ds

, ¿l x1 x2 È©

V (x2)e∫ x2x1

p(s)ds ≥ V (x1).

ù (4.4.7) gñ. ¤± ψ(x) 3 [x1, x2] þk":.

(b). |^y, l (a) y²±9∫ x2

x1

(r(x)− q(x))φ(x)ψ(x)e∫ xx1p(s)ds

dx > 0,

±y. y..

|^ Sturm '½n±½/X (4.4.5) ©§")":35.

íØ53. p(x), q(x) ∈ C([a,∞)), a ∈ R, y = φ(x) ´§ (4.4.5) "), Ke

(ؤá.

127

Page 137: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

1oÙ 5©§ÄnØÚ)

(a) XJ q(x) ≤ 0, x ∈ [a,∞), K φ(x) 3 [a,∞) þõk":.

(b) XJ p(x) ≡ 0, q(x) ≥ m > 0, x ∈ [a,∞), K φ(x) 3 [a,∞) þkáõ":,

":mål ≤ π√m

.

(c) XJ p(x) ≡ 0, q(x) > m > 0, x ∈ [a,∞), K φ(x) 3 [a,∞) þkáõ":,

":mål < π√m

.

(d) XJ p(x) ≡ 0, 0 < q(x) ≤ m, x ∈ [a,∞), K φ(x) ":mål ≥ π√m

.

(e) XJ p(x) ≡ 0, 0 < q(x) < m, x ∈ [a,∞), K φ(x) ":mål > π√m

.

y: íØy²ÌÏL·'§, |^ Sturm '½n¤.

(a) 3§ (4.4.6) ¥ r(x) ≡ 0, K ψ(x) ≡ 1 ´Ù). d Sturm '½n, XJ φ(x)

kü":, K ψ(x) 3ùü":m7k":, gñ. ¤± φ(x) kõ"

:.

(b) Ä (4.4.5) '§

y′′ +my = 0. (4.4.8)

§k) y = ψ(x) = sin (√m(x− a)) , x ∈ [a,∞). w, ψ(x) káõ":

xn = a+nπ√m, n = 0, 1, . . .

â Sturm '½n (a), φ(x) 3z«m[a+

nπ√m, a+

(n+ 1)π√m

], n = 0, 1, . . . ,

þÑk":. § φ(x) 3 [a,∞) þkáõ":.

x∗1, x∗2 ´ φ(x) 3 [a,∞) þü":, Ø x∗1 < x∗2. y, b

x∗2 − x∗1 >π√m.

éu?¿ b ∈ R, du

sin(√m(x− a− b)

), x ∈ [a,∞),

´§ (4.4.8) ), §":mål´π√m

. ¤±· b

¦ sin (√m(x− a− b)) kü": u (x∗1, x

∗2) SÜ, P x1, x2, ÷v

128

Page 138: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

§4.4 CXê5©§Ä:nØ

x∗1 < x1 < x2 < x∗2. 2|^ Sturm '½n (a) , φ(x) 3 [x1, x2] þk":. ù

x∗1, x∗2 ´ φ(x) ":gñ. ùgñ`² x∗2 − x∗1 ≤

π√m

.

(c) d (a) y², § (4.4.5) ) φ(x) 3 [a,∞) þkáõ":, Ù":

målÑ ≤ π√m

.

y,XJ φ(x)kü": x∗1, x∗2 ÷v x∗2−x∗1 =

π√m

. aqu (b)y²,

· c ¦ sin (√m(x− a− c)) kü":T u x∗1, x

∗2. Kd Sturm

'½n (b) , φ(x) 3 (x∗1, x∗2) SÜk":. ù x∗1, x

∗2 ´ φ(x) ":g

ñ. ¤± 0 < x∗2 − x∗1 <π√m

.

(d), (e) §y²aqu (b) Ú (c)y². öSÖögC¤.

y..

§ (4.4.5) )XJ3 J þkáõ":, K¡§3 J þ´½Ä.

N5:

• 3íØ 53 (b) Ú (c) ¥, XJk q(x) > 0, (Ø7¤á. ~X§

y′′ +a

4x2y = 0, a > 0 ´?¿½~ê,

Ï)

y(x) =

x

12 (c1 + c2 lnx), a = 1,

c1x1+√

1−a2 + c2x

1−√

1−a2 , a < 1,

x12

(c1 cos(

√a−12 lnx) + c2 sin(

√a−12 lnx)

), a > 1.

a ≤ 1 , ?")3 [1,∞) þõk":; a > 1 , ?")3

[1,∞) þkáõ":.

!Sturm-Liouville >¯K

!ü/?Øàg5©§>¯K.T¯K3¢S)¹¥²~, X

²¡þüà½.lüà:¤3tm,¯$Ä5ÆXÛ?üà

½g^3Øå^e­5XÛ? ùÑ´©§>¯KïÄSN.

Ä Sturm-Liouville ©§

(p(x)y′)′ + (λr(x) + q(x))y = 0, λ ∈ R ëê, (4.4.9)

129

Page 139: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

1oÙ 5©§ÄnØÚ)

Ù¥ q, r ∈ C[a, b], p ∈ C1[a, b], r(x) > 0. ±eÑ3Tb^e?Ø. PÒBå,

-

Ly = (p(x)y′)′ + q(x)y.

Xe>¯K

Ly = −λr(x)y,

αy(a)− βy′(a) = 0, γy(a) + δy(b) = 0,(4.4.10)

Ù¥ α, β, γ, δ ∈ R, α2 + β2 6= 0, γ2 + δ2 6= 0, ¡Sturm-Liouville >¯K, ¡ SL >

¯K. 3 a, b ü:^¡>.^.

XJé λ = λ0, >¯K (4.4.10) k") y0(x), K¡ λ0 ´ SL >¯KA

, ¡ y0(x) ´ SL >¯KAu λ0 A¼ê.

~K: y SL >¯K

y′′ = −λy,

y(0) = 0, y(π) = 0,

kAÚAA¼ê

λn = n2, yn(x) = sin(nx), n = 1, 2, . . .

): \>¯Ky=.¯¢þ,TAÚA¼ê±ÏL¦§ y′′ = −λy

Ï)¿|^>.^.

þ~¥A÷v λ1 < λ2 < . . . < λn < . . ., limn→∞

λn = ∞, AuØÓA

A¼êüü, = ∫ π

0

sin(mx) sin(nx)dx = 0, m, n ∈ N, m 6= n.

?Ú/ sin(nx) 3 (0, π) þTk n− 1 ":. e¡òy² SL >¯K÷vù

5.

?Ú?Ø SL>¯K)5,ÄkÑ#½Â.éu½ r(x) ∈ C[a, b]

÷v r(x) ≥ 0, r(x) 6≡ 0.

• ¼ê f(x), g(x) ∈ C[a, b] 'u r(x) \SȽÂ

〈f, y〉r =

∫ b

a

r(x)f(x)g(x)dx.

130

Page 140: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

§4.4 CXê5©§Ä:nØ

• ¼ê r(x) ¡\¼ê.

• XJ f, g 'u r \SÈ", ¡ f, g 'u\¼ê.

5µXJ r = 1, @o\SÈÒ´Ï~üXþ¼êSÈ.

½n54. éu SL >¯K, b p ∈ C1[a, b], q, r ∈ C[a, b], r(x) > 0, α, β, γ, δ ∈ R,

α2 + β2 6= 0, γ2 + δ2 6= 0. e(ؤá.

(a) SL >¯KAe3Ñ´¢;

(b) AuzA, SL >¯Kk¢A¼ê;

(c) AuzA, SL >¯Kk5Ã'A¼ê;

(d) AuØÓAA¼ê'u\¼ê r(x) ´;

(e) AuØÓAA¼ê5Ã'.

yµ λ1, λ2 ´ SL >¯KA, y1(x), y2(x) ´AA¼ê. KdAÚA

¼ê½Â, ÏLO

y1Ly2 − y2Ly1 = p′(x)(y1(x)y′2(x)− y2(x)y′1(x))

+p(x)(y1(x)y′′2 (x)− y2(x)y′′1 (x)) = (p(x)W (x))′,

Ù¥ W (x) ´ y1, y2 Wronsky 1ª. Ïdk

(λ1 − λ2)r(x)y1(x)y2(x) = (p(x)W (x))′.

éþªl a b È©

(λ1 − λ2)〈y1, y2〉r = 0, (4.4.11)

þª¥^ W (a) = W (b) = 0. ¯¢þ, Ï

αy1(a)− βy′1(a) = 0, αy2(a)− βy′2(a) = 0,

q α2 + β2 6= 0, Ø α 6= 0, ¤±l1§¦± y′2(a) 1§¦± y′1(a)

= W (a) = 0. Ónlb :>.^= W (b) = 0.

131

Page 141: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

1oÙ 5©§ÄnØÚ)

(a) du SL >¯KXêÑ´¢, XJ§kEAÚA¼ê, @oùAÚ

A¼êÝ´ SL >¯KAÚA¼ê.

- λ0 Ú y0(x) ´ SL >¯KAÚA¼ê. Kk

(λ0 − λ0)〈y0, y0〉r = 0.

Ï 〈y0, y1〉r =∫ bar(x)|y0(x)|2dx 6= 0, ¤± λ0 − λ0 = 0. l λ0 ´¢ê.

(b) λ0 Ú y0(x) ´ SL >¯KAÚA¼ê. d (a), λ0 ´¢ê. XJ y0(x) ´

¢¼ê, K (b) ¤á. XJ y0(x) = u(x) +√−1v(x), KÏ>¯KXêÚ λ0 Ñ´¢

, l u(x) Ú v(x) Ñ´Au λ0 A¼ê.

(c) λ0´ SL>¯KA, y1(x)Ú y2(x)´Au λ0A¼ê. du y1(x), y2(x)

Ñ´àg5§ (4.4.9) λ = λ0 ), § Wronsky 1ªÑ3 a :u",

¤± y1(x) y2(x) 5'.

(d) y1(x), y2(x)´©OAuØÓA λ1, λ2 A¼ê. Kd (4.4.11) 〈y1, y2〉r =

0. Ïd y1, y2 'u\¼ê r(x) ´.

(e) y1(x), y2(x) ´AuØÓAA¼ê, k~ê c1, c2 ¦

c1y1(x) + c2y2(x) ≡ 0, x ∈ [a, b].

§ü>Ó¦± r(x)y2(x), ¿l a b È© c2∫ bar(x)y2

2(x)ds = 0. l c2 = 0. Ó

ny c1 = 0. ùÒy² y1, y2 3 [a, b] þ5Ã'.

½ny..

e¡(JÑ SL >¯KáõA35, ±9A¼ê":5.

½n55. éu SL >¯K, b p ∈ C1[a, b], q, r ∈ C[a, b], r(x) > 0, α, β, γ, δ ∈ R,

α2 + β2 6= 0, γ2 + δ2 6= 0. e(ؤá.

(a) SL >¯KkáõA λi, i ∈ N ÷v

λ1 < λ2 < . . . < λn < . . . , limn→∞

λn =∞;

(b) yn(x) ´Au λn A¼ê, K yn(x) 3 (a, b) þTk n− 1 ":.

y: T½ny²E,, ÖlÑ. k,Ööë[16, 51].

132

Page 142: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

§4.4 CXê5©§Ä:nØ

§4.4.3 pCXê5©§µ?ê)

pCXêàg5©§Ä)|vk¦. !ÄAÏ

àg5©§

y′′ + p(x)y′ + q(x)y = 0, (4.4.12)

?ê).

XJ p(x), q(x) 3 x0 ,)Û, ¡ x0 (4.4.12) ~:. XJ p(x) ½ q(x) 3 x0

Ø)Û, ¡ x0 (4.4.12) Û:.

Äkħ (4.4.12) 3~:)Û)Âñ».

½n56. p(x), q(x) 3 |x−x0| < ρ SФ'u x−x0 Âñ?ê, K§ (4.4.12)

3 |x− x0| < ρ SkÂñ?ê)

y(x) =

∞∑k=0

ck(x− x0)k,

Ù¥ c0, c1 ´?¿~ê, ck, k > 1 d4íúªÏL c0, c1 L«. AO/, c0, c1 dЩ^

(½.

y: duàg5©§ (4.4.12) ÷vЩ^

y(x0) = y0, y′(x0) = y1, y0, y1 ∈ R, (4.4.13)

ЯKÏLC y′ = z zàg5©§|

y′ = z, y(x0) = y0,

z′ = −p(x)z − q(x)y, z(x0) = y1,

Ïd½ny²d½n 27 . y..

ÙgÄàg5©§ (4.4.12) 3Û:)Û)35. XJ

p(x) =P (x)

x− x0, q(x) =

Q(x)

(x− x0)2, (4.4.14)

P (x), Q(x) 3 x0 ,SФÂñ?ê, P (x0)2 + Q(x0)2 6= 0, ¡ x0 ´§

(4.4.12) KÛ:.

133

Page 143: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

1oÙ 5©§ÄnØÚ)

½n57. x0 ´§ (4.4.12) KÛ:, p(x), q(x) d (4.4.14) ½Â. K§ (4.4.12)

3 x0 ,SkÂñ2Â?ê)

y(x) = (x− x0)ν∞∑k=0

ck(x− x0)k, c0 6= 0, (4.4.15)

Ù¥ ck, k ≥ 1 ±S/¦Ñ, ν ´§ (4.4.12) I§

s(s− 1) + P (x0)s+Q(x0) = 0,

(¡I) (XJIÑ´¢, ν ´Ù¥; XJI´é

ÝEê, ν ´Ù¥?).

y: 1. (½§ (4.4.12) /ª) (4.4.15).

dKÛ:½Â, Ø P (x), Q(x) 3 |x− x0| < ρ SФÂñ?ê

P (x) =

∞∑k=0

ak(x− x0)k, Q(x) =

∞∑k=0

bk(x− x0)k. (4.4.16)

ò (4.4.15) Ú (4.4.16) \§ (4.4.12), ÏLn

∞∑k=0

[(k + ν)(k + ν − 1)ck +

k∑i=0

ai(k − i+ ν)ck−i +

k∑i=0

bick−i

](x− x0)k ≡ 0,

=

[(k + ν)(k + ν − 1) + a0(k + ν) + b0] ck +

k∑i=1

[ai(k + ν − i) + bi] ck−i = 0, k = 0, 1, . . .

(4.4.17)

Ù¥ cj = 0, j < 0.

lþª k = 0 9 c0 6= 0

ν(ν − 1) + a0ν + b0 = 0.

§´§ (4.4.12) I§. ν1, ν2 ´§ü. XJ ν1, ν2 Ñ´¢ê ν1 ≥ ν2, ½

ν1, ν2 ´éÝE, P ν0 = ν1.

é k > 0, -

f(s) = s(s− 1) + a0s+ b0, gi(s) = ai(s− i) + bi, i = 1, 2, . . .

¿ ν = ν0, K (4.4.17) ¤

f(k + ν0)ck +

k∑i=1

gi(k + ν0)ck−i = 0, k = 1, 2, . . . (4.4.18)

134

Page 144: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

§4.4 CXê5©§Ä:nØ

Ïé k ≥ 1

f(k + ν0) = (k + ν0)(k + ν0 − 1) + a0(k + ν0) + b0

= k(k + 2ν0 + a0 − 1) = k(k + 2ν0 − ν1 − ν2) = k(k + ν1 − ν2) 6= 0,

¤±l§ (4.4.18) ±g/¦Ñ c1, c2, . . ., §Ñd c0 /(½. l /ªþ

/¦Ñ§ (4.4.12) /ª) (4.4.15).

2. y²/ª) (4.4.15) Âñ5.

- ν∗ = ν1 − ν2. K Re ν∗ ≥ 0

f(k + ν0) = k(k + ν∗) 6= 0, k = 1, 2, . . .

du P (x)Ú Q(x)Ðmª (4.4.16)3 |x−x0| < ρSÂñ,¤±é 0 < ρ1 < ρ, ∃M ≥ 1¦

|ak| ≤M

ρk1, |bk| ≤

M

ρk1, |ν0ak + bk| ≤

M

ρk1, k = 0, 1, . . .

l

|ck| ≤(M

ρ1

)k|c0|. (4.4.19)

¯¢þ, é k = 1

|c1| =|g1(1 + ν0)c0||f(1 + ν0)|

=|a1ν0 + b1||1 + ν∗|

|c0| ≤M

ρ1

1

|1 + ν∗||c0| ≤

M

ρ1|c0|.

bé k ≤ l − 1, l ≥ 2, (4.4.19) ¤á. k = l

|cl| =

∣∣∣∣ l∑i=1

gi(l + ν0)cl−i

∣∣∣∣|l(l + ν∗)|

≤|(alν0 + bl)c0|+

l−1∑i=1

|ai(l + ν0 − i) + bi| |cl−i|

|l(l + ν∗)|

≤|(alν0 + bl)|+

l−1∑j=1

|al−j(j + ν0) + bl−j |(Mρ1

)j|l|2

|c0|

≤ l−2l−1∑j=0

(|ν0al−j + bl−j |+ |jal−j |)(M

ρ1

)j|c0|

≤ l−2l−1∑j=0

(M

ρl−j1

+ jM

ρl−j1

)(M

ρ1

)j|c0|

= l−2M

ρl1

l−1∑j=0

M j(1 + j)|c0| ≤ l−2Ml

ρl1

l∑j=1

j|c0| ≤(M

ρ1

)l|c0|.

135

Page 145: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

1oÙ 5©§ÄnØÚ)

¤±d8By (4.4.19).

l (4.4.19) ª, ©§ (4.4.12) /ª) (4.4.15) 3 |x− x0| < ρ1M SÂñ. y..

~K:

1. ¦ Legendre §

(1− x2)y′′ − 2xy′ + n(n+ 1)y = 0,

3~: x = 0 S?ê).

): â½n 56, |x| < 1 , Legendre §kÂñ?ê)

y(x) =

∞∑k=0

ckxk.

òÙ\ Legendre §, ÏLn

∞∑k=0

[(k + 2)(k + 1)ck+2 + (n− k)(n+ k + 1)ck]xk ≡ 0, |x| < 1.

k

ck+2 = − (n− k)(n+ k + 1)

(k + 2)(k + 1)ck, k = 0, 1, . . .

?ÚO

c2m = (−1)mAmc0, c2m+1 = (−1)mBmc1, m = 1, 2, . . .

Ù¥

Am =(n− 2m+ 2)(n− 2m+ 4) . . . (n− 2)n(n+ 1)(n+ 3) . . . (n+ 2m− 1)

(2m)!,

Bm =(n− 2m+ 1)(n− 2m+ 3) . . . (n− 3)(n− 1)(n+ 2)(n+ 4) . . . (n+ 2m)

(2m+ 1)!.

Ïd Legendre §?ê/ªÏ)

y(x) = c0

(1 +

∞∑m=1

(−1)mAmx2m

)+ c1x

(1 +

∞∑m=1

(−1)mBmx2m

), |x| < 1,

Ù¥ c0, c1 ´?¿~ê.

N5:

1) n ∈ N∪0,3 m0 ∈ N¦ m > m0 k Am = 0½ Bm = 0. d Legendre

§kõª), ¡ Legendre õª.

136

Page 146: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

§4.4 CXê5©§Ä:nØ

2) x = ±1 ´ Legendre §KÛ:, §3T:IÑ´". Ïdd½n 57 ,

Legendre §3 x = ±1 ÑkÂñ?ê).

2. ¦ µ Bessel §

x2y′′ + xy′ + (x2 − µ2)y = 0, µ ≥ 0,

2µ 6∈ Z 3 x = 0 Ï).

): ´ x = 0 ´ Bessel §KÛ:, I§ ν2 − µ2 = 0. â½n 57, Bessel

§3 x = 0 kÂñ2Â?ê),

y(x) = xν∞∑k=0

ck xk, c0 6= 0.

òÙ\ Bessel §, ÏLn¿' x ÓgXê

(k + ν + µ)(k + ν − µ)ck + ck−2 = 0, k = 0, 1, . . . (4.4.20)

Ù¥ c−2 = c−1 = 0.

ν = µ , du (k + ν + µ)(k + ν − µ) > 0, k ≥ 1, ¤±l§ (4.4.20) )

c2k−1 = 0, c2k =(−1)k

22k(µ+ k)(µ+ k − 1) . . . (µ+ 2)(µ+ 1) k!c0, k = 1, 2, . . .

-

Γ(s) =

∫ ∞0

e−xxs−1dx, ¡ Gamma ¼ê.

K Γ(s+ 1) = sΓ(s). 5¿,

Γ(µ+ k + 1) = (µ+ k) . . . (µ+ 2)(µ+ 1)Γ(µ+ 1),

Γ(−s) =∞, s ≥ 0.

PÒBå,

c0 =1

2µΓ(µ+ 1).

K

c2k =(−1)k

22k+µΓ(µ+ k + 1) k!, k = 1, 2, . . .

137

Page 147: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

1oÙ 5©§nØÚ)

Ïd Bessel §k2Â?ê)

y(x) = Jµ(x) =

∞∑k=0

(−1)k

Γ(k + 1 + µ) k!

(x2

)2k+µ

.

N´yT?ê3 |x| < ∞ þÂñ (X D’Alembert O). ¼ê Jµ(x) ¡ µ

1a Bessel ¼ê.

ν = −µ , du 2µ 6∈ Z, § (4.4.20) k).

c0 =1

2−µΓ(−µ+ 1).

aqu ν = µ ¦ Bessel §2Â?ê)

y(x) = J−µ(x) =

∞∑k=0

(−1)k

Γ(k + 1− µ) k!

(x2

)2k−µ.

§3 x ∈ R \ 0 þÂñ. ¼ê J−µ(x) ¡ µ 1a Bessel ¼ê.

du Jµ(x)Ú J−µ(x)$gØÓ,Ï §´5Ã'. ¤± Bessel

§Ï)

y(x) = c1Jµ(x) + c2J−µ(x), x ∈ R \ 0,

Ù¥ c1, c2 ´?¿~ê.

N5:

1) ~ 2 ¥?Ø 2µ 6∈ Z ¹. 2µ ∈ Z /E,, Ïd k − 2µ ±",

Ï S§ (4.4.20) æ). 3öSÖögCg.

2) þãüCXꩧ/ªþ~ü,§¦)½)LªéE,. ù

±wÑ=¦´CXê5©§Uæ)©

3) þãü~f¥§)Ñشмê,¡Aϼê. Aϼêäk~´L

SN, §3ó§þk2A^. k,Öö±ëÆM!H;Aϼê

VØ [54].

138

Page 148: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

§4.5 SKo

§4.5 SKo

1. b b(x) > 0, x ∈ I = [c, d]. XJ φ(x), a(x), b(x) ∈ C(I), ÷vت

φ(x) ≤ a(x) +

∫ x

c

b(s)φ(s)ds,

K

φ(x) ≤ a(x) +

∫ x

c

a(s)b(s)e∫ xsb(t)dtds.

2. Á|^ Gronwall تy²½n 18 ¥)5.

3. 3½n 36 bÚPÒe, y²

y1(x) + y∗(x), . . . , yn(x) + y∗(x), y∗(x),

´àg5©§| (4.1.1) n+ 15Ã').?Ú/ (4.1.1)õk n+ 1

5Ã').

4. y²¼ê| 1

sinx

,

0

x2

, x ∈ R

ØU´?Ûàg5©§|)|.

5. y²íØ 38.

6. éuàg5©§| (4.1.2), ¡ y′ = −AT (x)y (4.1.2) ݧ, Ù¥ T L

«Ý=. Áye(Ø

(a) XJ Φ(x)´ (4.1.2)Ä)Ý,K (ΦT (x))−1 ´ (4.1.2)ݧÄ)Ý.

(b) XJΦ(x), Ψ(x)©O´ (4.1.2)9Ùݧ|Ä)Ý,K§¦ÈΦ(x)Ψ(x)

´ÛÉ~êÝ.

(c) XJ φ(x), ψ(x)©O´ (4.1.2)9Ùݧ|),K§¦È φ(x)ψ(x)´

~ê.

7. y²½n 39 N5 2 Ú 3.

139

Page 149: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

1oÙ 5©§nØÚ)

8. ¦e§|Ï)

8.1. x′(t) =2

tx− 1, y′(t) = − 1

t3x+

1

ty +

1

t2, x(1) = 1, y(1) = 1.

8.2. x′(t) = −1

tx+ y, y′(t) = − 2

t2x+

1

ty, x(1) = 1, y(1) = 2.

9. XJpàg5©§"), KT§±ü$.

10. òeCXê5©§z¤~Xê5©§

10.1. x2y′′ + 3xy′ − 2y = 0.

10.2. x3y′′′ − 5x2y′′ + 2xy′ + 7y = 0.

11. -M(C) ´ n EÝN¤8Ü. é?¿ A,B ∈ M(C), ½Â§

f [A, B] := AB−BA. y²µXJ [A, B] = E (E ´ n ü Ý), K

etAetB = etBetAet2[A,B], t ∈ R.

J«µ1Úy²

[A, Bn] = nBn−1, [Bn, A] = nBn−1, n ∈ N \ 0.

1Ú|^þã'XO [etA, B]Ú [A, etB]. éݼêX(t) = etAetBe−tAe−tB

÷v§, ¿¦Ù÷vЩ^ X(0) = E ).

12. ^Ýê¼ê¦)e~Xê5©§

dy

dx= Ay + f(x),

Ù¥

12.1 A =

2 0

1 2

, f(x) =

−1

x

;

12.2. A =

−1 0 0

1 −1 0

0 1 −1

, f(x) =

−1

x

x

13. y²~Xêàg5©§| (4.2.2) XêÝ A A¢ÜÑu"¿

^´T§|¤k) x→∞ Ѫu".

140

Page 150: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

§4.5 SKo

14. Φ(x) ´ R þëY n Ý, detΦ(0) 6= 0, Φ(0) 3, ÷v

Φ(t+ s) = Φ(t)Φ(s), ∀ t, s ∈ R.

Áy² Φ(x) ´, n ~Xêàg5©§Ä)Ý.

15. ¦)e~Xê5©§|Ï)

15.1. x = 3x− y, y = 2x+ y;

15.2. x = y, y = 4x+ 2y − 4z, z = x− y + z;

15.3. x = −n2y + cosnt, y = −n2x+ sinnt;

15.4. x = 4x+ y − 2, y = −2x+ y + e3t;

15.5. x = −2x+ y − z + et, y = x+ z, z = 3x− y + 2z − et;

15.6. x = x+ y − t2, y = y + z − 2t, z = z − t.

16. ¦)e~Xê5©§|ЯK

16.1. x = x+ 5y, y = −x− 3y, x(0) = 1, y(0) = 2;

16.2. x = x+ 2y + z, y = x− y + z, z = 2x+ z, x(0) = 1, y(0) = 0, z(0) = −1;

16.3. x = 4x− 4y + 2z, y = x, z = −x+ 2y − z, x(0) = 1, y(0) = 0, z(0) = 0;

16.4. x = 3x− 2y − et, y = 2− y + et, x(0) = 0, y(0) = −1;

16.5. x = x+ 1 + 12e

2, y = −2y + 12e

2, z = −2z + 2− 12e

2, x(0) = 0, y(0) = 1, z(0) = 0;

16.6. x = 2x−y+z+2, y = x+z+1, z = −3x+y−2z−3, x(0) = −1, y(0) = 1, z(0) = 2.

17. ½e²¡5©§|Û:5, ¿xÑÛÜã

17.1. x = 3x− y, y = 2x− 3y;

17.2. x = x− y, y = 2x− y;

17.3. x = −y, y = 2x− 2y;

17.4. x = x− y, y = 3x− 2y;

17.5. x = x− y, y = −2y;

141

Page 151: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

1oÙ 5©§nØÚ)

17.6. x = −x+ y, y = −3x− 5y;

17.7. x = x+ 2y, y = −x+ y;

17.8. x = x− 2y, y = −x+ y;

17.9. x = 2x+ 2y, y = x+ 2y;

17.10. x = −2x− 3y, y = x− 2y;

17.11. x = −2y, y = x;

17.12. x = 3x+ 2y, y = 3y;

17.13. x = 2x+ 2y, y = x+ y;

17.14. x = x− y, y = x+ 3y.

18. a, b ∈ R ´~ê. éu5©§

y′′ + ay′ + by = 0, (4.5.1)

Á¯

(a) a, b Û, § (4.5.1) ¤k)3 R þk.;

(b) a, b Û, § (4.5.1) ¤k) x→∞ Ѫu";

(c) a, b Û, § (4.5.1) ¤k)3 R þÑkáõ":.

19. f(x) 3 [0,∞) þëY. éu5©§

y′′ + 4y′ + 3y = f(x), (4.5.2)

Áy

(a) XJ f(x) 3 [0,∞) þk., § (4.5.2) ¤k)3 [0,∞) þk.;

(b) XJ limx→∞

f(x) = 0, § (4.5.1) ¤k) x→∞ Ѫu".

20. ¦)e~Xê5©§

20.1. x(4) − x = 0;

20.2. x(6) − 4x(5) + 4x(4) = 0;

142

Page 152: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

§4.5 SKo

20.3. x′′′ − 3x′′ − x′ + 3x = 0;

20.4. x′′ + 2x′ + x = 0, x(0) = 1, x′(0) = −1;

20.5. x(4) + 8x′′ + 16x = 0, x(0) = 1, x′(0) = 2, x′′(0) = 0, x′′′(0) = 0;

20.6. x′′′ − 2x′′ + x′ − 2x = 0, x(0) = −1, x′(0) = 0, x′′(0) = 0;

20.7. x′′′ + x′ = 1 + 2 cos(2t);

20.8. x′′ + x′ = t− e−t;

20.9. x(4) + 2x′′ + x = e−t;

20.10. x′′ + x = t cos t;

20.11. x′′ − x = 2et, x(0) = 0, x′(0) = 3;

20.12. x′′′ − 3x′′ + x′ − 3x = 2 sin(3t), x(0) = −1, x′(0) = 2;

20.13. x′′′ − 2x′′ = t, x(0) = −1, x′(0) = 0, x′′(0) = 1,

20.14. x′′ − 2x′ + x = tet, x(0) = 3, x′(0) = 1.

20.15. t2x′′ − 2tx′ + 2x = 0, x(1) = 1, x′(1) = 1.

21. y²½n 49 (c).

22. éuàg5±Ï©§|

x(t) = A(t)x + f(t), (4.5.3)

Ù¥ A(t) Ú f(t) ©O´ R þëY T ±ÏÝÚþ¼ê. b Φ(t) ´ (4.5.3) é

Aàg5©§|Ä)Ý, Φ(0) = E. Áy²

(a) b x = φ(t) ´ (4.5.3) ), K x = φ(t) ± T ±Ï¿^´ φ(0) = φ(T ).

(b) §| (4.5.3) 3±Ï T ±Ï)¿^´ Φ(T ) ر 1 A

.

23. b a(t), b(t) ´±Ï T ëY±Ï¼ê. ÁÑeàg5©§|

x = a(t)x, y = b(t)y,

FloquetIO.. ¿ÑäNCòT§|z¤~Xêàg5©§|. ?

Ú?ØÛk T ±Ï), Û¤k) t→∞ Ѫu".

143

Page 153: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

1oÙ 5©§nØÚ)

24. ¦e§½§|A¦ê, ¿±d½ù§½§|´Äk T ½ 2T ±Ï

) (T Le§±Ï).

24.1 x′ = (sin2 t)x;

24.2 x′ = (sin(4t)− 1)x;

24.3 x′ = x+ y, y′ =cos t+ sin t

2 + sin t− cos ty;

24.4 x′ = −2x, y′ = sin(2t)x− 2y.

25. y²·K 50

26. y²·K 51 (b). 5¿: Ø^·K 51 (a) (Ø.

27. y²íØ 53 (d) Ú (e).

28. ¦ SL >¯K

y′′ = −λy,

y′(0) = 0, γy(x) + y′(1) = 0, γ > 0,

AÚA¼ê.

29. 3 SL >¯K (4.4.10) ¥?Úb q(t) ≤ 0, αβ > 0, γδ > 0. K (4.4.10) ¤kA

Ñ´K. J«: ^A¼ê¦±§ (4.4.9) ü>, ¿È©.

30. ¦e>¯K

y′′ = −λy,

y(−π) = y(π), y′(−π) = y′(π),

AÚA¼ê. 5¿µT>¯K¡±Ï>¯K. §Ø´ SL >¯K, é

AuÓA±kõ5Ã'Aþ.

31. ¦ Bessel § 2n ∈ Z Ï).

32. 3 Bessel §¥,

144

Page 154: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

§4.5 SKo

(a) n ∈ N , y² J−n(x) = (−1)nJn (Ï J−n Jn ´5'), Bessel

¼ê÷v Poisson È©úª

Jn(x) =(2x)nn!

(2n)!π

∫ π

0

cos(x cos s) sin2n sds;

(b) é?¿ n > 0,

y2(x) = Jn(x)

∫dx

xJ2n(x)

,

´ Bessel § Jn(x) 5Ã').

33. Airy §

y′′ + xy = 0

´=IU©Æ[ George B. Airy ïÄ1Æ.

(a) ¦ Airy §?ê);

(b) y² Airy §3C u(t) = x−12 y(x), t = 2

3x32 e±=z¤ 1

3 Bessel §;

(c) Á^ 13 Bessel ¼êL« Airy §Ï).

34. y² Ricatti §

y′ = y2 + g(x)y + h(x),

3C u(x) = e−∫y(x)dx e±z¤àg5©§

u′′ − g(x)u′ + h(x)u = 0.

?Úy² Ricatti § y′ = y2 + x2 Ï)±L«¤

y(x, c) = xcJ− 3

4

(x2

2

)+ J 3

4

(x2

2

)J− 1

4

(x2

2

)− cJ 1

4

(x2

2

) ,½

y(x, c) = xJ− 3

4

(x2

2

)+ cJ 3

4

(x2

2

)cJ− 1

4

(x2

2

)− J 1

4

(x2

2

) ,Ù¥ c ∈ R ´?¿~ê.

35. y²

ex2 (t− 1

t ) =

∞∑n=−∞

Jn(x)tn.

145

Page 155: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

1oÙ 5©§nØÚ)

¡þªàê1a Bessel ¼ê)¤¼ê. |^)¤¼êy²

2nJn(x) = xJn+1(x) + xJn−1(x),

J ′n(x) =1

2(Jn−1(x)− Jn+1(x)).

36. ^?ê)¦e§3 x = 0 ?ê)½Ï).

36.1. y′′ − xy = 0;

36.2. y′′ + x2y′ + 2xy = 0;

36.3. y′′ − 2xy′ + λy = 0, λ ∈ R ´ëê;

36.4. xy′′ + y′ + xy = 0;

36.5. x(1− x)y′′ − xy′ − 2y = 0;

36.6. x(1− x2)y′′ − 2y′ + xy = 0.

146

Page 156: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

1ÊÙ ©§½5Ú­½5nØ

§5.1 ©§)­½5

3>f!Å!)Ô!Ôn!zÆ!7K$¬)¹¥éõ¢S¯K$Ä5ÆÑ

´d~©§½§|5£ã. ½©§|±káõ),§6u

ØÓЩ^. lØÓЩ^Ñu) ªªu,A½), ¡­

). ­)353¢S¯K¥'­, §´©§­½5nØ­ïÄSN.

éu n ©§|

dx

dt= f(t,x), (5.1.1)

P x0(t) ´Ù÷vЩ^ x(t0) = x0 ).

• ¡) x0(t) ´­½, XJé ∀ ε > 0, ∃ δ > 0 ¦ ‖x − x0‖ < δ , § (5.1.1) L

(t0,x)) x(t)Ñ÷v ‖x(t)−x0(t)‖ < ε, t ≥ t0. ù«­½5q¡ Lyapunov ­½.

• ¡) x0(t) ´ìC­½, XJ§´­½, éþã δ > 0, XJ ‖x − x0‖ < δ k

limt→∞

‖x(t)− x0(t)‖ = 0.

• ¡) x0(t) ´Ø­½, XJ§Ø´­½, = ∃ ε0 > 0 ¦é ∀ δ > 0 Ñ3 x∗δ ÷v

‖x∗δ − x0‖ < δ, 9é?¿ T ∗δ > 0 Ñ3m t∗δ > T ∗δ ¦ ‖x∗δ(tδ)− x0(t∗δ)‖ > ε0.

N5:

• $^ Lyapunov­½5ïÄA½;­½5,Ï~´²LCòÙ=z#§

²ï:5ïÄ.

• ìC­½5½Â¥­½bØUK. ~Xü ± S1 = z = e2π√−1θ, θ ∈ [0, 1)

þ©§

θ = sin2(πθ),

k²ï: θ = 0. l S1 þ?: (θ = 0Ø)Ñu; t→∞Ñ÷X

±_ªu²ï: 0, l ÷vìC­½5½Â¥Ü©^, ²ï:

0 ´Ø­½, ϧØ÷v­½5½Â.

147

Page 157: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

§5.1 ©§)­½5

§5.1.1 àg5©§|")­½5

½n58. A ∈M. éu~©§

y = Ay. (5.1.2)

(a) XJ A A¢ÜÑu", K§ (5.1.2) ")ìC­½.

(b) XJ A A¢ÜÑu½u", ¢Ü"Aê­êuAÛ­

ê, K§ (5.1.2) ") Lyapunov ­½.

(c) XJ A k¢Üu"A, ½k¢Ü"AÙê­êuAÛ­ê,

K§ (5.1.2) ")Ø­½.

y: (a) díØ 45 , 3 ρ > 0, a > 0 ¦é v ∈ Rn,

‖exAv‖2 ≤ a‖v‖e−ρx, x ∈ [0,∞).

§ (5.1.2) ?) y(x) ÑL«¤

y(x) = exAv,

/ª. ddy§ (5.1.2) ")ìC­½.

(b) A pØÓA λ1, . . . , λk, λk+1, . . . , λs, §ê­ê ni, i = 1, . . . , s;

Reλi < 0, i = 1, . . . , k, Reλi = 0, i = k + 1, . . . , s. Ï λi, i = k + 1, . . . , s ê­ê

uÙAÛ­ê, ¤±ÙéA5Ã'Aþk ni .

d½n 44 9ÙN5 1 , § (5.1.2)kÄ)Ý

Φ(x) =(eλ1xP

(1)1 (x), . . . , eλ1xP(1)

n1(x), . . . , eλsxP

(s)1 (x), . . . , eλsxP(s)

ns (x)),

Ù¥ P(j)i (x), j = 1, . . . , k, i = 1, . . . , nj ´gêØL nj − 1 õª, P

(j)i (x), j = k +

1, . . . , s, i = 1, . . . , nj ´~êþ (éAu λj Aþ). P

Ψ1(x) =(eλ1xP

(1)1 (x), . . . , eλ1xP(1)

n1(x), . . . , eλkxP

(k)1 (x), . . . , eλkxP(k)

nk(x)),

Ψ2(x) =(eλk+1xP

(k+1)1 , . . . , eλk+1xP(k+1)

nk+1, . . . , eλsxP

(s)1 , . . . , eλsxP(s)

ns

),

díØ 45 9Ùy², 3 ρ > 0, a > 0 ¦é ∀v1 ∈ Rn1+...+nk ,

‖Ψ1(x)v1‖2 ≤ a‖v1‖2e−ρx, x ∈ [0,∞).

148

Page 158: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

1ÊÙ ©§½5Ú­½5nØ

qÏ |eλix| = 1 (i = k + 1, . . . , s), P(i)j (i = k + 1, . . . , s, j = 1, . . . , ni) ´(½~êþ,

¤±3 b > 0 ¦é ∀v2 ∈ Rnk+1+...+ns ,

‖Ψ2(x)v2‖2 ≤ b‖v1‖2, x ∈ [0,∞).

§ (5.1.2)Ï)±¤

y(x) = Φ(x)v = Ψ1(x)v1 + Ψ2(x)v2,

Ù¥ v =

v1

v2

´?¿~êþ. ¤±

‖y(x)‖2 = ‖Φ(x)v‖2 ≤(a‖v1‖2e−ρx + b‖v1‖2

)≤ (a+ b)‖v‖2, x ∈ [0,∞).

ddy§ (5.1.2) ")´ Lyaponov ­½.

(c) XJ A k¢Üu"A, P λ0 = α0 +√−1β0. d½n 44 , § (5.1.2)k/

X

y(x) = P(x)eλ0x,

), Ù¥ P(x) ´gêØL n− 1 õª. Ï α0 > 0, ¤±

limx→∞

‖y(x)‖2 = limx→∞

‖P(x)eλ0x‖2 = limx→∞

‖P(x)‖2eα0x =∞.

ùÒy²§ (5.1.2) ")Ø­½

XJ A k¢Ü"A, P λ0 =√−1β0, Ùê­êuAÛ­ê. d½n

44 , § (5.1.2) k/X

y(x) = P(x)eλ0x,

), Ù¥ P(x) ´gêØ"õª. ¤±k

limx→∞

‖y(x)‖2 = limx→∞

‖P(x)‖2 =∞.

Ïd§ (5.1.2) ")Ø­½. y..

íØ59. éu±Ï©§

y = A(x)y, (5.1.3)

Ù¥ A(x) ´ R þëY T ±Ï n ݼê.

149

Page 159: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

§5.1 ©§)­½5

(a) XJ§ (5.1.3) A¦êÑu 1 (½ Floquet ê¢ÜÑu"), KÙ"

)ìC­½.

(b) XJ§ (5.1.3) A¦êÑu½u 1, 1 A¦êê­ê

uAÛ­ê, KÙ")´ Lyapunov ­½.

(c) XJ§ (5.1.3) kA¦êu 1, KÙ")Ø­½.

y: Ùy²±d½n 48 (Floquet½n)Ú½n 58. [y²öSÖö¤.

y..

~K: q(t) ´ R þ±Ï T ±Ï¼ê. ½ Hill §

x′′(t) + q(t)x = 0,

±Ï)35Ú")­½5.

): - x′ = y. Hill §=z

x′

y′

=

0 1

−q(t) 0

x

y

.

ù´±Ï T ±ÏXê5©§. b λ1, λ2 ´§üA¦ê. Kd·K 50

λ1λ2 = 1.

-

ρ =λ1 + λ2

2.

K

λ1 = ρ+√ρ2 − 1, λ2 = ρ−

√ρ2 − 1 = λ−1

1 .

e¡© ρ ØÓ?Ø Hill §)5.

1. ρ > 1. Kk

λ1 > 1 > λ2 > 0.

díØ 59 (c) , Hill §")Ø­½. ?Ú/, Hill §kÏ)

x(t) = c1eµtp1(t) + c2e

−µtp2(t),

150

Page 160: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

1ÊÙ ©§½5Ú­½5nØ

Ù¥ µ = (lnλ1)/T > 0, p1(t), p2(t) ´ëY T ±Ï¼ê. ¯¢þ, Φ(t) ´ Hill §é

A§|Ä)Ý. -

C = Φ−1(0)Φ(T ), TR = ln C.

Kd Floquet ½n

Φ(t) = Q(t)etB,

Ù¥ Q(t) ´ T ±Ï¼ê. Ï3ÛÉÝ P ¦

B = Pdiag(eµ, e−µ)P−1,

¤±

Φ(t) = Q(t)Pdiag(eµt, e−µt)P−1.

|^Tª=Ï)Lª.

2. ρ = 1. Kk λ1 = λ2 = 1. d½n 49 (c), Hill §k² T ±Ï).

XJ C Jordan IO.´ü Ý, Kd 1 y²

Φ(t) = Q(t).

Ï z²)Ñ´ T ±Ï), l ")´­½"

XJ C Jordan IO.Ø´ü Ý, K3ÛÉÝ P ¦

PCP−1 = E + N = eN,

Ù¥ N ´"Ý. -

B = P

(1

TN

)P−1.

Kk Φ(t) = Q(t)etB. qÏݼê

etB = PetT NP−1 = P

(E +

t

TN

)P−1,

t→∞ Ã., ¤±")´Ø­½.

3. |ρ| < 1. Kk λ2 = λ1, λ2 éê´XJê. Ïdaqu 1 ¥y² Hill §Ï

)

x(t) = c1eµ√−1tp1(t) + c2e

−µ√−1tp2(t),

151

Page 161: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

§5.1 ©§)­½5

Ù¥ µ > 0, p1(t), p2(t) ´ëY T ±Ï¼ê. dTÏ)LªN´y² Hill §"

)´­½. 5¿, d |λ1,2| = 1, íØ 59 ý")­½5.

4. ρ = −1. Kk λ1 = λ2 = −1. d½n 49 (b), Hill §k² 2T ±Ï). d

Hill §kÄ)Ý Q(t)etB, Ù¥ Q(t) ´ 2T ±Ïݼê, B = (log C2)/(2T ). aqu

2y², C2 JordanIO.´(Ø´)ü Ý, Hill§")´­½(Ø­½

).

5. ρ < −1. Kk

λ2 < −1 < λ1 < 0.

díØ 59 (c) , Hill §")Ø­½. d Hill §Ï)

x(t) = c1e−µ√−1tp1(t) + c2e

µ√−1tp2(t),

Ù¥ µ = (lnλ22)/(2T ) > 0, p1(t), p2(t) ´ëY 2T ±Ï¼ê.

N5: 'u Hill §\(J, k,Ööë [10, 42].

§5.1.2 d5Cq(½5§­½5

5©§)­½5¯K~(J. !ÄXÛÏL5©§)­½

55(½5©§)­½5.

½n60. éu5©§|

y = Ay + f(x,y), (5.1.4)

bA(x)3 [0,∞)þëY, f(x,y) = O(‖y‖2), ‖y‖ 1 3,« G = [0,∞)×y; ‖y‖ <

K þëY'u y ÷vÛÜ Lipschitz ^.

(a) XJ A A¢ÜÑu", K5©§ (5.1.4) ")ìC­½.

(b) XJ A k¢ÜA, K5©§ (5.1.4) ")Ø­½.

ÖòØÑT½ny². k,Öö±ë [53].

N5:

XJ Ak¢Ü"A,K5©§ (5.1.4)")­½56u5

f(x,y) . ~X

152

Page 162: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

1ÊÙ ©§½5Ú­½5nØ

1. ©§|

x = −y + αx(x2 + y2)(x2 + y2 − 1),

y = x+ αy(x2 + y2)(x2 + y2 − 1),(5.1.5)

α = 0 , A5©§|XêÜ©A´éXJê, I:´

A5©§|¥%, Ï ´­½, ìC­½. α 6= 0 , ÏL4I

C x = r cos θ, y = r sin θ, §| (5.1.5) =z

r = αr3(r2 − 1), θ = 1.

dd§N´µ α > 0,lü ±SÜÑu;Ñ_^%C

I:, Ï §| (5.1.5) ")´ìC­½. α < 0 , lü ±SÜ (I

:Ø) Ñu;Ñ_^%Cü ±, Ï §| (5.1.5) ")´

Ø­½.

2. ©§|

x = −y − αy(x2 + y2)(x2 + y2 − 1),

y = x+ αx(x2 + y2)(x2 + y2 − 1),(5.1.6)

34IC x = r cos θ, y = r sin θ e=z

r = 0, θ = 1 + αr2(r2 − 1).

Ïdé α ?¿, §| (5.1.6) I:Ñ´¥%, ")´­½Ø´ìC­

½.

aq/±ÞÑ5©§XêÝäk"A, \þp

5©§")äk«U­½5. ÖögCÑù~f. þã~f`²

5©§")5Ü©äk"¢ÜA, ")­½5½¯K´

©(J.

§5.1.3 ½­½5 Lyapunov 1

Äg£©§

dx

dt= f(x), x ∈ Rn. (5.1.7)

bXþ¼ê V (x), ‖x‖ ≤M ëY.

153

Page 163: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

§5.1 ©§)­½5

• ¼ê V (x) 'u§ (5.1.7) ê½Â

dV

dt

∣∣∣∣(5.1.7)

=∂V

∂x1x1 + . . .+

∂V

∂xnxn

∣∣∣∣(5.1.7)

=∂V

∂x1f1(x) + . . .+

∂V

∂xnfn(x).

• ¼ê V (x) ¡½ (½K) , XJ

V (0) = 0, V (x) > 0 (V (x) < 0), x 6= 0.

• ¼ê V (x) ¡~ (~K) , XJ

V (0) = 0, V (x) ≥ 0 (V (x) ≤ 0), x 6= 0.

• þã½Â¥¼ê V (x) Ú¡ Lyapunov ¼ê.

~K: ¼ê V (x1, x2) = x41 + x2

2 3 R2 ¥´½, 3 R3 ¥´~½. §'u

§

x1 = −x2, x2 = x1, (5.1.8)

ê

dV

dt

∣∣∣∣(5.1.8)

= 4x31(−x2) + 2x2x1 = 2x1x2(1− 2x2

1).

½n61. (Lyapunov ­½5O) x = 0 ´§ (5.1.7) ). ¼ê V (x) 3 ‖x‖ ≤ M

þëY.

(a) XJ V (x) ´½, dVdt

∣∣(5.1.7)

´~K, K§ (5.1.7) ")´­½.

(b) XJ V (x) ´½, dVdt

∣∣(5.1.7)

´½K, K§ (5.1.7) ")´ìC­½.

(c) XJ V (x) ´½, dVdt

∣∣(5.1.7)

´½, K§ (5.1.7) ")´Ø­½.

y: (a) é ∀ ε > 0 (Ø ε < M), -

m = minε≤‖x‖≤M

V (x).

Ï V ëY, V (x) 6= 0, ‖x‖ > 0, ¤± 0 < m <∞. qÏ V (0) = 0, ¤±3 δ > 0 ¦

V (x) < m, ‖x‖ < δ.

154

Page 164: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

1ÊÙ ©§½5Ú­½5nØ

eyé?¿ ‖x‖ < δ, § (5.1.7) 3, t0 l x Ñu) x(t) t > t0 Ñk

‖x(t)‖ < ε.

eØ,, 3 t∗ > t0 ¦ ‖x(t∗)‖ = ε, ‖x(t)‖ < ε, t ∈ [t0, t∗). d½n (a) b

V (x(t∗))− V (x(t0)) =

∫ t∗

t0

dV (x(t))

dt≤ 0.

‖x(t0)‖ < δ, ¤±

V (x(t∗)) ≤ V (x(t0)) < m.

ù V (x(t∗)) ½Âgñ. ùgñ`² ‖x‖ < δ, Òk ‖x(t)‖ < ε, t > t0. Ï ")

´­½.

(b) d (a), § (5.1.7) ")´­½. éu (a) y²¥½ δ. é ∀x ÷v ‖x‖ < δ,

du

dV (x(t))

dt≤ 0, V (x(t)) ≥ 0,

¤±4 limt→∞

V (x(t)) 3, PÙ l.

ey l = 0. eØ,, l > 0. Ï

V (x(t)) ≥ l, t ∈ [t0,∞),

V (0) = 0, ¤± ∃ ρ > 0 ¦

‖x(t)‖ ≥ ρ, t ∈ [t0,∞)

Ï

dV (x(t))

dt< 0, t ∈ [t0,∞).

-

r := maxρ≤‖x‖≤M

dV (x)

dt

∣∣∣∣(5.1.7)

.

Kk −∞ < r < 0. ¤±

V (x(t))− V (x(t0)) =

∫ t

t0

dV (x(s))

dsds ≤ r(t− t0), t ∈ [t0,∞).

t→∞ , >k, m>ªuKá. ùgñ`² l = 0.

y limt→∞

‖x(t)‖ = 0. eØ,, Ï x(t); t ∈ [t0,∞) k., ¤±3üN4O:

tn ÷v limn→∞

tn =∞ ¦

limn→∞

x(tn) = x∗ 6= 0.

155

Page 165: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

§5.1 ©§)­½5

d V (x) Ú) x(t) ëY5

0 = limn→∞

V (x(tn)) = V (x∗) 6= 0.

ùgñ`² limt→∞

‖x(t)‖ = 0.

(c) y. XJ")´­½, Ké ∀ ε > 0, ∃ δ > 0 ¦ 0 < ‖x‖ < δ , ÷vЩ^

x(t0) = x )k

‖x(t)‖ < ε, t ∈ [t0,∞).

Ï

dV (x)

dt

∣∣∣∣(5.1.7)

> 0, x 6= 0,

¤±

V (x(t)) ≥ V (x(t0)) = V (x) > 0.

l ∃σ > 0 ¦

‖x(t)‖ ≥ σ, t ∈ [t0,∞).

-

% = minσ≤‖x‖≤ε

dV (x)

dt

∣∣∣∣(5.1.7)

.

K 0 < % <∞. l k

V (x(t))− V (x(t0)) =

∫ t

t0

dV (x(s))

dsds ≥ %(t− t0).

Ï σ ≤ ‖x(t)‖ < ε V ëY, ¤± t→∞ , >k, m>ªÃ¡. ùgñ`

²")´Ø­½. y..

N5:

1. ½n 61 ¥½")­½5¡ Lyanunov 1. §´ÛdêÆ[ Alek-

sandr Lyapunov (1857–1918)u 1892c3ÙƬة¥JÑ ( [41]),T3Äå

XÚ­½5ïÄ¡åX­^. ؽn 61 ¥O, kÙ§

í2. ÖØ3dÛ.

2. éu1, Lyapunov 1^?ê½­½5, du^å5ØB, y3é

Jå. Lyapunov 1' Lyapunov ê3yÄåXÚ·bïÄ¡

åX4Ù­^.

156

Page 166: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

1ÊÙ ©§½5Ú­½5nØ

~K:

1. §

x = x3 − 2y3, y = xy2 + x2y +1

2y3,

")Ø­½, ±ÏL Lyapunov ¼ê V = x2 + 2y2 y.

2. §

x = y − x3, y = −2(x3 + y5),

")ìC­½, ±ÏL Lyapunov ¼ê V = x4 + y2 y.

3. §

x = y + 2y3, y = −x− 2x3,

")­½, ±ÏL Lyapunov ¼ê V = x2 + x4 + y2 + y4 y.

4. §

x = 2x2y + y3, y = −xy2 + 2x5, (5.1.9)

")Ø­½. ¯¢þ, ¼ê V = xy, K

dV

dt

∣∣∣∣(5.1.9)

= x2y2 + y4 + 2x6, (5.1.10)

3")S½. du3 y ¶þ x > 0, 3 x ¶þ y > 0, ¤±l1

Ñu;XmO\ò©ª±31. ql (5.1.10) , ÷Xl1

¥?:Ñu;XmO\ V = xy îO\,ù`²l1

Ñu;XmO\ÑòÅìl"). l ")´Ø­½.

N5: äNA^ Lyapunov 1'´EÜ· Lyapunov ¼ê, vk

E Lyapunov ¼ê. éuäN¯K, 3E Lyapunov ¼ê¦þ¦Ù÷X

§ê¥Ø¹CþÛg.

§5.2 ²¡g£©XÚ: 4Ú©|

üå, IJ¡g£©XÚ

x = P (x, y), y = Q(x, y), (5.2.1)

157

Page 167: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

§5.2 ²¡g£©XÚ: 4Ú©|

Ù¥ P, Q 3,²¡« Ω ¥ëY. P, Q ´5¼ê, ©XÚ (5.2.1) )Ú;

531oÙ¥®)û.

P,Q ´gêu½u 2 õª, ©XÚ (5.2.1) ÄåƯKvk)û. Ï

P,Q ´1w¼ê½)Û¼ê, ©XÚ (5.2.1) ÄåÆïÄ\(J. 5

`,é©XÚ (5.2.1)^ÐÈ©¦)´ØU. 19­V"IêÆ[ Henry Poincare

Mᩧ½5nØ, ©§ïÄm÷Ï#. ϱ5©§±

Ï)ïÄ´²¡½5nØØ%K, ë [3, 12, 18, 19, 25, 30, 34, 39, 40, 45, 47,

48, 57, 58, 60–62].

b P, Q 3« Ω ⊂ R2 ¥ëY, ©XÚ (5.2.1) 3 u Ω ¥k±Ï; Γ.

• ¡ Γ TXÚ4, XJ3 Γ ?¿ýÚSýÑk4;.

• ¡ Γ TXÚ­½4, XJl Γ ,S?:Ñu;Ñ^%

C Γ.

• ¡ Γ TXÚØ­½4, XJl Γ ,S?:Ñu;ÑK^

%C Γ.

• ¡ Γ TXÚ­½4, XJl Γ ,ýÑu;Ñ^%C

Γ, l,ýÑu;ÑK^%C Γ.

• ¡ Γ TXÚ±Ï, XJ Γ ,¥¿÷±Ï;.

~K: ²¡4Ie©§

r = r(r − 1)(r − 2)2(r − 3), θ = 1,

±Ï; r = 1 ´­½4, r = 2 ´­½4, r = 3 ´Ø­½4.

N5:

• ©XÚ (5.2.1) )Û, 31w©XÚ~fµ§,±Ï;?¿

SÑQk±Ï;qk±Ï;. k,Ööë^ [57, p.44 ~ 2].

• ©XÚ (5.2.1) )Û, |^)Û¼ê":5±y²§?±Ï;½ö

k¿÷±Ï;,½ökÙ¥vkÙ§±Ï;. ö¡á

±Ï;. Ïdéu)Û©XÚ, 4q½Âá±Ï;.

158

Page 168: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

1ÊÙ ©§½5Ú­½5nØ

N5: Hilbert 1 16 ¯K

• 1900c3niISêÆ[¬þ,IêÆ[ David HilbertJÑ 23êƯK.Ù

¥1 16¯KÜ©¯µ©XÚ (5.2.1) ´¢ ngõª©XÚ (= P,Q´

'u x, y ¢Xêõª, maxdegP,degQ = n) , §4êÚ©

Ù? ë [27, 50].

• 100 õcL, ¦+­(J, lT¯K)ûé. ~X

– 3 1990 ccIêÆ[ Ecalle [19] ÚÛdêÆ[ Ilyashenko [30] ©Oy²µ

?¿½²¡ n gõª©XÚ4ê´k.

– é¤k²¡ ngõª©XÚ4ê´Äkþ.¯Kvk)û

(=¦´²¡gõª©XÚvk)û).

þã¯KïÄ(Jo(3;ÍÚnãw¥,k,Öö±ë [12, 18, 34,

39, 47, 48, 57, 58, 61].

§5.2.1 435Ú­½5½

ÄkÑAü½4Ø3Ú3(Ø.

½n62. (Bendixson ½n) e©XÚ (5.2.1) uÑþ

div(P,Q) =∂P

∂x+∂Q

∂y,

3üëÏ« Ω ¥±~Ò, Ø3 Ω ?Ûf«þðu", K©XÚ (5.2.1) 3 Ω

¥vk4;, l vk4.

y: y. e Γ ´ u Ω ¥^4;. D ´ Γ ¤«SÜ. Kd Green úª

9½nb

0 6=∫∫

D

(∂P

∂x+∂Q

∂y

)dxdy =

∮Γ

Pdy −Qdx = 0.

ùgñL²©XÚ (5.2.1) 3 Ω ¥vk4;. y..

N5:

159

Page 169: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

§5.2 ²¡g£©XÚ: 4Ú©|

• lþã½ny²µ©XÚ (5.2.1) 3 Ω ¥k4; Γ 7^´∫∫D

(∂P

∂x+∂Q

∂y

)dxdy = 0.

l½n 62 y²éN´e(J.

íØ63. (Dulac ½n) e3üëÏ« Ω ¥3ëY¼ê B(x, y) 6= 0 ¦

∂(BP )

∂x+∂(BQ)

∂y,

3 Ω ¥±~Ò, 3 Ω ?Ûf«þØðu", K©XÚ (5.2.1) 3 Ω ¥vk4

;, l vk4.

íØ 63 ¥¼ê B ¡ Dulac ¼ê. ¦+íØ 63 ½n 62 ké«O, 3

4Ø3ïÄþ%å~­^. Ïéõ¹e, XÚ (5.2.1) ¿Ø÷

v½n 62 ^, %3¼ê B ¦íØ 63 ^¤á. äN¯K¥é B %´(J.

e¡(JÑ43OOK.

½n64. (Poincare–Bendixson½n) Ω ´. e©XÚ (5.2.1) 3 Ω ¥vkÛ

:, §; Ω S>.Ñ (½ÑK) ?\ Ω SÜ, K Ω ¥k

^¹S¸.3ÙSÜ«­½ (Ø­½) 4Ú^S­½ (Ø­½) 4.

?Ú?Ø435Ú­½5, IïÄ Poincare N. Γ ´©XÚ

(5.2.1) ^±Ï;.

• é ∀p = (x, y) ∈ Γ,L p1w­ã S ¡©XÚ (5.2.1)è,XJé ∀q ∈ S,

þ (P (q), Q(q)) S î (=Ø S 3T:þ²1).

• é ∀q ∈ S, § (5.2.1) L q ;P φt(q). XJ q p ålv, Kd)'

uЩ^ëY65, φt(q) ;ò£ S þ. P T (q) L q ;

1g£ S m, ¡£m.

• Σ ⊂ S ¦é ∀q ∈ Σ k φT (q)(q) ∈ S. ¡ Σ Γ Poincare è. ùÒ½Â

N

P : Σ −→ S

q −→ φT (q)(q).

¡ Σ þ Poincare N½£N.

160

Page 170: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

1ÊÙ ©§½5Ú­½5nØ

N5: éu©XÚ (5.2.1),

• Poincare N P(q) ´N, §ØÄ:éAX©XÚ (5.2.1) ±Ï;.

• p ∈ Γ ´ Poincare N P ØÄ:, Γ ­½5dN P 3ØÄ: p ∈ Γ A λ

(½. λ < 0 , Γ ´­½; λ > 0 , Γ ´Ø­½.

• Poincare N´8cïıÏ;35Ú­½5Ìóä.

e¡(J`² Poincare N©XÚkÓ1w5.

·K65. ©XÚ (5.2.1) ±Ï;£mÚ Poincare N©XÚkÓ1

w5.

y: Γ ´©XÚ (5.2.1) ^±Ï;. S v1w Γ ^è. d)'u

ÐÚëêëY65, ©XÚ (5.2.1) ) φt(q) TXÚkÓ1w5. Ïdé

q ∈ S, Iy² T (q) ©XÚ (5.2.1) kÓ1w5.

S ëêL« (w, g(w)), K g S kÓ1w5. éu S ¥:

q = (w, z), -

F (q) = z − g(w).

K

q ∈ S ⇐⇒ F (q) = 0.

-

G(t,q) = F (φt(q)).

Ké q ∈ S,

G(0,q) = F (φ0(q)) = F (q) = 0,

∂G

∂t

∣∣∣∣(0,q)

=

(∂F

∂w(q),

∂F

∂z(q)

)dφ(t)

dt

∣∣∣∣t=0

= (−g′(w), 1) · (P (q), Q(q)) 6= 0,

Ù¥ ·:L«þSÈ.ت¤á,Ï (−g′(w), 1)´ S 3 (w, z) = (w, g(w))

FÝ, þ| (P,Q) S î.

dÛ¼ê3½nµ3 G kÓ1w5¼ê t = t(q) ¦

G(t(q),q) = F (φt(q)(q)) ≡ 0, q ∈ S.

161

Page 171: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

§5.2 ²¡g£©XÚ: 4Ú©|

l T (q) ©XÚ (5.2.1) kÓ1w5. y..

e¡(JÑ4­½5½.

½n66. Γ := φ(t) = (x(t), y(t)), t ∈ R ´©XÚ (5.2.1) ±Ï;, ±Ï T . X

JXÚuÑþ÷X±Ï;È©∫ T

0

(∂P (φ(t))

∂x+∂Q(φ(t))

∂y

)dt < 0 (> 0)

K Γ ´­½ (Ø­½) 4.

y: ½ny²Ìg^ [57]. ½ Γ þ?: p0, b Γ ´K½, =Xm

O\l p0 Ñu;^$Ä. é ∀p ∈ Γ, Pl p0 p l s, ^

(±eÄ^). Γ l l, Γ ±l s ëêëê§

x = φ(s), y = ψ(s), s ∈ [0, l].

K

φ′(s) =x

s=

P0√P 2

0 +Q20

, ψ′(s) =y

s=

Q0√P 2

0 +Q20

,

Ù¥ x L« x 'um t ê,

P0 = P (φ(s), ψ(s)), Q0 = Q(φ(s), ψ(s)).

éu Γ ,¿©S?: q, ½Â§ÛÜI (s, n) Xe: q u Γ þ

,: p þ, s ´l p0 p Ý, n ´l p q ÷XÝ. |^ÛÜI

(s, n), q IL«

x = φ(s)− nψ′(s), y = ψ(s) + nφ′(s), (5.2.2)

Ù¥ n c¡ÎÒ´d φ′(s) Ú ψ′(s) ÎÒ(½. ùp^ Γ L p Y²

YuÚu©O´

Q0√P 2

0 +Q20

ÚP0√

P 20 +Q2

0

.

e¡F"ïÄl Γ¿©S: qÑu;$ı nCz. 5¿3

T;þ n ´ s ¼ê, ;§ (5.2.2). ò (5.2.2) \©XÚ (5.2.1)

Q[s, n]

P [s, n]=dy

dx=ψ′(s) + n′(s)φ′(s) + nφ′′(s)

φ′(s)− n′(s)ψ′(s)− nψ′′(s),

162

Page 172: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

1ÊÙ ©§½5Ú­½5nØ

Ù¥ [s, n] = (φ(s)− nψ′(s), ψ(s) + nφ′(s)). )d§

n′(s) =Q[s, n]φ′(s)− P [s, n]ψ′(s)− n(s)(P [s, n]φ′′(s) +Q[s, n]ψ′′(s))

P [s, n]φ′(s) +Q[s, n]ψ′(s)=: F (s, n).

w, n ¿©, P [s, n]φ′(s) +Q[s, n]ψ′(s) 6= 0, s ∈ [0, l], F (s, 0) = 0. é F (s, n) 'u

n Taylor Ðm

n′(s) = H(s)n+ o(n), (5.2.3)

Ù¥

H(s) =∂F

∂n

∣∣∣∣n=0

=P 2

0Q0y − P0Q0(P0y +Q0x) +Q20P0x

(P 20 +Q2

0)3/2,

´± l ±Ï±Ï¼ê, Ù¥ f0x, f ∈ P,Q, L« f0 'u x ê.

é§

n′(s) = H(s)n, (5.2.4)

È©

n(l) = n(0)e∫ l0H(ν)dν .

¤±

D :=

∫ l

0

H(ν)dν < 0 (> 0),

§ (5.2.4) ")ìC­½ (Ø­½). l D < 0 (> 0) , § (5.2.3) ")ìC­

½ (Ø­½), Ï Γ ìC­½ (Ø­½).

Ï÷X±Ï; Γ k ds =√P 2

0 +Q20dt, ¤±ÏLO∫ l

0

H(ν)dν =

∫ T

0

P 20Q0y − P0Q0(P0y +Q0x) +Q2

0P0x

P 20 +Q2

0

dt

=

∫ T

0

[P0x +Q0y −

P 20P0x + P0Q0(P0y +Q0x) +Q2

0P0y

P 20 +Q2

0

]dt

=

∫ T

0

(P0x +Q0y) dt− 1

2

∮Γ

d(P 2

0 +Q20

)P 2

0 +Q20

dt =

∫ T

0

(P0x +Q0y) dt.

ùÒy²½n(Ø. y..

N5: ±þ04nØ¡AÄ£, éT¯Kk,ÖöÖ [40,

57, 60, 61].

163

Page 173: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

§5.2 ²¡g£©XÚ: 4Ú©|

§5.2.2 ©|¯KAü~f

©|nØäk4Ù´LSN.oÑ/`, §ÌïÄ©XÚëêCz©X

ÚN½ÛÜ;(Cz (ÿÀ¿Âe).

!ÏLü~f50ÄåXÚ¥A~©|y.éu²¡©XÚ (5.2.1),

P J = ∂(P,Q)∂(x,y) Ù Jacobi Ý.

• p = (x0, y0) ¡ (5.2.1) Û:, XJ P (p) = Q(q) = 0.

• Û: p ¡©XÚ (5.2.1) V­Û:, XJ J 3 p üA¢ÜÑØ".

• Û: p ¡©XÚ (5.2.1) ÐQ: (½V­Q:), XJ J 3 p küÉÒA

.

• Û: p ¡©XÚ (5.2.1) Ð(: (½V­(:), XJ J 3 p küÓÒA

.

• Û: p ¡©XÚ (5.2.1) o: (¡:), XJ J 3 p kéÝEA,

¢ÜØ".

• Û: p ¡©XÚ (5.2.1) ¥%, XJ p ,¿÷TXÚ±Ï;.

• Û: p ¡©XÚ (5.2.1) [:, XJ p Ø´¥%, J 3 p kéÝXJ

A.

• ©XÚ (5.2.1) ^;¡Ó;, XJ§ÚKѪuÓÛ:.

• ©XÚ (5.2.1) ^;¡É;, XJ§ÚK©OªuØÓÛ:.

~K:

1. IJ¡©XÚ

x = −y − x(x2 + y2 − 2√x2 + y2 + α),

y = x− y(x2 + y2 − 2√x2 + y2 + α),

α ∈ R. (5.2.5)

N´yµ α > 0 , :´­½:; α < 0 , :´Ø­½

:. α = 0 , XÚ (5.2.5) 3Û: (0, 0) Jacobi ÝkéXJA.

164

Page 174: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

1ÊÙ ©§½5Ú­½5nØ

34IC x = r cos θ, y = r sin θ e, ©XÚ (5.2.5) =z¤

r = −r(r2 − 2r + α), θ = 1.

lT§N´©XÚ (5.2.5) e(Ø:

– α > 1. :´­½:. Ï r < 0, r 6= 0, ¤±l²¡þ?:Ñu;

Ñ^%Cu:.

– α = 1. XÚk­½4 r = 1, §SÜ´Ø­½, Ü´­½.

d¡)­½©|.

– 0 < α < 1. ­½©|Ñü4µr = 1−√

1− α Ú r = 1 +√

1− α, Ù¥

SÜ4´Ø­½, Ü4´­½. X α ~, SÜ4

Øä , Ü4Øä*.

– α = 0. SÜØ­½4 :¦Ù¤Ø­½[:. d¡

) Hopf ©|.

– α < 0. :´Ø­½o:, XÚk­½4.

2. ²¡©XÚ

x = −y − α(x2 + y2)(x2 + y2 − 1)(x2 + y2 − 4),

y = x− α(x2 + y2)(x2 + y2 − 1)(x2 + y2 − 4),α ∈ R. (5.2.6)

34IC x = r cos θ, y = r sin θ e=z

r = −αr2(r2 − 1)(r2 − 4), θ = 1.

N´y

– α = 0 , :´Û¥%.

– α 6= 0 , XÚkü4: r = 1 Ú r = 2. ¡d¥%©|Ñ4,

ù«©|y¡ Poincare ©|.

3. ²¡©XÚ

x = 2y, y = 2x+ 3x2, (5.2.7)

165

Page 175: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

§5.2 ²¡g£©XÚ: 4Ú©|

´ Hamilton ©XÚ (Ï È), Ù Hamilton ¼ê

H = y2 − x2 − x3.

Hamilton XÚ (5.2.7) ± (− 23 , 0) ¥%, y2 − x2 − x3 = 0 ¹Q: (0, 0) ÚªuT

Q:Ó;.

4. ²¡©XÚ

x = 2y, y = a2 sinx, a > 0, (5.2.8)

´ Hamilton ©XÚ, Ù Hamilton ¼ê

H = y2 + a2 cosx.

ª­ H = −a2 ¥¹kÉuQ: (−π + 2kπ, 0) Ú (π + 2kπ, 0), k ∈ Z, É;

. (2kπ, 0), k ∈ Z ´¥%.

N5:

• ~ 1¥XÚëêCz,XÚ¬â,aÑ­½.ù´4ïÄ¥Ì(J

. ¢Sþ, ÖöéN´EÑù~fµ3ëêCzL§¥XÚ¬â,aÑ?¿­

ê4, ¿©¤õ4.

• 3~ 1¥,ëê αlKO\,:­½5u)Cz,l )4.

ù)4¡dHopf ©|)4. d Hopf ©|)4´8cï

Ä4¯KÃã.

• éu¹ëê©XÚ,ëêCz,lXÚÓ;©|Ñ4¡Ó©|.

lXÚÉ;©|Ñ4¡É©|.

• ~ 2 ¥ Poincare ©|´8cïÄ4¯KÌÃã. ïÄlÈ©X

Ú¥%9Ù>.©|Ñ4ê8¯K¡f Hilbert1 16¯K,ë [12].

ÏLü~f0AÛ:©|.

~K:

1. Q(:(saddle-node)©| ¹ëê λ ©§

x′ = x2 + λ, λ ∈ R.

166

Page 176: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

1ÊÙ ©§½5Ú­½5nØ

– λ > 0 vkÛ:;

– λ = 0 k­Û:, §´­½, ¡Q(:;

– λ < 0 þã­Û:©¤üÛ:: ­½, Ø­½.

ù«üÛ:­Üy¡Q(:©|.

2. .(Transcritical)©| ¹ëê λ ©§

x′ = x2 − λx, λ ∈ R.

– λ > 0 küÛ:: Û: x = 0 ­½, Û: x = λ Ø­½;

– λ = 0 üÛ:3 x = 0 ­Ü¤­½­Û:;

– λ < 0 þã­Û:©¤üÛ:: x = 0 Ø­½, x = λ ­½.

ù«üÛ:­Ü­½5y¡.©|.

3. ú(Pitchfork)©| ¹ëê λ ©§

x′ = x(x2 + λ), λ ∈ R.

– λ > 0 kØ­½Û:: x = 0;

– λ = 0 kn­Û:µx = 0, §E,´­½;

– λ < 0 þãn­Û:©¤nÛ:: x = −√−λ ­½, x = 0 Ø­½,

x =√−λ ­½.

ù«3ëêCz,L§¥±Û:, ,â,©¤nÛ:y¡ú

©|.

4. ´¢(Hysteresis)©| ¹ëê λ ©§

x′ = x3 − x− 2λ, λ ∈ R.

– λ > 3−3/2 kØ­½Û:, P x = x1;

– λ = 3−3/2 küÛ:µØ­½Û: x = x1 ÚQ(:, P x = x0, Kk

x0 < x1;

167

Page 177: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

§5.3 SKÊ

– −3−3/2 < λ < 3−3/2 Q(: x0 ©¤ x = x2 Ú x = x3. dnÛ:

x3 < x2 < x1 ©OØ­½!­½ÚØ­½;

– λ = −3−3/2 x = x2 x = x1 ­Ü¤Q(:;

– λ < −3−3/2 Q(:, kØ­½Û: x = x3.

ù«3ëêCzL§¥Q(:â,aÑ!©!2Ù§Û:(ܤQ(:â,

y¡´¢©|.

5. Q(:©| ¹ëê λ ©§

x′ = x2 − λ, y′ = y, λ ∈ R.

– λ < 0 vkÛ:;

– λ = 0 kÛ: (0, 0), ¡Q(:;

– λ > 0 þãÛ:©¤üÛ:: (√λ, 0) Ø­½(:, (−

√λ, 0) Q:.

ù«â,aÑÛ:, ,©¤Q:(:y¡Q(:©|.

F")©|¯KnØ£Ú?Ú(J,k,Ööë [11, 12, 18, 22, 29,

31, 32, 36, 39, 47, 48, 62].

§5.3 SKÊ

1. y²íØ 59.

2. ÏL¦e§A¦ê½")­½5

2.1 x′ = 4 sin(3t)x;

2.2 x′ = −2x+ sin(2t)y, y′ = −2y.

2.3 x′ = x+ cos(2t)y, y′ = (1 + cos(2πt))y.

3. Mathieu §

x′′ + (a+ b cos t)x = 0

´ Hill §AϹ, Ù¥ a, b ´~ê. ÁÒ a, b ØÓ, ½ Mathieu §")

­½5Ú±Ï)35.

168

Page 178: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

1Ù ©§½5Ú­½5nØ

4. ½e§|")­½5

4.1 x = 2x− y + x2y + 3y3 − 5y5, y = x− y + x2 − y2 + 2xy.

4.2 x = −2x− y + xy − y3 + 3xy2, y = −y + xy2 + 2x3.

4.3 x = 2x− 3y + x2 + 3y2, y = 3x+ 2y + xy2 − y3 + x2y2.

4.4 x = −y − αx(x2 + y2 − 1), y = x− αy(x2 + y2 − 1).

5. n?>f+¥g-§

x+ ε(x2 − 1)x+ x = 0,

´Ö=ÔnÆ[ Balthasar van der Pol u 1926 cïá (<¡ van der Pol

§). T§gïá±53Ôn!)ÔÆ¥k2A^. Á?Ø van der Pol §

")­½5. J«µ=z§|?Ø.

6. ÁÑ5XÚ~fµ§")ìC­½, Ù5CqXÚ")Ø­½.

7. ^ Lyapunov 1½e§|")­½5.

7.1 x = −y + αx5, y = x+ αy5.

7.2 x = −x+ 2xy2, y = −4x2y − 3y5.

7.3 x = 2x2 − y2, y = xy. J«µ V (x, y) = x2 − y2.

7.4 x = x3 − 2y3, y = xy2 + 2x2y + y3.

7.5 x = y − 2x− 3x3y2, y = −5x− 7y.

7.6 x = y + 2y3, y = −x− 2x3.

8. b f(x, y) ∈ C1(R2). Á?ا|

x = y − xf(x, y), y = −x− yf(x, y),

")­½5.

9. b f(x) ∈ C(R), xf(x) < 0, x 6= 0. Á?ا|

x = y, y = f(x),

")­½5.

169

Page 179: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

§5.3 SKÊ

10. ½§|

x = −2y, y = 2x+ 3x2,

¤kÛ:­½5.

11. ½²¡©XÚ

x = −y + αx(x2 + y2 − 1)2(x2 + y2 − 4), y = x+ αy(x2 + y2 − 1)2(x2 + y2 − 4)

´Äk4. ek, ѧLª, ¿½§­½5.

12. y²íØ 63.

13. ©Ûe¹ëꩧ©|, ¿xÑ©|ã.

13.1 x′ = x3(x− λ).

13.2 x′ = x2 − αx+ β.

13.3 x′ = x3 − λx+ 2.

13.4 x′ =x2

1 + x2− λ.

13.5 x′ = µx− y − βx(x2 + y2), y′ = x+ µy − βy(x2 + y2).

13.6 x′ = y, y′ = −x(1− x) + λ(1− x)y.

170

Page 180: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

18Ù N¹

§6.1 Arzela-Ascoli Úny²

½n67. (Arzela–Ascoli Ún) XJ¼ê fn(x) 3k.48 I þk.ÝëY,

K fn(x) kf3 I þÂñ.

y: P I = [a, b]. Äky²(Ø 1µéu I þ?¿k: x1, . . . , xm, o3 fn(x)

f¦§3ù m :z:Ñ´Âñê.

¯¢þ,du fn(x)3 Iþk.,¤± fn(x1)3Âñf. P fnk1 (x1)∞k1=1

fn(x1)Âñf. q fnk1 (x)3 I þk.,¤± fnk1 (x2)3Âñf

, P fnk2 (x2)∞k2=1. aq/, fnk2 (x) 3 I þk., ¤± fnk2 (x3) 3Âñf

, P fnk3 (x3)∞k3=1. ù= fn(x) f¦§3ù m :Ñ´Âñ. l

(Ø 1 ¤á.

é ∀ ε > 0, du fn(x) 3 I þÝëY, ¤± ∃ δ > 0 ¦é ∀z1, z2 ∈ I,

|x1 − x2| < δ, Òk

|fn(z1)− fn(z2)| < ε, ∀n ∈ N. (6.1.1)

éuþã ε, δ, - m = [ b−aδ ] + 1. ò«m I = [a, b] ©¤ m °, ò§ m+ 1 à:

lmgP x0, x1, . . . , xm. Kz«mÝÑu δ.

d(Ø 1 , ¼ê fn(x) 3f fnk(x) 3 x0, x1, . . . , xm ÑÂñ. P fnk(x)

3ù m+ 1 :4©O f(x0), f(x1), . . . , f(xm).

Ùgy²(Ø 2: fnk(x) 3 I þÂñ. ¯¢þ, éuþã?¿À ε > 0, du

fnk(xi), i = 0, 1, . . . ,m, Âñu f(xi), ¤± ∃Ni ∈ N ¦ l > Ni ,

|fnl(xi)− f(xi)| <ε

8. (6.1.2)

- N = maxN0, N1, . . . , Nm. K l > N k

|fnl(xi)− f(xi)| <ε

8, ∀ i ∈ 0, 1, . . . ,m (6.1.3)

171

Page 181: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

~©§

é ∀x ∈ I, K ∃ i ∈ 0, 1, . . . ,m ¦ x ∈ [xi, xi+1]. l é ∀ l1, l2 > N k

|fnl1 (x)− fnl2 (x)| ≤ |fnl1 (x)− fnl1 (xi)|+ |fnl1 (xi)− f(xi)| (6.1.4)

+|f(xi)− fnl2 (xi)|+ |fnl2 (xi)− fnl2 (x)| < ε

2.

= fnk(x) ´ Cauchy ê, Ï Âñ. PÙ4 f(x).

éþã?¿À½ ε > 0, 9þã N > 0. é ∀x ∈ I, 9 l, k > N , d (6.1.4)

|fnl(x)− fnk(x)| < ε

2.

éþª- k →∞

|fnl(x) − f(x)| ≤ ε

2< ε.

ùÒy² fnk(x) 3 I Âñ f(x). y..

5µdëY¼êÂñ5, fnk(x)3 I Âñ4¼ê f(x)3k.48

I þëY.

§6.2 Ýéê35y²

½n68. 'uÝéê, e(ؤá.

(a) XJ C ´ n ÛÉÝ (¢½E), K3 n Ý B ¦ C = eB. ¡

B ´ C Ýéê.

(b) XJ C ´ n ÛÉ¢Ý, K3 n ¢Ý B ¦ C2 = eB.

yµ(a) dÝ Jordan IO.nØ, 3 n ÛÉÝ P ¦ P−1CP = J ´ Jordan

IO.. XJ3 n Ý K ¦ J = eK, K B := PeKP−1 = C Ýéê. Ïde

¡Iy² Jordan IO. J kÝéê.

- J = diag(J1, . . . ,Jm), Ù¥ Ji ´ Jordan ¬. âÝê5, Iy²z

Jordan ¬kÝéê. ÏdPÒüå, Øb J ´ Jordan ¬. -

J = λE + N = λ(E + λ−1N),

Ù¥ N ´"Ý. |^ ln(1 + x) Taylor Ðm

ln J = (lnλ)E +

n−1∑k=1

(−1)k+1

k(λ−1N)k, (6.2.1)

172

Page 182: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

18Ù N¹

Ù¥^"Ý5 Nk = 0, k ≥ n. Ïd K = ln J ´ J éê.

(b) du C ´¢, ¤±3Ûɢݦ C2 qu§¢ Jordan IO.. Ïd

aqu (a) y², Iy² C2 Jordan IO.k¢éê.

λ1, . . . , λn ´ CA,K λ21, . . . , λ

2n ´ C2 A, C2 JordanIO.¥

Jordan ¬éAu C Jordan IO.¥ Jordan ¬. Au C ØÓa.A, «

©en«¹.

1. Au C ¢A λ éA C2 Jordan ¬ J. d

J = λ2Ei + Ni,

Ù¥ Ei Ú Ni ´·êü ÝÚ¢"Ý. l (6.2.1) , ¢ Jordan ¬ J k¢

Ýéê.

2. Au C XJA λ =√−1b éA C2 Jordan ¬ J. d

J =

−b2

1 −b2

. . .. . .

1 −b2

.

du C ´¢, §EA¤éÑy. Ï C2 Au C XJA −√−1b

Jordan ¬´ J. ù3 C2 Jordan IO.¥k¬ M = diag(J,J). Ø J ´ l Ý

. ey M k¢Ýéê.

ÄkN´y² M qu

Λ + N,

Ù¥

Λ =

−b2E2

−b2E2

. . .

−b2E2

, N =

0

E2 0

. . .. . .

E2 0,

,

Ù¥ 0 ´"Ý, E2 ´ü Ý. ¤±

ln(Λ + N) = ln Λ + ln(E2l + Λ−1N) = ln Λ +

n−1∑k=1

(−1)k+1

k(Λ−1N)k,

173

Page 183: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

~©§

Ù¥1ª^ Λ−1N ´"Ý. q

ln Λ =

ln(−b2E2)

ln(−b2E2)

. . .

ln(−b2E2)

,

ln(−b2E2) =

ln b2 (2k + 1)π

−(2k + 1)π ln b2

, k ∈ Z.

ùÒy² M, l J k¢éê.

3. Au C EJA λ = a+√−1b éA C2 Jordan ¬ J, ab 6= 0. d

J =

D2

E2 D2

. . .. . .

E2 D2

, D2 =

a b

−b a

.

aqu 2 ¥y², ò J ¤

J = Λ + N,

Ù¥

Λ =

D2

D2

. . .

D2

, N =

0

E2 0

. . .. . .

E2 0,

.

du

ln D2 =

1

2ln(a2 + b2) arccos

(a√

a2 + b2

)+ 2lπ

− arccos

(a√

a2 + b2

)− 2lπ

1

2ln(a2 + b2)

, l ∈ Z,

aqu 2 y², J k¢éê.

nÜþãn«¹y, C2 ¢ Jordan IO.k¢éê, Ï C2 k¢éê. y

..

174

Page 184: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

ë©z

[1] Abraham R. and Marsden J.E., Foundations of Mechanics, The Benjamin/Cummings

Publishing Company, INC, Lodon, 1978.

[2] Arnold V.I., Ordianry Differential Equations, Springer-Verlag, Berlin, 2006.

[3] Arnold V.I., Geometric Method of the Theory of Ordianry Differential Equations,

Springer-Verlag, New York, 1983.

[4] Arnold V.I., Mathmatical Methods of Classical Mechanics, Springer-Verlag, New York,

1989.

[5] Audin M., da Silva A.C. and Lerman E., Symplectic Geometry of Integrable Hamiltonian

Systems, Birkhauser, Basel, 2003.

[6] Bogoyavlenskij O.I., Extended integrability and bi-Hamiltonian systems, Commun.

Math. Phys. 196 (1998), 19-51.

[7] Bolsinov A.V. and Fomenko A.T., Integrable Hamilton Systems: Geometry, Topology,

Classification, Chapman & Hall, Boca Raton, 2004.

[8] Bolsinov A.V. and Taimanov I. A., Integrable geodesic flows with positive topological

entropy, Invent. Math. 140 (2000), 639-650.

[9] Chavarriga J., Giacomini H., Gine J. and Llibre J., On the integrability of two-

dimensional flows, J. Differential Equations 157 (1999), 163-182.

[10] Chicone C., Ordianry Differential Equations with Applications, Springer-Verlag, New

York, 2006.

[11] Chow S.N. and Hale J.K., Methods of Bifurcation Theory, Springer-Verlag, New York,

1982.

[12] Christopher C. and Li Chengzhi, Limit Cycles of Differential Equations, Birkhauser,

Basel, 2007.

175

Page 185: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

ë©z

[13] Coddington E.A. and Levinson N., Theory of Ordinary Differential Equations, McGraw

Hill, New York, 1955.

[14] Conway J.B., A Course in Functional Analysis, Graduate Texts in Math. 96. Springer-

Verlag, New York, 1985.

[15] Culver W.J., On the existence and uniqueness of the real logarithm of a matrix, Proc.

Amer. Math. Soc. 17 (1966), 1146–1151.

[16] ¶Ó;,o«£, ~©§,pÑ,®, 2005.

[17] Dufour J.P. and Zung N.T., Poisson Structures and Their Normal Forms, Progress in

Mathematics, Birkhauser, Basel, 2005.

[18] Dumortier F., Llibre J. and Artes J.C., Qualitative Theory of Planar Differential Systems,

Springer-Verlag, Berlin, 2006.

[19] Ecalle J., Introduction aux fonctions analysables et preuve constructive de la conjecture

du Dulac, Actualities Math., Hermann, Paris, 1992.

[20] Godunov A.N., Peano’s theorem in Banach space, Functional Analysis and its Applica-

tions, 9 (1975), 53–55.

[21] Goriely A., Integrability and Nonintegrability of Dynamical Systems, World Scientific,

New Jersey, 2001.

[22] Guckenheimer J. and Holmes P., Nonlinear Oscillations, Dynamical Systems, and Bifur-

cations of Vector Fields, Springer-Verlag, New York, 1983.

[23] Hajek P. and Johanis M., On Peano’s theorem in Banach space, J. Differential Equations,

249 (2010), 3342–3351.

[24] Hale J.K., Ordinary Differential Equations (2nd ed.), R. E. Krieger Pub. Co., Malabar,

1980.

[25] ¸jS, ÄåXÚ±Ï)©|nØ,ÆÑ,®, 2002.

[26] Hartman P., Ordinary Differential Equations (second edition), Birkhauser, Boston, 1982.

176

Page 186: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

~©§

[27] Hilbert D., Mathematical problems, Bulletin of the American Mathematical Society 37

(2000), 407–436.

[28] Hill G.W., On the part of the motion of the lunar perigee which is a function of the mean

motions of the sun and moon, Acta Math. 8 (1886), 1–36.

[29] Hirsch M. and Smale S., Differential Equations, Dynamical Systems, and Linear Algebra,

Academic Press, San Diego, 1974.

[30] Ilyashenko, Yu. S., Finiteness Theorems for Limit Cycles, Transl. Math. Monograph, 94,

American Mathematical Society, Providence, 1991.

[31] Ilyashenko Yu.S. and Li Weigu, Nonlocal Bifurcations, American Mathematical Society,

Providence, 1999.

[32] Jost J., Dynamical Systems , Springer-Verlag, Berlin, 2005.

[33] Kelley W. and Peterson A., The Theory of Differential Equations Classical and Qualita-

tive, Pearson Education, INC., New Jersey, 2004.

[34] Li Jibin, Helbert’s 16th problem and bifurcations of planar polynomial vector fields, In-

ternat. J. Bifurcation and Chaos 13 (2003), 47–106.

[35] oÁ),ïI, 5ê,¥IÆEâÆÑ,Ü, 1989.

[36] o, 5.nØ9ÙA^,ÆÑ,®, 2000.

[37] Li Weigu, Llibre J. and Zhang Xiang, Extension of floquet’s theory to nonlinear periodic

differential systems and embedding diffeomorphisms in differential flows, American J.

Math. 124 (2002), 107–127.

[38] Llibre J. and Zhang Xiang, Rational first integrals in the Darboux theory of integrability

in Cn, Bulletin des Sciences Mathematiques 134 (2010) 189–195.

[39] 4G,oUQ, ²¡þ|eZ²;¯K,ÆÑ,®, 2010.

[40] Û½,Ü,Âr,ÄåXÚ½5nØ©|nØ,ÆÑ,®, 2001.

177

Page 187: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

ë©z

[41] Lyapunov M., Probleme General de la Stabilte du Movement, Princeton Universtiy Press,

Princeton, 1947.

[42] Magnus W. and Walker S., Hill’s equation, Interscience Publishers, New York, 1966.

[43] Miller R.K. and Michel A.N., Ordinary Differential Equations, Academic Press, New

York, 1982

[44] Olver P.J., Applications of Lie Groups to Differential Equations, Springer, New York,

1998.

[45] Palis J.Jr. and de Melo W., Geometric Theory of Dynamical Systems An Introduction,

Springer-Verlag, New York, 1982.

[46] Pontryagin L. S., Ordianry Differential Equations, Elsevier, San Diego, 1962.

[47] Romanovski V.G. and Shafer D.S, The Center and Cyclicity Problems A Computational

Algebraic Approach, Birkhauser, Boston, 2009.

[48] Roussarie R., Bifurcation of Planar Vector Fields and Hilbert’s Sixteenth Problem,

Birkhauser, Basel, 1998.

[49] Rudin W., Functional Analysis (2nd ed.), McGraw-Hill, New York, 1991. .

[50] Smale S., Mathematical Problems for the Next Century, The Mathematical Intelligencer

20 (1998), No. 2, 7-15.

[51] Sagan H., Boundary and Eigenvalue Problems in Mathmatical Physics, John Wiley, New

York, 1963.

[52] Vanhaeche P., Integrable systems in the realm of Algebraic Geometry, Lect.Notes Math.

1638, Springer-Verlag, Heidelberg, 2001.

[53] p<, ±µ, Ágµ, Æt, ~©§ (1n), pÑ,

®, 2011.

[54] ÆM,H;, AϼêVØ,®ÆÑ,®, 2000.

178

Page 188: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

~©§

[55] ÎR+,o], ~©§,pÑ,®, 2004.

[56] ^, ~©§ùÂ(1),<¬Ñ,®, 1982.

[57] ^, 4Ø,þ°ÆEâÑ,þ°, 1986.

[58] ^, õª©XÚ½5nØ,þ°ÆEâÑ,þ°, 1995.

[59] Üö! ±, ¼©ÛùÂ,þ!eþ,®ÆÑ,®, 2003.

[60] Ü<ö,¾,~©§AÛnØ©|¯K (1n),®ÆÑ,

®, 2002.

[61] Ü¥,¶Ó;,©G,ÂU, ©§½5nØ,ÆÑ,®, 1985.

[62] Ü¥,o«£,x²,o, þ|©nØÄ:,pÑ,

®, 1997.

[63] Zung N.T., Convergence versus integrability in Birkhoff normal form, Ann. Math. 161

(2005), 141–156.

179

Page 189: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

¶c¢Ú (U©Ñ^S)

A

Q: Arzela–AscoliÚn

B

­½©| BanachØÄ:½n

Bendixson½n Bernoulli§

Bessel§ Bessel¼ê

4; '½n

Ø­½4 C©§

Cþ©l§ ­½4

ØC­¡ ØÄ:

Ø­½: Ø­½(:

C

Cauchy¯K CauchyS

~: ~K

~êC´ ~êC´úª

~©§ ~

ÐQ: мê

ÐÈ© Ð:

Ð(: Ð¥%

Щ: Щ^

Щ ЯK

Clairaut§ o:

3«m 35½n

D

ê­ê êAÛ

êÿÀ êfª

üëÏ« ü Ý

180

Page 190: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

~©§

üf ÝëY

³¡ ³

4íúª ½K

½ ÄåXÚ

Äþ ÄU

é¡/ª Dulac½n

Dulac¼ê õª©XÚ

E

©§ Euler§

Eulerò

F

uÑþ ¼©Û

£m £N

ÛÉÝ ©|

FloquetnØ Floquet5.

Floquetê EA

G

Gamma¼ê p©§

p5©§ pàg5©§

pàg5©§ Gronwallت

2 Gronwallت ÝE

ݧ .5X

2Â?ê ;!;

H

Hamilton¼ê HamiltonXÚ

¼êÕá î

Hilbert116¯K Hopf©|

·b

J

Jacobi1ª JacobiÝ

181

Page 191: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

¶c¢Ú

Ä)| Ä)Ý

È©­ È©§

È©Ïf AÛ­ê

4 4

ìC­½ :

) (:

)35 )3«m

)òÿ )5

)éëêëY65 )éÐëY65

è )Ý!Ý)

)Û) )Û©§

Cq) JordanIO.

ÛÜ Lipschitz^ ÛÜI

ål ålm

Ý, Ý=

Ýéê Ýê

Ýê¼ê ýé

K

m«m

L

Legendreõª Legendre§

L’HospitalK ëY

ëY) ëY ê

") Lipschitz~ê

Lipschitz^ Liouville–Arnold½n

Liouvilleúª LiouvilleÈ

Lyapunov1 Lyapunov1

Lyapunov¼ê Lyapunov­½

Lyapunovê

182

Page 192: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

~©§

M

?ê ?ê)

N

ngàg¼ê _Ý

n~©§ nàg5©§|

nàg5©§| nþ

ngdÝ HamiltonXÚ

P

Peano½n ©§

©§ Picard½n

PicardÅg%C Poincare–Bendixson½n

Poincare©| Poincareè

PoincareN

Q

Û: Û)

T§ ê

R

?¿~ê Riccati§

f Hilbert116¯K

S

³U nت

¢) ÄgÈ©

ÄgÈ©35 Âñ

Âñ» Sturm'½n

T

TaylorÐm Aϼê

A¦ê Aõª

Aþ A

183

Page 193: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

¶c¢Ú

Aê FÝ

ÏÈ© Ï)

Ó©| Ó;

òz(: ýÈ©

à«

W

ålm

È ©§

©§ ©§½5nØ

©§ÈnØ ©§|

­½ ­½4

­½: ­½(:

­) Wronsky1ª

X

[: |

àg5§ àg5©§

5©§ 5Ã')

5') m

þ ":

ã Ç

Y

Ø K Ø Nn

~©§ É©|

É; Âñ

k. ÏCþ

Û¼ê3½n `¼ê

`?ê k.48

184

Page 194: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

~©§

Z

¥%

KÛ: I§

I ±Ï;

T ±Ï¼ê ±Ï

±Ï ±Ï)

gCþ fm

g£©§ 3«m

±Ï

185

Page 195: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

;¶c¥=©éì (U3©¥Ñy^Sü)

©§ ~©§

Differential equations (DE) Ordinary differential equations (ODE)

©§ ©§

Partial differential equations (PDE) The order of differential equations

n~©§ ~©§

nth order ODE The first order ODE

) Ï)

Solution General solution

Jacobi1ª Щ^

Jacobi determinant Initial condition

Щ: Щ

Initial point Initial value

©§ ЯK

Second order DE Initial value problem

)35 )5

Existence of solutions Uniqueness of solutions

)òÿ È©­

Continuation of solutions Integral curves

| )3«m

Line segment fields The interval of existence of solution

ëY 3«m

Continuous (Continuity) The maximal interval of existence

Ç

Tangent line Slope

Cauchy¯K 35½n

Cauchy problem The existence and uniqueness theorem

186

Page 196: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

~©§

Picard½n Peano½n

Picard theorem Peano theorem

ÛÜ Lipschitz^ ëY ê

Local Lipschitz condition Continuous partial derivative

T§ ÏÈ©

Exact equation General integral

üëÏ« à«

Simply connected region Convex region

È©Ïf ¿^

Integrating factor Sufficient and necessary conditions

m«m é¡/ª

Open interval Symmetric form

5©§ àg5§

Linear differential equations Homogeneous linear equations

?¿~ê Bernoulli§

Arbitrary constant Bernoulli equation

Cþ©l§ ngàg¼ê

Equation of separation of variables Homogeneous function of order n

Riccati§ ÐÈ©

Riccati equation Elementary integral method

©§½5nØ ~êC´úª

Qualitative theory of DE V ariation of constants formula

~êC´ ©§|

Method of variation of constants System of differential equations

àg5©§ àg5©§|

Nonhomogeneous linear DE System of nonhomogeneous linear DEs

T ±Ï¼ê ±Ï)

Periodic function of period T Periodic solution

L’HospitalK Clairaut§

L′Hospital rule Clairaut equation

187

Page 197: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

;¶c¥=©éì

Û) Ûª©§

Singular solution Implicit differential equations

gCþ ÏCþ

Independent variable Dependent variable

p©§ g£©§

Higher order DE Autonomous differential equations

ýÈ© мê

Elliptic integral Elementary function

PicardÅg%C ålm

Picard′s method of successive approximation Metric space

fm ýé

subspace Absolute value

Âñ 4

Convergent (convergence) Limit

CauchyS ålm

Cauchy sequence Complete metric space

Âñ Ø K

Uniformly convergent Contraction mapping

Ø Nn ØÄ:

Contraction mapping theorem Fixed point

BanachØÄ:½n ¼©Û

Banach fixed point theorem Functional analysis

Lipschitz~ê Arzela-AscoliÚn

Lipschitz constant Arzela−Ascoli Lemma

k. ÝëY

Uniformly bounded equicontinuous

k.48 ëY)

Bounded closed set Continuously differentiable solution

188

Page 198: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

~©§

Eulerò ëY)

Euler polygons Continuous solution

È©§ )éÐëY65

Integral equation Continuity of solutions w.r.t. initial conditions

Cq) )éëêëY65

Approximate solution Continuity of solutions with respect to parameters

Ý= 5')

Transpose of matrix Linearly dependent solutions

5Ã') )éëê5

Linearly independent solutions Differentiability of solutions with respect to parameters

C©§ )Û©§

V ariational equation Analytic differential equation

)Û) þ

Analytic solution V ector

?ê `?ê

Power series Majorant series

`¼ê nþ

Majorant function n dimensional vector

Maximal value (maximum) Minimal value (minimum)

©§ÈnØ ©AÛ

Theory of integrability of DE Differential geometry

êAÛ êÿÀ

Algebraic geometry Algebraic topology

ÄgÈ© 4

First integral Limit cycle

ÄgÈ©35 Ý

Existence of first integrals Rank of matrix

189

Page 199: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

;¶c¥=©éì

¼êÕá ³¡

Functionally independent Level surface

³ ØC­¡

Level curve Invariant surface

: î

Intersection point Transversal intersection

ü Ý Û¼ê3½n

Unit matrix Implicit function theorem

È m

Complete integrable Phase space

ã ;!;

Phase portrait Orbit (tranjectory)

Hamilton¼ê HamiltonXÚ

Hamiltonian function Hamiltonian system

¼êFÝ ngdÝ HamiltonXÚ

Gradient of function Hamiltonian system of n degrees of freedom

åÆXÚ "Ý

Mechanic system Symplectic matrix

ÄU ³U

Kinetic energy Potential energy

.5X Äþ

Inertial system Momentum

LiouvilleÈ nàg5©§|

Liouvillean integrability System of nth order nonhomogeneous linear DEs

Liouville–Arnold½n nàg5©§|

Liouville−−Arnold theorem System of nth order homogeneous linear DEs

Gronwallت 2 Gronwallت

Gronwall inequality Generalized Gronwall inequality

Ä)| ÛÉÝ

Fundamental solutions Nonsingular matrix

190

Page 200: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

~©§

Ä)Ý )Ý!Ý)

Fundamental matrix of solutions Matrix solution

Wronsky1ª Liouvilleúª

Wronsky determinant Liouvelle′s formula

Ý, êfª

Trace of matrix Algebraic complement

_Ý Euler§

Inverse matrix Euler equation

Ýê

Norm Matrix exponential

JordanIO. Ýê¼ê

Jordan canonical form Matrix exponential function

A Aþ

Eigenvalues Eigenvector

Aõª EA

Characteristic polynomial Complex eigenvalues

nت ¢)

Triangle inequality Real solution

(: ­½(:

node Stable node

òz(: Ø­½(:

Degenerate node Unstable node

Q: ¥%

Saddle Center

­½: Ø­½:

Stable focus Unstable focus

FloquetnØ Ýéê

Floquet′s theory Matrix logarithm

Floquet5. üf

Floquet normal form Monodromy operator

191

Page 201: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

;¶c¥=©éì

A¦ê Aê

Characteristic multiplier Characteristic exponent

Floquetê ±Ï

Floquet exponent Minimal positive period

": '½n

Consecutive zeros Comparison theorem

Sturm'½n

Sturm comparison theorem Oscillation

~: Û:

Regular point Singular point, critical point, equilibrium

Âñ» 4íúª

Ratio of convergence Recursion formula

KÛ: 2Â?ê

Regular singularity, Regular singular point Generalized power series

I§ ÝE

Index equation Conjugate complex roots

Legendre§ Legendreõª

Legendre equation Legendre polynomial

Bessel§ Gamma¼ê

Bessel equation Gamma function

Q: ¥%

Saddle Center

Aϼê ݧ

Special function Conjugate equation

­) ­½

Stable solution Stability

Lyapunov­½ ìC­½

Lyapunov stable Asymptotically stable

") ê­ê

Zero solution Algebraic multiplicity

192

Page 202: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

~©§

AÛ­ê Lyapunov1

Geometric multiplicity Second method of Lyapunov

½ ½K

Positive definite Negative definite

~ ~K

Nonnegative Nonpositive

Lyapunov¼ê Lyapunov1

Lyapunov function First method of Lyapunov

Lyapunovê ·b

Lyapunov exponent Chaos

ÄåXÚ ­½4

Dynamical system Stable limit cycle

Ø­½4 ­½4

Unstable limit cycle Semistable limit cycle

±Ï; ±Ï

Periodic orbit Period annulus

õª©XÚ Hilbert116¯K

Polynomial differential system Hilbert′s 16th problem

Bendixson½n 4;

Bendixson theorem Closed orbit

Dulac½n Dulac¼ê

Dulac theorem Dulac function

Poincare–Bendixson½n PoincareN

Poincare−Bendixson annulus theorem Poincare map

è Poincareè

Section Poincare section

£m £N

Return time Return map

uÑþ ÛÜI

Divergence Local coordinates

193

Page 203: Fˇµ2012 c 2 8 Fmath.sjtu.edu.cn/course/odehomepage/jc.pdf · ý›:3T ’§Ú¨'ˇf{–9‡5⁄'’§, ˇ‘øÜ'SN Ø=3’{þ –3nØþÑ·Ø›⁄˙. Ù§Ü'Ñ·Ñø˙, ˇ‘

;¶c¥=©éì

TaylorÐm ÐQ:

Taylor expansion Elementary saddle

Ð(: o:

Elementary node Strong focus

[: Ó;

Fine focus, weak focus Homoclinic orbit

É; ©|

Heteroclinic orbit Bifurcation

­½©| Hopf©|

Semistable limit cycle bifurcation Hopf bifurcation

Poincare©| Ó©|

Poincare bifurcation Homoclinic bifurcation

f Hilbert116¯K É©|

Weaken Hilbert′s 16th problem Heteroclinic bifurcation

Q(©| .©|

saddle− node bifurcation Transcritical bifurcation

ú©| V­Û:

Pitchfork bifurcation Hyperbolic singularity

194