fabric science

67

Upload: mansiagrawal

Post on 23-Oct-2015

781 views

Category:

Documents


4 download

DESCRIPTION

by- JJ pizzuto

TRANSCRIPT

Page 1: fabric science
Page 2: fabric science

j . j . p i z z u t o ’s

FABRIC SCIENCE

t e n t h e d i t i o n

FabSci10e_00i-001_fm.indd 1 9/23/11 2:33 PM

Page 3: fabric science

j . j . p i z z u to’s

FABRIC SCIENCE

t e n t h e d i t i o n

Allen C. CohenFashion Institute of Technology

New York, NY

Ingrid JohnsonFashion Institute of Technology

New York, NY

F A I R C H I L D B O O K SNew York

FabSci10e_00i-001_fm.indd 3 9/23/11 2:33 PM

Page 4: fabric science

Executive Editor: Olga T. KontziasAssistant Acquisitions Editor: Amanda Breccia

Assistant Art Director: Sarah SilbergProduction Director: Ginger Hillman

Senior Production Editor: Elizabeth MarottaCopyeditor: Precision Graphics

Ancillaries Editor: Noah SchwartzbergExecutive Director & General Manager: Michael Schluter

Associate Director of Sales: Melanie SankelCover Design: Erin Fitzsimmons

Cover Art: TKText Design: TronvigKuypersPage Layout: Precision Graphics

Photo Research: Sarah SilbergIllustrations: TK

Copyright © 2012 Fairchild Books, a Division of Condé Nast Publications.

All rights reserved. No part of this book covered by the copyright hereon may be reproduced or used in any form or by any means—graphic, electronic, or mechanical, including photocopying, recording,

taping, or information storage and retrieval systems—without written permission of the publisher.

Library of Congress Catalog Card Number: TK

ISBN: 978-1-60901-380-6GST R 133004424

Printed in TKTPXX CHXX

FabSci10e_00i-001_fm.indd 4 9/23/11 2:33 PM

Page 5: fabric science

12 CareandRenovationofTextiles 237

13 UniqueFabricationsandInnovations 249

14 TextilesforInteriors 273

15 DeterminingFabricQuality 307

16 GuidetoFabricSelection 341

17 TextileLaws,Regulations,andTradeAgreements 351

Textile Trade and Professional Associations 361

Bibliography 363

Credits 367

Index 369

Preface xv

Acknowledgments xvii

1 TheTextileIndustry 3

2 FiberCharacteristics 19

3 NaturalandManufacturedFibers 35

4 YarnsandSewingThreads 67

5 WovenFabrics 89

6 KnittedFabrics 119

7 OtherTypesofTextiles 147

8 TextileDyeing 163

9 TextilePrinting 181

10 TextileFinishing 199

11 TextilesandtheEnvironment 221

CONTENTS

A v F

FabSci10e_00i-001_fm.indd 5 9/23/11 2:33 PM

Page 6: fabric science

SecondarySourcesofFabrics 8

Jobbers 8Retail Stores 9Overseas Agents 9

TheDomesticandImport TextileIndustries 9

The Domestic Textile Industry 9The Textile Import Industry 10

BuyingandSellingFabric 10

Private Label and Exclusive Brands 11

MarketandProductionPlanning 12

Seasons 12

TheEnvironment 13

FairTrade 13

Textile Connection: Sustainability 14

TradeShows 14

TextileCareers 14

Table 1.2: Textile Careers 15

SpeakingofTextiles 15

Study Questions 16

The Textile Industry: Fabric Science Swatch Kit Assignment 17

Preface xv

Acknowledgments xvii

1 TheTextileIndustry 3Objectives 3

Key Terms Related to Textiles 3

InternationalTrade 4

GeneralFieldsofTextileProducts 5

TheMajorTextileProductionSegments 5

Table 1.1: Fabric End-Use Groupings 6

Fibers 6Yarns 6Fabrics 6Dyeing and Printing 7Finishing 7

TextilePut-Up 7

PrimarySourcesofFabrics 7

Mills 7Converters 8Importers 8

A vii F

EXTENDED CONTENTS

PubQ: Reorder these entries as “Fabric Science Swatch Kit Assignment: The Textile Industry”?

FabSci10e_00i-001_fm.indd 7 9/23/11 2:33 PM

lvlassen
Text Box
Page 7: fabric science

A viii F

E X T E N D E D C O N T E N T S

3 NaturalandManufacturedFibers 35Objectives 35

Key Terms Related to Textiles 35

NaturalFibers 36

Cotton 36

Table 3.1: Comparison Chart of the Most Commonly Used Natural Fibers 36

Flax 37Silk 38Wool 39Other Natural Fibers 40The Environment 42

MicronSystem 42

Table 3.2: Diameters of Various Fibers 42

ManufacturedFibers 42

Generic Names 43

Table 3.3: The FTC Recognizes the Following Generic Names and Generic Fiber Subclasses of Manufactured Fibers 43

Table 3.4: Comparison Chart of the Most Commonly Used Manufactured Fibers 43

Marketing of Manufactured Fibers 44

DescriptionsofPrincipalManufacturedFibers 45

Acetate 45Acrylic 46Lyocell 46Nylon 46Olefin 47Lastol 48PLA 48Polyester 48Elasterell-p 49Rayon 50HWM Rayon 50Spandex 50Properties of Major Textile Fibers 51Microfibers 51

Table 3.5: Properties of Major Textile Fibers 52

Nanotechnology 53Nano Innovation 54

2 FiberCharacteristics 19Objectives 19

Key Terms Related to Textiles 19

FiberSources 20

Natural Fibers 20Manufactured Fibers 20

FiberStructure 21

Physical Attributes 21Chemical Composition and Molecular Formation 24

FiberPerformanceProperties 24

Table 2.1: Categories of Fiber Performance Properties 25

Abrasion Resistance 25Absorbency 25Chemical Effects 26Cover 26Elasticity 26Environmental Conditions 26Flammability 26Flexibility 26Hand 27Luster 27Pilling 27Resiliency 27Specific Gravity 27Static Electricity 27Strength 28Thermoplasticity 28

Textile Connection: Maintaining a Selling Price 28

Wicking 29

IdentificationofTextileFibers 29

Determining Fiber Identification 29Other Fiber Identification Tests 30

Table 2.2: Burning Characteristics of Textile Fibers 31

Table 2.3: Chemical Solubility Test for Textile Fibers 32

Study Questions 33

Fiber Characteristics: Fabric Science Swatch Kit Assignment 33

FabSci10e_00i-001_fm.indd 8 9/23/11 2:33 PM

Page 8: fabric science

A ix F

E X T E N D E D C O N T E N T S

Comparison of Spun and Filament Yarn Properties 70Uses of Spun and Filament Yarns 71

YarnTwist 71

Twist Direction 71

CardedandCombedCottonYarns 72

TowandLineLinenYarns 72

WoolenandWorstedYarns 72

SingleandPlyYarns 73

YarnSpinning 74

YarnPilling 75

BlendsandMixtures 75

SpecialTypesofYarns 76

Textured Yarns 76Stretch Yarns 78

Table 4.1: Comparison of Stretch Yarns 79

High-Bulk Yarns 79Novelty Yarns 79Chenille Yarns 80Metallic Yarns 80

YarnNumberingSystems 81

The Denier System 81The Yarn Count System 81The Tex System 82

Table 4.2: Yarn Number Conversions 83

SewingThreads 83

Fibers Used for Threads 83Types of Threads 84Thread Finishes 84Thread Sizes 84Important Factors in Thread Selection 84Important Thread Factors That Govern Seam Appearance 84

Table 4.3: Comparison of Sewing Thread Types 84

Table 4.4: Thread Finishes and Their Uses 85

Table 4.5: Sewing Applications by Thread Size 85

Textile Connection: Tassel 86

Study Questions 86

Yarns and Sewing Threads: Fabric Science Swatch Kit Assignment 86

SecondaryManufacturedFibersforConsumerUse 54

Textile Connection: Rayon Fiber 55

Bamboo Rayon 56Glass 56Metallic 56Modacrylic 57Triacetate 57

SecondaryManufacturedFibersforIndustrialApplications 58

Anidex 58Aramid 58Azlon 58Lastrile 58Melamine 58Novoloid 59Nytril 59PBI 59Rubber 59Saran 59Sulfar 60Vinal 60Vinyon 60

OtherGenericFiberCategories 60

Carbon Fibers 60Fluorocarbon Fibers 60Heterogeneous Fibers 60

FiberInnovation 62

Table 3.6: Fiber Names in Other Languages 63

Table 3.7: International Abbreviations for Designating Fibers in Yarns 64

Study Questions 64

Natural and Manufactured Fibers: Fabric Science Swatch Kit Assignment 65

4 YarnsandSewingThreads 67Objectives 67

Key Terms Related to Textiles 67

SpunandFilamentYarns 68

Identifying Spun and Filament Yarns 69Monofilament, Multifilament, and Microfilament Yarns 69

FabSci10e_00i-001_fm.indd 9 9/23/11 2:33 PM

Page 9: fabric science

A x F

E X T E N D E D C O N T E N T S

Study Questions 117

Woven Fabrics: Fabric Science Swatch Kit Assignment 117

6 KnittedFabrics 119Objectives 119

Key Terms Related to Textiles 119

TheKnittingIndustry 120

Textile Connection: Knitwear 121

GeneralKnittingFabricTerms 121

Wales 121Courses 121Face and Back 122

MachineNomenclature 122

Circular and Flat Machines 122Knitting Needles 123Cut and Gauge 124

TypesofKnittingStitches 126

Knit Stitch 126Purl Stitch 126Miss Stitch 126Tuck Stitch 126

KnitFabricClassifications 127

Knit Fabric Names 128Weft Knitting 128

Table 6.1: Comparison of Jersey, Rib, and Purl Fabrics 129

Seamless Knitting 135Warp Knitting 135

Table 6.2: Comparison of Weft Knits and Warp Knits 135

Laid-inYarnFabrics 139

Narrow Knitted Fabrics 139

ImportantDifferencesBetweenKnittedandWovenFabrics 140

TheEffectofFabricConstruction(WalesandCoursesperInch)onKnittedFabricProperties 141

Glossary of Defects in Knit Fabrics 141

Glossary of Classic Knit Fabrics 141

Study Questions 144

Knitted Fabrics: Fabric Science Swatch Kit Assignment 145

5 WovenFabrics 89Objectives 89

Key Terms Related to Textiles 89

TheLoom 90

Types of Looms 91Loom Production 93

FabricFeatures 93

The Selvage 93Identifying Warp Yarns and Filling Yarns 94Face and Back 95Top and Bottom 95Yarns Per Inch: A Measure of Fabric Quality 96

DeterminingtheWeaveofaFabric 96

Weave Floats 97

BasicFabricWeaves 97

Plain Weave 97

Table 5.1: Comparison of Basic Weave Properties 97

Twill Weave 99Satin Weave 101

WhichWeaveMakestheStrongestFabric? 102

SpecialFabricWeaves 103

Leno Weave 103Pile Weaves 103Double Cloth and Variations 106

WovenDesigns 106

Dobby Pattern 106Jacquard Pattern 106Clip-Spot Pattern 107Color-and-Weave Effect 107

TechnologyAdvancements 107

FactorsAffectingtheCostofWovenFabrics 108

NewDevelopments 108

ClassicWovenFabrics 108

Textile Connection 110

Changing the Fabric 111

Table 5.2: Woven Fabrics by Common Characteristics 111

Glossary of Classic Woven Fabrics 112

FabSci10e_00i-001_fm.indd 10 9/23/11 2:33 PM

Page 10: fabric science

A xi F

E X T E N D E D C O N T E N T S

Metamerism 169

WhenDyeingIsDone 169

Stock Dyeing 170Top Dyeing 170

Table 8.2: Comparison of Dyeing in Various Stages 170

Yarn Dyeing 171Piece Dyeing 171Continuous Dyeing 173Garment Dyeing 173

SpecialDyeingEffects 173

Cross-Dyeing 173

Table 8.3: Classical Woven Fabrics with Colored Effects Created by Dyeing of Yarns 174

Union Dyeing 174Tone-On-Tone Effects 174

PigmentColoring 174

SolutionDyeing 175

Colorfastness 175

Textile Connection: Bleeding Madras 176

NewDevelopments 176

TheEnvironment 176

Glossary of Imperfections of Dyed Fabrics 177

Study Questions 178

Textile Dyeing: Fabric Science Swatch Kit Assignment 179

9 TextilePrinting 181Objectives 181

Key Terms Related to Textiles 181

MethodsofPrinting 183

Screen-Printing 183Hand-Screen Printing 183

Textile Connection: A Printed Mark 183

Automatic Screen Printing 184Rotary-Screen Printing 184Roller Printing 185Setting the Color in Screen and Roller Printing 186Heat-Transfer Printing 186

7 OtherTypesofTextiles 147Objectives 147

Key Terms Related to Textiles 147

NonwovenFabrics 148

Background 148

Table 7.1: End Uses of Nonwoven Fabrics 148

Durable and Disposable Nonwoven Fabrics 149Manufacturing Nonwovens 149Fusible Nonwovens 151Hybrid Products 151Nonwoven Wipes 152Trade Shows and Associations 152The Environment 153

Felt 153

BondedandLaminatedMaterials 153

Bonded Fabrics 153Laminated Fabrics 154

QuiltedMaterial 155

StitchBonding 156

LaceFabrics 156

Embroidery 157

Textile Connection: Appliqué 158

TuftedFabrics 159

Study Questions 160

Other Types of Textiles: Fabric Science Swatch Kit Assignment 161

8 TextileDyeing 163Objectives 163

Key Terms Related to Textiles 163

Dyes andPigments 165

Conventional,orAqueous,Dyeing 165

Textile Connection: A Colonial Dyer 166

ClassesofDyes 166

ColorFormulationsandMatchingShades 166

Table 8.1: Major Dye Classes and their Fastness Properties 167

ComputerShadeMatchingandComputer-ControlledDyeing 168

FabSci10e_00i-001_fm.indd 11 9/23/11 2:33 PM

Page 11: fabric science

A xii F

E X T E N D E D C O N T E N T S

Table 10.1: Summary of Textile Finishes 202

Fragrances 204Fulling 204Mercerization 204Napping and Sueding 205Plissé 205Shearing 206Softening 206Stiffening 206Stone Washing, Acid Washing, and Cellulase 206

Functional Finishes 207

Antimicrobial Finishes 207Antistatic Finishes 208Crease-Resistant Finishes 208Durable Press 208Resin Treatment and Curing 208Flame-Resistant Finishes 210Mothproof Finishes 210Shrinkage-Control Finishes 210

Table 10.2: Shrinkage Control Methods 211

Soil-Release Finishes 212Ultraviolet-Absorbent Finish 212Water Repellents 212Waterproof-Coated Fabrics 214

NonaqueousFinishing 214

FinalFabricDrying 215

PlasmaProcessing 215

Nanotechnology 215

TheEnvironment 216

Textile Connection: The Changing Fabric 217

Glossary of Finishing Imperfections 217

Study Questions 218

Textile Finishing: Fabric Science Swatch Kit Assignment 219

11 TextilesandtheEnvironment 221Objectives 221

Key Terms Related to Textiles 221

GreenProductCharacteristics 222

Renewable 223Resource Conservation 224Energy Saving 224

AdvancementsinthePrintIndustry 187

Digital Printing 188

TheEnvironment 188

ColorFeaturesofPrintedFabrics 189

Colorfastness 189Wet-on-Dry and Wet-on-Wet Effects 189Halftone 189Strike-Off and Color Matching in Printed Fabrics 189Which Method of Printing is Best? 189

Table 9.1: Comparison of Printing Methods 190

BasicTypesofPrints 191

Direct Prints 191Discharge Prints 191Resist Prints 191Pigment Prints 191

SpecialTypesofPrints 192

Blotch Prints 192

Table 9.2: Comparison of Wet (Dye) Prints, Dry (Pigment) Prints, and Heat-Transfer Prints 192

Flock Prints 193Flocking 194Warp Prints 194Burn-Out Prints 194Duplex Prints 194Engineered Prints 194

Glossary of Imperfections on Printed Fabric 195

Study Questions 196

Textile Printing: Fabric Science Swatch Kit Assignment 197

10 TextileFinishing 199Objectives 199

Key Terms Related to Textiles 199

ClassificationofFinishes 200

PretreatmentProcesses 200

Textile Connection: The Origin of Bleaching 201

Resins 202

AestheticFinishes 202

Calendering 202

FabSci10e_00i-001_fm.indd 12 9/23/11 2:33 PM

Page 12: fabric science

A xiii F

E X T E N D E D C O N T E N T S

ClaimingDamages 246

TheEnvironment 246

Study Questions 247

13 UniqueFabricationsandInnovations 249Objectives 249

Key Terms Related to Textiles 249

FabricswithSpecialFeatures 250

Moisture Transport 250

Table 13.1: Examples of Moisture Transport/Comfort Cooling Textiles 251

Waterproof Breathable Fabrics 252Thermal Insulation 253

Table 13.2: Examples of Water Resistant and Waterproof, Breathable Fabrics 253

ThermalComfort 255

Clo Values 255

Nanotechnology 256

Electrotextiles 256

Phase-ChangeMaterials 257

UltrasonicSoundTechnology 257

Textile Connection: Textiles in the Car 258

IndustrialFabrics 258

Table 13.3: Industrial Technical Fabrics Market (Illustrates the Wide Range of Uses and Products) 259

Specialty Fibers 259Protective Garments 260Geotextiles 260Biotechnology 261Narrow Fabrics 261Reflective Safety Apparel 261Retroglo® Yarn 261Growth 262Trade Association 262

Plastic,Leather,andFur 262

Plastic 262Leather 264Fur 267

Study Questions 271

Nonhazardous 224Recycling 224Worker Assessment 225Cost Consideration 226

Textile Connection: Corporate Responsibility 226

Eco-FriendlyTextiles 226

Fibers 226Yarns and Fabrics 228Dyeing and Printing 228Finishing 229Care of Products 230Recycling Programs 231

Eco-Fashion 232

ProductVisibility 232

Organizations 233

Organic Standards 233

GovernmentRegulations 234

Table 11.1: Sustainability Criteria 234

Study Questions 235

12 CareandRenovationofTextiles 237Objectives 237

Key Terms Related to Textiles 237

SoilTypes 238

Laundering 238

Table 12.1: Stain Removal Guide for Washable Fabrics 239

Dry-Cleaning 242

Dry-Cleaning Solvents 243Spotting 243Water-Repellent Garments 243Cautions in Dry Cleaning 243Home Solvent Cleaning 244

DryCleaningVersusLaundering 244

Textile Connection: Challenging the Dry Cleaners 244

ProfessionalWetCleaning 245

UltrasonicWashingofTextiles 245

TradeAssociations 245

TradeShows 245

FabSci10e_00i-001_fm.indd 13 9/23/11 2:33 PM

Page 13: fabric science

A xiv F

E X T E N D E D C O N T E N T S

Table 14.7: Carpet Traffic Ratings 294

Carpet Soiling 294Carpet Maintenance 295Methods of Cleaning 295

Table 14.8: Removal of Spots and Stains from Nylon Fibers 296

The Environment 297

WindowFabrics 297

How Fiber Properties Affect Window Fabrics 297

Table 14.9: Fiber Resistance to Ultraviolet Degradation 297

How Yarn and Fabric Construction Affect Window Fabrics 298How Dyes and Prints Affect Window Fabrics 298Fabric Finishing for Window Fabrics 298Drapery-Lining Material 299

WallandCeilingCoverings 299

ManufacturedProducts 299

Bath Products 299Bedding Products 301

Textile Connection: Canopy Bed 303

Textile Tabletop Products 303

HospitalityIndustry 304

Study Questions 305

15 DeterminingFabricQuality 307Objectives 307

Key Terms Related to Textiles 307

BasicFabricMeasurements 308

Textile Connection: See-Through Fabric 308

How to Use the Pick Glass 308Fabric Count 308Determining Yarn-Twist Direction 310Dimensional Properties of Fabric 311Weight of Fabric 312

Table 15.1: Range of Fabric Weights 312

Table 15.2: Metric-English Conversions 314

Weave Layout 314Analyzing the Weave 315Analyzing the Color Effect 316

14 TextilesforInteriors 273Objectives 273

Key Terms Related to Textiles 273

InteriorsProductClassifications 274

Decorative Fabrics 274Soft Floor Coverings 274

Table 14.1: Widely Used Interiors Fabrics 275

Manufactured Products 276

ResidentialandCommercialInteriors 277

Table 14.2: The Association for Contract Textiles Performance Guidelines 278

InteriorDecoratorsandInteriorDesigners 278

Flammability 278

Upholstery 279

Upholstery Fabric on Furniture 280

Table 14.3: Examples of Standard Performance Specifications for Woven Upholstery Fabrics 280

Table 14.4: Upholstery Fabrics In-Use Application Terms 281

Flame Resistance of Upholstered Fabrics 283

Textile Connection: Ottoman 283

Filling and Padding of Upholstered Furniture 283Care and Maintenance of Upholstery Fabrics 284The Environment 284

Table 14.5: Upholstery Cleaning Codes 284

Carpet 285

Table 14.6: Factors to Consider When Evaluating Carpet Quality 286

How Carpets Are Made 286Other Methods of Manufacturing Carpets 288Types of Carpet Pile 288Carpet Construction Terms 290Fibers, Yarns, Dyeing, Printing, and Finishing for Carpets 291Carpet Underlay 293Carpet Flammability 293Traffic Classifications 294

FabSci10e_00i-001_fm.indd 14 9/23/11 2:33 PM

Page 14: fabric science

A xv F

E X T E N D E D C O N T E N T S

17 TextileLaws,Regulations,andTradeAgreements 351Objectives 351

Key Terms Related to Textiles 351

TextileFiberProductsIdentificationAct 352

WoolProductsLabelingAct 354

FlammableFabricsAct 354

Flammability Standards 355

Textile Connection: Triangle Shirtwaist Factory Fire 355

CareLabelingofTextileWearingApparel 356

Exemptions 356Care Labeling Contents 356Basis for Care Information 357Glossary of Standard Terms 357Care Labeling Symbols 357Responsibility of Industry and Care Labeling 358

InternationalTextileRegulationsandTradeAgreements 358

International Regulations 358Trade Agreements 358

Study Questions 360

Textile Trade and Professional Associations 361

Bibliography 363

Credits 367

Index 369

FabricPerformanceTesting 316

Textile Standards and Specifications 317Environmental Standards 318Textile Testing Laboratories 319Relationship Between Laboratory Tests and Usage 319Types of Test Methods 319

Table 15.3: Common Textile Tests 320

Fabric Strength Tests 321Surface-Friction Tests 323Appearance Tests 325Functional Tests 327

UnderstandingColor 331

Color Specifications 331Colorfastness Tests 332

PerformanceStandardsandTheirApplication 336

Table 15.4: American Society for Testing and Materials (ASTM) Standard Performance Specifications for Fabrics and Selected End Uses 337

Study Questions 338

16 GuidetoFabricSelection 341Objectives 341

Key Terms Related to Textiles 341

ExaminingforAesthetics 342

ExaminingforSuitability 342

Textile Connection: Fashion Influences 342

ExaminingforDurabilityandServiceability 344

ApplyingFabricSelectionGuidelines 344

Fiber Content 344Yarn Properties 344Fabric Properties 345Dye and Print Properties 347Finish Properties 348Carpet Floor Coverings 348The Environment 348Fabric Selection 349

FabSci10e_00i-001_fm.indd 15 9/23/11 2:33 PM

Page 15: fabric science

j . j . p i z z u t o ’s

FABRIC SCIENCE

t e n t h e d i t i o n

FabSci10e_00i-001_fm.indd 1 9/23/11 2:33 PM

Page 16: fabric science

FabSci10e_066-087_ch04.indd 66 9/22/11 10:56 AM

Page 17: fabric science

A 67 F

ObjectivesuTounderstandthatthetypeofyarnusedhasanimportanteffecton

thepropertiesoffabric.

uToknowthedistinctionsbetweenthevariousyarntypesaswellastheirpropertiesandend-useapplications.

uTounderstandthesystemsfordeterminingyarnsizes.

uTobeabletoknowthetypes,uses,andoptimumapplicationsofsewingthreads.

air-jetbareelasticyarnblendedyarnbulk-texturedcardedchenilleyarncombedcore-spunyarncottoncountsystemcoveredelasticyarncrepe-filamentcrepetwistdenierfalsetwist

filamentyarngearcrimpinghardtwisthigh-bulkorhi-bulk yarnknife-edgeknit-deknitlealinelinenmetallicyarnmetricyarncountmicrodeniermicrofibersmicrofilamentmixture

monofilamentsmultifilamentsnoveltyyarnopen-endedspunplyringspinningring-spunrunset-texturedsewingthreadsinglesofttwistspunyarnstretch-textured

texsystemtexturedyarnthreadsizetowlinenturns-per-inchorTPIturns-per-meterorTPMturbo-bulkyarnwoolenworstedworstedcountsystemyarncountyarnnumberorsizeyarnnumberingsystem

Key Terms Related to Textiles

chapter four

YARNS AND SEWING THREADS

Use fabrics in the Yarns section of the Fabric Science Swatch Kit

for this chapter. Swatches 16 through 27 focus on various Yarns.

FabSci10e_066-087_ch04.indd 67 9/22/11 10:56 AM

Page 18: fabric science

F A B R I C S C I E N C E

A 68 F

unlikespunyarns,containfibersofinfinitelength,theydonot needtobehighlytwisted.Mostfilamentyarnsareoflowtwist(enoughtoholdthefiberstogether)toprovide a smooth, lustrous surface. However, filamentyarns may be tightly twisted, thus producing specialeffectssuchascrepe.(SeeFigure4.1.)

Theformationofyarnsisthenextmajorstepinthedevelopmentoftextileproducts.Thesimpleprocessofmakingyarnpredatesrecorded

history.Cavedwellersusedhairfiberfromanimalsthatweretwistedinto coarseyarnforropesandnets.Eventu-allytheyrefinedtheirtechniquestomakeyarncapableofbeingintertwinedtoproducecrudefabrics.

While seemingly unimportant, this invention,alongwiththeinventionsoffireandthewheel,iscon-sideredamajormilestoneoftheworld’scivilization.Theability to create a yarn, and to subsequently interlacethe yarn (weaving) freed primitive humans to leavetheircavesinanexpandedsearchforfood,andeventu-allytomigratetootherregions.

Theinventionofspinningwassoprofoundandyetsosimplethattheprincipleofmakingyarn,bytwistingfiberwhilesimultaneouslypullingordrawingitout,hasremainedunchangedthroughouttheagesandcontin-uestothisday.

Yarns are by definition groups of fibers twistedtogether to form a continuous strand. All textile fab-rics,exceptforafew,suchasfelt(p.153)andnonwovenfabrics(p.148),areproducedfromyarns.Theyarnsareinterlaced(woven),interlooped(knitted),orcombinedinotherwaystoformatextilefabric.Therearemanytypesofyarns,somelustrous,somedull,somesmooth,somerough,somethinnerthanhumanhair,somethickandbulky.Twofabricseachmadefromthesamefiber(e.g.,polyester)andeachwoveninthesameweave(e.g.,plainweave;p.97)maybesubstantiallydifferentfromoneanotherinappearance,durability,andcleanabilityduetotheyarndifferencesineachofthefabrics.

Spun and Filament YarnsYarnsareclassifiedintotwomaincategories:spunandfilament.

Spun yarnsarecomposedofrelativelyshortlengthsoffibertwistedorspunsothattheyholdtogether.Theshortlengthsoffiber(measuredininches)arecalledsta-plefibers.Staplefibersaremadeintoyarnbymechanicalprocessesthatfirstmakethefibersmoreorlessparallel,andthenalternatelypullandtwistthem.Hightwistisnecessarytopressthefiberstogethertogive strengthtotheresultingyarn.Itisimportantthatstaplefiberspos-sesssufficientsurfacefrictiontoadheretoeachother.

Filament yarnsarecomposedofcontinuousstrandsoffiberthatmaybemiles(kilometers)long.Theseyarnsareproduceddirectlyfromaspinnerette(seep.20)orfromasilkcocoon(seep.39).Becausefilamentyarns,

twisted spun yarn

twisted filament

yarn

untwisted untwisted spun yarn �ament yarn

Figure 4.1Twisted(a)anduntwisted(b)spunandfilamentyarns.

(b)

(a)

FabSci10e_066-087_ch04.indd 68 9/22/11 10:56 AM

Page 19: fabric science

Y A R N S A N D S E W I N G T H R E A D S

A 69 F

theyarn-spinningbusinessorareabranch ordepart-mentofaweavingmillorverticallyintegratedtextileproducingcompany.

Monofilament, Multifilament, and Microfilament YarnsFilamentyarnsmaybecomposedofonesinglefilamentorofmanyfilaments,andareknownasmonofilamentsormultifilaments,respectively.(SeeFigure4.2.)Bothhave the same fundamental properties, governed bythefibercompositionoftheyarn.Animportantphysi-cal difference is that a monofilament yarn of a givendiameterisstifferandlessflexiblethanamultifilamentyarnofthesamediameter.Andgiventwomultifilamentyarnsofequaldiameter(orequaldenier,seep.81),theyarncomposedoffewer,butcoarser,filamentsisstifferand less flexible than the yarn consisting of a highernumberoffinerfilaments.Supple,soft fabrics,suchasliningfabrics,aretypicallymadefromyarnscomposedofa largenumberoffinefilaments.Thelargenumbergivestheappropriatestringofcoverageandthefinefila-mentoffersgreaterflexibility.

Identifying Spun and Filament YarnsSpunyarnsmaybeidentifiedbyuntwistingtheyarnsothatallfibersareparallelandbythenpullingslightly,sotheyarnsimplycomesapartwithoutbreaking.Whenafilamentyarnisuntwistedandpulled,thefibersremainparallelandtheyarndoesnotcomeapart.

Spunyarnscomposedof longerfibersare stronger,moreuniform,andmorelustrousthansimilarspunyarnsmadefromshorterfibers.Long-staplecotton,forexample,is cotton fiber of longer-than-average length and com-mandspremiumpricesoncottoncommoditymarkets.

Filamentyarnsarecomposedonlyofmanufacturedfibersorsilk.Spunyarns,however,mayconsistofbothnaturalandmanufacturedfibers.Inthelatterinstance,thelongstrandsoffiberextrudedfromaspinnerettearechoppedintoshortfiberlengths(staple)andlaterpro-cessedintospunyarns(seep.21). Theseyarnsarecalledspunnylon,spunpolyester,orspunwhateverthegenericfibercomposition.

Manufactured yarns are made and marketed bychemicalfiberproducers.Spunyarnsaremadebyyarn-spinning mills that are either engaged exclusively in

Figure 4.2Fabricsmadeoffilamentyarnsmaybefoundinmanyenduses,includingroyalweddinggowns.

FabSci10e_066-087_ch04.indd 69 9/22/11 10:56 AM

Page 20: fabric science

F A B R I C S C I E N C E

A 70 F

atypicalspun-yarnfabric,islesssmoothandsomewhatdullerwithaslightsurfacefuzzthatischaracteristicofspunyarns.Afilamentyarnviewedagainstlightshowsuniform diameter and no fuzziness. Because each fila-mentisaslong astheyarnitself,therearenofiberendsprotrudingfromtheyarnsurfaceasinspunyarns.Thisuniformityandsmoothnessinfilamentyarnsisthemainreasonfortheirgreaterlusterandsmoothersurface.

Thesmoothsurfaceofthefilamentyarnscansome-timesbedisadvantageous,causingyarnstoslipandslideeasilywithinafabric.Excessstressonaseam,forexample,maycauseslippingofyarnsandopeningofaseamwithouttheactualbreakageofthread.Thisismorelikelytooccurinfabricsoflowconstruction,fabricswithalownumberof yarns per square inch (see p. 96) or where improperseamallowanceistakeninsewing.Thetestdescribedonpage324shouldbeusedtodeterminethesuitabilityofafilamentyarnfabricforyarnandseamslippage.

Whenaspunyarnisbroken,somefibersbreakandothersjustslideawayfromeachother.Whenafilamentyarnisbroken,everyfilamentintheyarnbreaks.Thus,filamentyarnsarestrongerthanspunyarnsofthesamediameterandfibertypebecauseitrequiresmoreforcetobreakyarnifallthefibersbreakthanifonlysomefibersbreakwhileothersslipapart.

More twist in a spun yarn increases its strengthby increasing the pressure exerted on the fibers. Thisresults in reduced fiber slippage when force is exertedontheyarn.Uptoacertainpoint,themoretwistinayarn,thestrongeritis.Afterthatpoint,theextratwistbegins to cause the fibers to cut into each other andtheyarnstrengthdecreases.Thishappensbecausethefiberdirectionandthustheyarn’sstrengthisnolongerinaspiraldirectionbuthasbeenforcedintomoreofahorizontalsteplikedirection.

Technologicaldevelopmentsinmanufacturedfiberprocesses have made possible the generation of fiberssuch as nylon, polyester, lyocell and others to be pro-ducedindiametersfinerthansilk(microfilament)(Fig-ure4.3).Thesefinefibersarecalledmicrofibers,andarealsoknownasmicrodenier.Thenamealsoapplies totheyarnsmadefromthem(seep.81foranexplanationofdenier).Microfibers areusedasmultifilament yarnsinflatortextured(seep.76)configurationorarepro-cessedasstaplefibersandthenspunintoyarn.Fabricsmade frommicrofiberfilamentyarnareextremelysoftanddrapableandcanbealmostindistinguishablefromsilk.Spunyarnsfrommicrofiberscanbeblendedwithcotton,wool,orotherfiberstoproduceyarnsthatpos-sessmuchgreatersoftnessandflexibility,thuscreatingamoredrapableorfluidfabric.

Comparison of Spun and Filament Yarn PropertiesThereareavarietyofpropertiesusedtocompareandcontrast spun and filament yarns. The three mostimportant are yarn uniformity, yarn smoothness andluster,andyarnstrength.

In general, filament yarns are more uniform indiameterthanspunyarns,althoughthesedifferencesarenotvisibletothenakedeye.Infilamentyarns,thesamenumberoffilamentsarepresentateverypointalongtheyarn.Amultifilamentyarncomposedof40filamentshas40filamentsalongits entirelength.Thisisnotthecasewithspunyarns,where,forexample,atonepointtheremaybe40fibers,atanother,43,andatstillanother,37.

Filament yarns are generally smoother and morelustrous than spun yarns. Satin, a familiar filament-yarn fabric, is smooth and lustrous, whereas sheeting,

standard yarn 2.0 dpf microdenier yarn 1.0 dpf microdenier yarn 0.5 dpf

Figure 4.3Assumethethreeyarnsarethesamesize,e.g.80d.Theyarnontheleftat2dpfwouldhave40filaments.Theyarninthecenterat1dpfwouldhave80filaments.Theyarnontherightat.5dpfwouldhave160filaments.Thus,althoughthethreeyarnsareofthesamesize,asthefibersgetthinner(lowerdenierperfilament)thereisahigherfilamentcountintheyarn.

FabSci10e_066-087_ch04.indd 70 9/22/11 10:56 AM

Page 21: fabric science

Y A R N S A N D S E W I N G T H R E A D S

A 71 F

properties such as strength and abrasion resistance.S-andZ-twistareimportanttothefabricdesignerandstylistbecausethedirectionofthetwistaffectsthesur-faceappearanceoffabrics.CrepefabricsaresometimesmadebycombiningS-andZ-twistyarnstoproducethebalanced,pebblyeffectonthefabricsurface.

Yarns forthetowelbusinesstypicallyaremadeofcotton,twistedinaZdirectionwithahighTPI.Thisresultsinafinalproductthatisrelativelyhard.Twistless

Uses of Spun and Filament YarnsSomefabricsaremadeonlyofspunyarns,someofonlyfilamentyarns,andothersofacombinationofspunandfilamentyarns.Eachtypeofyarnisbestforcertainuses.Spun yarns may provide warmth, softness, and light-nessofweightandare,forexample,idealinfabricsforT-shirts,sweaters,andblankets.Filamentyarnsarebet-ter for items where smoothness and luster are desiredbecausetheyarnsarefiner,moreuniformindiameter,and lustrous.Filamentyarnfabricscanofferasmooth,uniformsurface.Theyareusedinliningsbecausetheirsmoothness makes it easier to slide into and out ofgarments.Theyarealsousedfortheoutershellofskijackets, ina tightlypackedconstruction, to resist thepenetrationofwind.

Yarn TwistYarnsaremadeby twisting togetherparallelornearlyparallelfibers.Theamountoftwist inayarnisdesig-natedastheturns-per-inch(2.54centimeters),orTPI,oftheyarns.TheTPIinayarnhasanimportantbear-ingon theappearanceanddurabilityof theyarnandthefabricthatwillbemadefromit.

Spunyarnswithrelativelylowtwist(from2to12TPI)arefrequentlycalled soft-twistyarnsbecausetheyarnissofter,fluffier,andmoreflexible.Theyarenotasstrongasspunyarnswithhightwist.Knittingyarnsareusuallysofttwist.

SpunyarnswithrelativelyhighTPI(20to30TPI)are called hard-twist yarns. The higher twist causesthem to be smoother, firmer, and kinkier than spunyarnswithlowtwist.Theyarealsostronger.

Filamentyarnsusuallyhaveverylowtwist(½to1TPI).Twistinfilamentyarnsdoesnotincreasestrengthbut merely serves to keep the filaments in the yarntogether.Somefilamentyarnsarepurposelymadewithhigh twist to produce a pebbly, harsh surface effect.These yarns are called crepe-filament yarns and thetwistisreferredtoascrepe twist.(SeeFigure4.4.)

Twist DirectionInadditiontotheamountoftwistinayarn,thedirectionofthetwistisalsodesignated.AsshowninFigure4.5,therearetwotypesofyarntwist:SandZ.InanS-twistyarn,thespiralsrunupwardtotheleft,correspondingtothedirectionofthediagonalpartoftheletterS.InaZ-twistyarn,thespiralsrunupwardtotheright,similartothediagonalpartoftheletterZ.Yarn-twistdirectionisnotanelementofqualitybecauseitdoesnotaffect

Figure 4.4Acrepeyarnkinkswhenslackenedbecauseofthehightwist.

Figure 4.5S-andZ-twistyarns.

FabSci10e_066-087_ch04.indd 71 9/22/11 10:56 AM

Page 22: fabric science

F A B R I C S C I E N C E

A 72 F

Tow and Line Linen YarnsLinenyarnsareclassifiedintotwotypescalledtowandline.Towlinenyarniscomposedofshortfibersandisirregularandrathercoarseintexture.Towlinenisusedforcoarsertypesoflinenfabricsfoundinsportsjacketsand trousers.Linelineniscomposedoflongfibersaver-agingabout15inches(38.1centimeters)inlength.Linelinenyarnsaresmoothandfineandareusedforfabricssuchasfinetablelinensandtissue-weightblouses.

Woolen and Worsted YarnsThere are two types of wool or wool-blend fabrics:woolens, made of carded yarns, and worsteds, madeofcombedyarns.1Awoolenyarnisfuzzier,hasamoreuneven diameter, is bulkier, and has a wider range offiberlength(includingshortfibers)thanaworstedyarn.Worsted yarn is smooth with little fuzz, has an evendiameter, and is more tightly twisted and firmer thanwoolenyarn.(SeeFigure4.6.)

cottonorZeroTwistcottonhasbeenusedinthelux-urytowel industrytomarketterrycloththat isnotice-ablysofter.ZeroTwistisaccomplishedbyplyingaPVA(polyvinylalcohol)yarnaroundthecottonyarnintheoppositedirection(Sdirection)thusuntwistingthecot-tonyarn.ThePVAholds thecottonyarn togetherasitmakes thepile in the terrycloth as it iswoven (seep.105).Afterthefabricisformed,thePVAisremovedinthefinishingprocess.Theresultanttowelofferscon-sumersaverysofthandwithexcellentabsorption.

Carded and Combed Cotton Yarns

Cardedandcombedrefertothemethodsusedtomakecotton and cotton-blend spun yarns as well as to thedesignationoffabricsmadefromsuchyarns.Abroad-clothfabricusedasshirtingfabric,forexample,maybecardedbroadclothorcombedbroadcloth,dependingontheyarnused.

All staple fibers have to be carded to help cleananddisentangle them.For lesscostly fabrics, thefiberis carded and formed into a thick rope of loose fibercalled sliver. The sliver is made into yarn by drawingandspinning.

Forfinerfabrics,thecardedcottonintheformofsliver goes to the combing unit, which further cleansthefibersandputstheminparallelposition.Combingalso removes short fibers. The comb delivers a loosesliverofparallel,longfiberscalledcombedsliver,whichisusedtomakethespunyarns,knownascombedyarns.

A combed yarn thus has longer fibers, fibers inmore parallel position, fibers of more uniform length,fewer speck and dirt impurities, and more uniformityofdiameterthanayarnthatisnotcombed.Fabricsofcombedyarnlookbetter,feelsmoother,andarestrongerandmoreexpensivethancomparablefabricsofcardedyarn.Fine,lightweightyarnsneedtobecombedbecauselongfibersarerequiredforproperstrength.Theymaybefoundinfineshirtingandluxurysheeting.

For some fabrics, combed yarns are not onlyunnecessary,butalsolessdesirablethancardedyarns.A napped fabric, such as cotton flannel, should bemade from shorter fibers to create a fuzzier surface.(See p. 205.) Denim and terry cloth are two fabricstypicallymadeexclusivelyofcardedyarns.Thisgivesdenimthenatural,ruggedlookconsumersrecognize.Thefuzzy,softbulkinessofcardinghelpsterryclothremovemoisture.

Figure 4.6(a)Woolenand(b)worstedyarns.

a b

1. Woolfibersarefirstcardedandthencombedaspartoftheworstedyarn-manufacturingprocess. Combedsliverofwooliscalledtop.

FabSci10e_066-087_ch04.indd 72 9/22/11 10:56 AM

Page 23: fabric science

Y A R N S A N D S E W I N G T H R E A D S

A 73 F

together,andsoforth.Mostplyyarnsusedinclothingare two-ply. Little is gained by using yarns of higherply.Ifayarnisnotply,itisreferredtoassingle,neversingle-ply.

Advertisementsof two-plyworsted suitingandof2×2broadclothshirtsaimto indicatequality.2×2broadclothshirtshavetwo-plyyarnsinbothwarpandfilling.Ina2×1broadcloth,thewarpistwo-plyandthefillingissingle.

Inaplyyarn, twoormorefineryarnsareusuallytwistedtoproducethesamethicknessasasingleyarn,butwithmanyadditionalbenefits.Inspunyarns,eachfibercanwindmoretimesarounda thinneryarnandso hold more firmly. In plying the finer-spun yarns,more twist is added,holding the fibersmorefirmly inplaceandmakingtheyarnstronger.Spunyarnsarenotperfectlyevenindiameter.Bytwistingtogethertwoormoreyarns,thethin,weakerspotsarereinforced.Thus,plying improves spun yarns because the fibers cannotslipaseasily,theyarnsarestronger,theyarndiameterismoreuniform,andthereisareducedtendencytopill.

MostsingleyarnshaveaZtwist.Whenpliedwithanothersingleyarn,anStwistisused.Openendyarns(seep.74)alwayshaveaZtwist.Ringspun(seep.74)andair-jet(seep.74)usuallyhaveaZ twist,butthesys-temcanproduceStwistifmodified.

Fabricsmadefromworstedyarnarenotnecessarilybetterthanfabricsmadefromwoolenyarn.Eachkindofyarnissuitableforaspecifictypeoffabric.Tweedisanexampleofawoolenfabric;gabardineisanexampleofaworstedfabric.Thereareexpensivewoolensaswellasexpensive worsteds.

The following are additional facts about woolenandworstedyarns:

u Fabrics of woolen yarn are more important inheavy winter coatings, ski sweaters, and blanketsbecausewoolensgenerallyprovidebetterinsulationthanworsteds.Thefuzzinessandsoftbulkinessofwoolenyarnsprovidethedeadairspacesneededforbetterinsulation.

u Because worsted yarns are more tightly twistedthanwoolenyarns,fabricsofworstedyarnareusu-allyfirmeranddenserthanfabricsofwoolenyarn.The more tightly twisted yarns help worsted toholditspressedcreasesandgenerallytobetterkeepits shape between cleanings than fabrics made ofwoolenyarn.

u Fabricsmade fromworstedyarnusually show theyarnsandweaveclearlyandsharplyonthefaceofthefabric.Fabricsmadefromwoolenyarns,ontheotherhand,mayhaveanappedsurfaceorlooklikethesurfaceoffelt.

Worstedfabrics,suchasgabardineandsergeusedintrousersandsuiting,tendtodevelopashinewithwear.Becausetheyarnsareverysmoothandtightlytwisted,pressure on the fabric (e.g., from sitting) and rubbingtendtoflattentheyarnsandproducetheluster.Apopu-larsuitingfabricknownasunfinishedworstedisgivenalightnappingandfullingfinish,whichtendstocoveruptheyarns(seep.205).Thustheappearanceoftheyarnsandtheweavearemoresubduedandtheshineproblemiseliminatedorgreatlyreduced.(Unfinishedworstedisa misnomer because the fabric is, in fact, given extrafinishingtreatments.)

Single and Ply YarnsYarnsarealsocategorizedassingleorply.Whenaplyyarn is untwisted, it separates into two or more fineryarns.AsshowninFigure4.7,whenasinglespunyarnis untwisted, it comes apart. Ply yarn, therefore, maybedefinedastwoormoresingleyarnstwistedtogetherto form one new yarn. Two-ply yarns are two singlestwisted together, three-ply are three singles twisted

Figure 4.7(a)Singlespunand(b)plyyarns.

a b

FabSci10e_066-087_ch04.indd 73 9/22/11 10:56 AM

Page 24: fabric science

F A B R I C S C I E N C E

A 74 F

Productsmade fromring spunyarnsareadvertised topromotetheirqualityandarefoundint-shirts,hosiery,sheets,towels,andevendenim,allfortheluxurymarket.

Open-end (OE) spinningisamethodofproducingspunyarns.Itisdifferentfromconventionallyspunyarn,frequentlycalledring-spun yarn,inthatonlyonepro-cessfromcardedslivertospunyarnisrequired.Substan-tiallyhigherratesofproduction,coupledwithsavingsinspaceandpowerrequirements,arerealizedinOEspin-ning.Cardedsliverisfedtotheopen-endspinningunit,whichseparatesthefibers,twiststhemtogethertoformthecompletedspunyarn,andthenwindstheyarnontospools or cones.Yarnsmadeby this process are some-timescalledroto-spunyarnsorturbine-spunyarns.

SomeadvantagesofOEspunyarnsarebetterregu-larity and uniformity; improved abrasion resistance,especially in high-twist types; improved distributionoffibers inblends;and improvedabsorption, resultingin brighter shades and print-pattern definition. Twoimportantshortcomingsarethatyarnstrengthaverages20percentlowerthanconventionallyspun yarns,andmanufactureislimitedtocoarseandmedium-sizeyarns.

Theseyarnsaremoreuniform, somewhatweaker,andlessexpensivethanring-spunyarns.Theirrateofproduction is 10 times faster than ring spun yarns. IthasalimitedrangeforyarnsizesandisbestwhenunderNe20(seep.82).Almostallyarnproducedfordenimisspunwiththismethod.Endyarnsareusedinfabricssuchas interlock, fleece, and almost all yarnsused indenimformassmarkets.

Air-jet spinning, also known as Vortex spinning,usescompressedairtoaideinthespinningprocess.In

Infilamentyarn,thediameterisuniformandthefilamentscannotslipwhentheyarnispulled.Twistisnotneededtoholdthefilamentsinplace.Fortheserea-sons,plyingdoesnotimprovefilamentyarnsasitdoesspun yarns. However, plying of filament yarns can bedone to produce unique effects on novelty yarns andmetallicyarns(seep.80).

Ply yarns require better-quality fiber, more labor,and special machinery. Because of this expense, plyyarnsaremorecostly than singles.Thus,most fabricsaremadeofsingleyarns.

Yarn SpinningStaplefibersarespunintoyarnsbyavarietyofmethods.Themost widely usedisring spinningwherefibersarecarded to bring them to a more parallel position andbundledintoa loosely formedropeaboutoneinchindiameter,knownassliver.Multiplesliversaregroupedtogetherandthendrawnorpulledslightlytodecreaseintoasmallerdiameter,knownasroving.Furtherdraw-ingandmoretwistareneededtoformthedesiredyarnsizewiththerequiredturnsperinch.Thefinalyarnisthenwoundontoaconeorpackage.(SeeFigure4.8.)

Ringspinningcanproduceanythingfromuniformyarns to themorecomplex,noveltyyarns. Itcanpro-duce yarns in a wide range of sizes and excels in thefinercounts (seep.81).Ring spinningproducesyarnswiththesoftesthandavailableandarenotedformak-ingfabricsthatfeelsoft.However,lowproductionratesand additional steps make this a more costly process.

Figure 4.8Yarnwindingonapackageatatextileplant.

FabSci10e_066-087_ch04.indd 74 9/22/11 10:56 AM

Page 25: fabric science

Y A R N S A N D S E W I N G T H R E A D S

A 75 F

A common blended yarn is cotton and polyester,whichisusedextensivelytomakefabricsforshirtsandsheets. Each fiber type in the blend adds not only itsfavorable properties, but also its unfavorable qualities.Thus, a shirt or dress fabric composed of 50 percentpolyester and50percentcotton is less comfortable inhot humid weather than a 100 percent cotton fabricbecauseofthelowmoistureabsorptionofthepolyester.

Notallblendedyarnsareperfectintimateblends.In some instances, depending on manufacturing pro-cedures, the fibers may be dispersed in a nonuniformmanner,suchasaside-by-sideorsheath-and-corecon-figuration(Figure4.9).

Amixture is fabriccomposedoftwoormoredif-ferenttypesofyarn.Filamentandspunyarnscombinedin a fabric is an example of a mixture. A fabric withacetatewarpandrayonfillingisanotherexample.Fab-ricmixturesareusedtoachievecertaindesignandcoloreffects,asincross-dyeing(seep.173).Theyalsoareused

thissystem,oneendofafiberispushedtowardthecen-teroftheyarnandtheotherendtotheoutsidetowindaroundotherfibers.Thisprocessisveryfastwithpro-ductiontwicethatofopen-endproductionand20timesfasterthanringspinning.Thefibersaremoresecurelylocked into the yarn, do not slide as easily as othermethods,andexhibit less fuzzorhairinessalongtheirlength.However, theyhavelessuniformity,arelimitedto coarse yarn sizes, and have a lower yarn strengththenring-spunyarns.Fabricsmadefromthisyarnwillexhibitfewerpillsanddonotshowweareasily.Thelarg-estenduseisforsheetingorprintclothmadeofcottonandpolyesterblendedyarns(seep.75).Itisalsoidealforactivewear,uniforms,andsweatshirts.

Yarn PillingAsdescribedonpage28,certainfibersaremorelikelytopillthanothers.Theyarnconstructionbearsimpor-tantly on whether pills will occur. Provided that thefiberispronetopilling,pillswilldevelopmorereadilyonspunyarnsthanonfilamentyarnsbecausefiberendsarealreadyon the surface.Filamentyarn fabrics formpills onlywhen thefilamentsbreak (e.g., fromwear).Short-staple, fiber-spun yarns pill more readily thanlong-staplespunyarnsbecausetherearemorefiberendson the surface. Soft-twist yarns pill more than hard-twistyarnsbecauseitiseasierforthefiberendstomoveand protrudeonthesurface.

Blends and MixturesAblended yarnismadeoftwoormorefibertypes.Bothspunyarnsandfilamentyarnsmaybeblended,butspunyarnsarethetypemostwidelyused.

Blending is usually done to combine the desir-ablepropertiesofdifferentfibers.Wool,forexample,isblendedwithstaplepolyesterbecausewoolhasexcellentdrapeandpolyesterhelpstoretainshapeandreducethecost of the fabric. Polyester is stronger than wool butthinner,soablendofthetwocanbelightweight.

It isdifficult toobtainperfectlyuniformblendingof fibers in a spunyarnbecauseof differences in spe-cificgravity,length,diameter,surfaceshapeandtexture,themoistureregainproperty.Thereisalsosomevaria-tionalongthelengthofblendedyarnandincomposi-tionfrominsidetooutside.Longerfiberstendtotraveltowardthecenterandshorterfiberstowardtheoutsideofyarns.Whentheblendingoccursinauniformman-ner,itisreferredtoasan“intimateblend”.

yarn a

yarnb

yarnc

Figure 4.9Blendedyarnsarenotalwaysperfectlyblended.YarnA,blendedattheopeningstage,isatrueintimateblend,whichismostdesirable.YarnB,blendedattherovingstage,isnonuniformandislessdesirable.YarnCisablendconsistingoflongandshortfibers.Thelongfiberstendtomovetothecenter.Outsidefiberscontributetohand,abrasionresistance,and pilling;insidefiberscontributetostrengthandflexibility.

FabSci10e_066-087_ch04.indd 75 9/22/11 10:56 AM

Page 26: fabric science

F A B R I C S C I E N C E

A 76 F

alongfilamentratherthanashort-spunfiberthatsnags,thelikelihoodofdamagingthefabricishigh.Textured yarns should, therefore, be avoided insuchgarmentsaschildren’splaywear,wherehard,roughuseisanticipated.

u Possiblegrowthproblem

u Poorabrasionresistance

u Easysoilpenetration

Types of Textured YarnThereareseveralmethodsofproducingtexturedyarns.Theyareclassifiedintothreemaincategories:stretch-textured,bulk-textured,andset-texturedtype.(SeeFig-ure4.10.)

Stretch-Textured Stretch-textured yarnismadepri-marily from nylon and used extensively in leotards,stretch ski pants, stretch hosiery, and similar items.Theseyarnscanbestretchedfrom30to50percentoftheirrelaxedlength.

Stretch-textured yarns are produced by severalmethods. The false-twist method is the most widelyused technique for producing textured yarns in finerdeniers. Yarns are twisted, heat-set, and untwisted inoneoperation.

Stretch-textured yarns are also produced by theknife-edge method. This process consists of passingthefilamentsoveraheatedrollandthenpullingthemoverasharpedgeatanacuteangle.Whenrelaxed,thefilamentstaketheformofcoiledsprings,butthespiraldirectionreversesitselfatrandom,whichhelpsproduceabalancedyarn.

Gear crimping is a third method for producingstretch-texturedyarns.Thismethodconsistsofpassingthefilamentyarn througha seriesofheated rollersorsetsofheatedgearsthatdeformthefilaments.Variationsincrimpcanbeobtainedbycontrollingthenumberofcrimpsperinchaswellasthedepthofgeardeformation.

Bulk-Textured Themostimportantpropertyofbulk-textured yarnsistheirhighbulkwithloworminimalstretch.Amethodforproducingbulk-texturedyarnisthestuffer-boxmethod,whichproducesanincreaseinbulkfrom200to300percentandcanbefoundinyarnsusedforcarpets.Inthisprocess,thefilamentsarecom-pressedintotheconfinedspaceofaheatedchamberandheat-setwithawavy,randomcrimp.Theresultantyarnisrelativelybulky,possessessomedegreeofstretch,andistorque-free.Torque-freemeanstheyarnwillstayflatandmotionlessasopposedtoayarnthathasatendencytocurlarounditself.

to lowerthecostofcertain fabricsbycombining less-expensiveyarnswiththemorecostly.Theycanbeusedtoaddstrengthtoaweakyarn,suchasaddingnylontoametallicyarn.Amixtureissometimesreferredtoasacombinationfabric.

Special Types of YarnsTextured YarnsTheappearanceandtouchofmultifilamentyarncanbealteredfrom smooth,lustrous,andflattocrimped,dull,andsoft(somewhatliketheappearanceofspunyarn).This modification yields entirely new yarn properties,which in turn provide entirely new fabric properties.Thefilamentyarnsaremodifiedbeforetheyarewovenorknitted.Becausethemodifiedyarntakesonanentirelynewsurfaceortexture,itiscalledtextured yarn.

The ability of filament yarns to be modified togivethemnewshape,crimp,andbulkderivesfromthethermoplasticnatureofthefibersfromwhichtheyareproduced(seep.28).Thevariousmethodsformakingtexturedyarninvolveshapingtheyarntosomedesiredconfigurationofcrimporbulkbysetting theyarn,heat-ing it tonear itsmeltingpoint, and thencooling thematerial. (Theexceptionto this is theair-jetmethod,describedonp.74.)

Favorable PropertiesThefollowingarefavorablepropertiesoftexturedyarns.

u Possesshighstretchand/orbulk

u Provide greater cover (opacity) than regular fila-mentyarns

u Afford greater breathability and absorption thanregularfilamentyarns

u Afford greater insulation than regular filamentyarns

u Providesofteranddrierhandthanregularfilament

u Providespunlikeyarncharacteristics

u Are more wrinkle resistant than spun yarns orregularfilamentyarns

Unfavorable PropertiesThefollowingareunfavorablepropertiesoftexturedyarns.

u They have a tendency to snag on broken finger-nails,chairseats,andsimilarobjects.Becauseitis

FabSci10e_066-087_ch04.indd 76 9/22/11 10:56 AM

Page 27: fabric science

Y A R N S A N D S E W I N G T H R E A D S

A 77 F

Figure 4.10Methodsofproducingtexturedyarn:(a)falsetwist(b)knife-edge(c)stufferbox(d)gearcrimping(e)high-pressure/highvelocityair-jetand(f)knit-deknit.

a b

c d

e f

textured yarn guide rollers

heater

regular yarn

guide rollersedge point

heater

regular yarn

regular yarnheater

guide rollers

heated chambers

textured yarnregular yarn

heater

textured yarn

regular yarn

textured yarn

high pressure/ high-velocity air

circular knit fabric

unraveled textured yarn

heater

textured yarn

FabSci10e_066-087_ch04.indd 77 9/22/11 10:57 AM

Page 28: fabric science

F A B R I C S C I E N C E

A 78 F

periodoftimeafterstanding,maybelessdesirablethana pair of pants made from rigid fabric that does notstretchinthefirstplace.

Unrecovered stretch in textile fabrics is calledgrowth.Growthhasnotbeencompletelyeliminatedinmoststretchfabrics,butcanbekept toverylow,tolerableminimums in properly constructed fabrics. In general,tightly constructed fabrics recover more quickly thanlooselyconstructedfabrics.Also,fabricsmadefromhigh-denierstretchtexturedyarnsrecovermorequicklythanfabricsfromfine-denierstretchtexturedyarns.Amethodfordeterminingfabricgrowthisgivenonpage328.

Types of Stretch YarnsThefollowingcommontypesofstretchyarnsarecom-paredinTable4.1:

Bare Elastic Yarns Bare elastic yarns are usuallycomposed of monofilament spandex fiber. Bare elasticyarnsareusedinpower-stretchfabrics.Ingeneral,they

Theair-jetmethodisasecondwaytoproducebulk-texturedyarns.Inthismethod,ajetofhigh-velocityairisdirectedatamultifilamentyarn,whichseparatesthefibers, forcingsomefilamentsto formloopsandturns.The result is a bulkier, less lustrous yarn. Many yarnstylevarietiesarepossiblebyvaryingtheyarntypesandair-jetvolume.Noheat is involved, so theyarnsneednotbethermoplastic.

The knit-deknit method is a way of producing abulky yarn thathasmore stretch thanyarnproducedusingthestuffer-boxorair-jetmethods.Thefilamentsareknitintoanarrow-diametertubularform.Thefabricisrolledup,heat-set,andthenunraveled.

Set-Textured Texturedyarnsintheset-texturedcat-egory undergo an additional heat-setting step in thetexturizing process to set the yarn and eliminate orgreatlyminimizestretch.Thisisaccomplishedinsomeinstancesbywindingpreviouslytexturedstretchyarnsonto spools under moderate tension, and then heat-settingtheyarnasecondtime.Theyarnthenbecomessetinthebulkedconditionwitheitherminimalornostretch. Textured yarns of this type, made of filamentpolyester fiber, can be used in many fabrics includinggabardine,interlock,andcrepedechine.

Stretch YarnsYarnsthathavethecapabilityofstretchingareincreas-ingly beingusedintextilematerials.Asidefrombeingthe traditional materials used in foundation garmentsand swimwear, fabrics made from yarns that stretcharebeingusedinappareltoprovideincreasedcomfortwhen sitting, bending, stooping, or engaged in activesportsorworkactivities.

Stretch fabrics are generally classified into twocategories:powerstretchandcomfortstretch.(SeeFig-ure 4.11.) Power-stretch materials are fabrics in whichholding power is required, as in foundation garments,swimwear, surgical support garments, and suspenders.Theyarnsusedforpower-stretchfabricshavehighelas-ticity andhigh recovery force.Comfort-stretch fabricsaredesignedtoyieldwithbodymovement.Thesefab-ricshavelowrecoveryforceand,inmostinstances,theyarnsfromwhichtheyaremadeandthefabricsthem-selveslookthesameasnon-stretchmaterials.

Stretchyarnsandthefabricsmadefromthemrequirenotonlythattheystretchtotheextentrequired,butalsothattheyreturntotheiroriginaldimensionsonreleaseofthestressesthatcausethestretch.Fabricsthatdonotreadilyrecoverareinadequatefortheparticularenduse.

A pair of pants that stretches at the knee fromsitting,andthat remainsbaggyat theknee fora long

Figure 4.11Powerstretchfabricsareoftenusedforactivewear.

FabSci10e_066-087_ch04.indd 78 9/22/11 10:57 AM

Page 29: fabric science

Y A R N S A N D S E W I N G T H R E A D S

A 79 F

andlowpotentialshrinkage.Whenthefinishedyarnistreatedwithboilingwaterorsteam,thehigh-shrinkagefiberscontractandmovetothecenteroftheyarn,forc-ing the low-shrinkage fibers to buckle, which forms ayarnthat isgreater indiameter thantheoriginalandhasmoreloftandbulk.Somehigh-bulkyarnsarebulked(boiledorsteamed)inyarnform,andothersarebulkedingarmentform(e.g.,knittedsweaters).

Fabricsmadeofhigh-bulkacrylicyarnsfeelsoftandluxurious,andfrequentlyhavethehandandappearanceofhigh-qualityworsted.Theyhavethedisadvantageoftending topilleasily,andtheyshouldbecheckedcare-fullyforconformitytocurrentflammabilityregulations.

Novelty YarnsNovelty yarns, sometimesalsocalled fancyyarns,areyarnsthatarenotofuniformthicknessthroughouttheirlength, but have deliberate irregularities on their sur-faces (Figure4.12).These irregularitiesmaybeknots,bumps,curls,orsimilareffects.

Thenamingofnoveltyyarnsisconfusing,however.Becausethereisnoestablishedterminologyfornoveltyyarns,theirnamesareoftenusedinterchangeably.Nov-elty yarns,or fabrics containingnoveltyyarns, shouldnever be purchased on the basis of yarn name alone,butonlywhenaccompaniedbysamples.Typicalnoveltyyarnsareslub,thickandthin,spiral,flock,andbouclé.(SeeFigure4.13.)

Noveltyyarnsgivefabricsmadefromtheminterest-inganddecorativesurfaceeffects.Usingnoveltyyarnsisonemeansbywhichtextiledesignerscancreateclothwith raisedornubby surface textures as distinguishedfromtheusualflatsurfaceofmosttextilematerials.

Fabricsmadefrommostnoveltyyarnsarenotdura-bleandareespeciallysusceptibletowearfromabrasionorrubbing.Thepartsoftheyarnexposedbeyondthe

providesofterandmoregentleshapecontrol(moderaterecoveryforce)thancoveredyarns.

Covered Elastic Yarns Covered elastic yarns aremonofilaments thatarewrappedorcoveredwithaspunorfilamentyarntohidetheelastomericyarn.Coveredyarnstendtobethickandheavyandareusedinpower-stretchfabrics.Ingeneral,theyprovidefirmerandmorepowerful shapecontrol(highrecoveryforce)thanbareelasticyarns.

Core-spun Yarns Core-spun yarnshaveacentralfil-amentcoreofspandexwithstaplefiberthathasbeenspunaroundthecore.Thecoreinthecenterdoesnotappearon the yarn surface, so thehand, texture, andappearanceareidenticaltowhatthespunyarnwouldbewithoutthecorecenter.Core-spunelasticyarnsareusedincomfortstretchfabricsbecausetheypossessverylowrecovery force.Theseyarnscanbespunveryfineand thus provide elasticity without the bulk usuallyassociated with other types of stretch yarns. Stretchchino,apopularcottonsportswearfabricusedfortennisshortsandotheractivesportswear,ismadefromcore-spuncottonyarns.Core-spunstretchyarnsarethemostexpensiveofallstretchyarns.

Textured Yarns Textured yarnsarethemostwidelyusedofthecomfortstretchyarns.The“ease”or“give”these yarns contribute to the fabric is a qualitymanyconsumersfindattractive.

High-Bulk YarnsHigh-bulk,alsocalledhi-bulkorturbo-bulk,yarnsareacrylicspunyarnsthatarespeciallyprocessedtoyieldlofty,bulky,andsoftyarnswithoutstretch.

Theseyarnsareproducedbyauniqueprocessthatinvolvesspinningyarnbyblendingacrylicfibersofhigh

Table 4.1 Comparison oF sTreTCh Yarns

Yarn TypeStretch Fiber Component Stretch Type

Recovery Power Uses and Features

Texturedyarns

Nylonorpolyester

Comfort Low Blouses,sportswear,stretchpants,hosiery,polyestermen’ssocks.Polyesterhasatendencytopill.

Bareelastic Spandex Power Moderate Lightweightfoundations,swimwear,athleticwear—gymclothing,bikeshorts.

Coveredelastic

Spandexorrubber

Power High Heavyfoundations,elasticbandages,surgicalstockings,athleticsupporters.Rubberhashigherpowerandrecoverythanspandex,butpoorshelflife—itbeginstodecayinoneyear.

Corespun Spandex Comfort Verylowtolow

Activesportswear,stretchdenim.

FabSci10e_066-087_ch04.indd 79 9/22/11 10:57 AM

Page 30: fabric science

F A B R I C S C I E N C E

A 80 F

surface of the substrate are particularly vulnerable torubbingaction.Noveltyyarnfabricsshouldbeavoidedin applications where durability and long wear musttakeprecedenceoverfabricbeautyandinterestingsur-faceeffects.

Chenille YarnsChenille yarnsareyarnsthathaveasoftpileprotrud-ingfromtheirsurface.Theirappearanceresemblespipecleanerswithoutthewire.Unlikepipecleaners, how-ever,chenilleyarnsaresoft,supple,andveryflexible.

Chenilleyarnsaremadeinanunusualmanner.Theyarnismadebyslittingnarrowlengthsfrom1⁄8inchto1 ⁄4inch(3.18millimetersto6.35millimeters)ofafabric

seed yarn

nub yarn

slub yarn

bouclé yarn

spiral or corkscrew yarn

chenille yarn

Figure 4.12Populartypesofnoveltyyarns.

Figure 4.13Chanelgarmentmadeofboucléyarns.

that has first been woven especially for this purpose.Thisfabricisaleno-effectweave(seep.103)andhasafillingofsoft,twistedyarns.Afterthefabriciswoven,itiscutlengthwiseintonarrowstrips,eachstripbecomingachenilleyarn.Thecrisscrossinglenowarppreventsthesoftfillingfromfallingout.(SeeFigure4.14.)

Chenille yarns may be made from any fiber, butmostcommonlytheyaremadeofcotton,wool,rayon,ornylon.Chenilleyarnsareusedinwovenfabrictopro-ducesoftpilelikeeffectsonbedspreadsandotherdeco-rativefabrics.Chenilleyarnshaveratherlowresistancetoabrasion,andtheiruseshouldbeavoidedinproductsthatwillbesubjectedtoevenminimalfabricrubbing.

Metallic YarnsA strip of metallic fiber (see p. 56) is also a metallic yarn.Suchyarnisflatandribbonlikeratherthanroundorellipticalincross-section,asareotheryarns.Stripsofmetallicyarnsareusuallyfrom1⁄32inch(0.80millimeter)

FabSci10e_066-087_ch04.indd 80 9/22/11 10:57 AM

Page 31: fabric science

Y A R N S A N D S E W I N G T H R E A D S

A 81 F

to1 ⁄128inch(0.20millimeter)wide.Theseyarnscanbesupportedbylooselytwistingoneormorefine-filamentyarns around them (e.g., two 15-denier nylon yarns).Thisincreasesitsstrengthandabrasionresistance.

Metallicyarnsaremostlyusedfordecorativeratherthan functional purposes; a wide range of colors andeffectsisavailable.Metallicyarnstendtobeexpensive.LurexCo.,Ltd.isamajormetallicyarnmanufacturer.

Yarn Numbering SystemsYarnsareboughtandsoldbythepound.Knittingmills,forexample,purchasetheiryarnrequirementsinpoundsratherthaninyards.Evenhomeknitterspurchaseyarnsinpackagessoldbyounceorgramweight.

Yarn numbering systems are used to expressa relationship between a unit length and weight ofyarns—eithermeterspergramoryardsperpound.Therelationshipbetweenunitlengthandweightalsoreflectsthediameteror thicknessofayarn.This isbecauseayarn of low weight per unit of length would be finer(thinner) than a yarn with a higher weight per equalunitoflength.However,thediameteroftheyarnmayvaryforanygivenyarnnumberbecauseofdifferencesin the specific gravity of the fibers from which yarnsare made, and because some yarns are highly twistedwhereasothershavelowtwist.

Thetermsyarn numbersandyarn sizesareusedinterchangeably.Despitethewords“yarnsize,”bearinmindthatthesize(ornumber)expressesarelationshipbetweenaunitoflengthandweight,andonlyaclose,butnotexact,relationshiptodiameterorthickness.

Therearetwomainnumberingsystemsinuse:thedeniersystem,whichisusedforallfilamentyarns,andtheyarn-countsystem,whichisusedforallspunyarns.

Figure 4.14Makingchenilleyarn:Fillingyarnsarecutbetweeneachsectionofwarpleno.

warpyarn

filling yarn

Athirdsystemknownasthetexsystemwasdevelopedtobringallyarnnumberingsystemsintoasinglesystemforalltypesofyarns.

The Denier SystemThe denier system is the simpler of the two number-ingsystems.Inthissystem,heavierandusuallythickerfilamentyarnsaredesignatedbyhigherdeniernumbers.Veryfineyarns,of10denier, forexample,areused insheerhosiery.Theheavy,coarseyarnsusedincarpetingarearound2,000denier.Thedeniersystemiscalledadirectsystembecausehigherdeniernumbersdesignateheavier(thicker)yarn.A100-deniernylonfilamenthastwicetheweightofanequallengthof50-deniernylonfilament.Thusthesystem isbasedonweightingramsper9,000meters.

A1-denieryarnisayarninwhich9,000meters,ifweighed, would equal 1 gram. A 2-denier yarn wouldweigh2gramsper9,000meters,andsoforth.Thustheyarnhastwicethethicknessperunitlength.

Filamentyarnsare soldby indicating thenumberof filaments the yarn contains, and the twist as wellasthedeniersize.Forexample,a300-10-1⁄2Zfilamentyarnindicatesayarnof300denierinsize,containing10filamentswith1 ⁄2TPIofZtwist.Eachfilamentfiberinthisyarnwouldbe30denier.A400-40-1⁄2Zwouldbethicker than the300-10-1⁄2Z,buthavefinerfilamentsbecauseeachfilamentfiberwouldbea10-denierfiberandthusfiner.

The Yarn Count SystemIn the yarn count system, the yarn count number isinversely proportional to weight. This system, there-fore, is indirect. A 50-count spun yarn has twice theweight (thickness) of a 100-count spun yarn. The

FabSci10e_066-087_ch04.indd 81 9/22/11 10:57 AM

Page 32: fabric science

F A B R I C S C I E N C E

A 82 F

Cottonand cottonblends 840

Spunsilkandallspun100percentmanufacturedfiberyarnsexceptacrylic 840

Worsted,worstedblends,andacrylic 560

Woolenandwoolenblends(run) 1,600

Linen(lea) 300

Allspunyarns(metric) 496.055

A number-1-count cotton has 840 yards in onepound (768 meters per 453.6 grams) of the yarn, andanumber-1-countworstedhas560yardsinonepound(512metersper453.6grams)oftheyarn.Bothare callednumber-1yarns,yeteachisofdifferentweightperunitoflength.Thusa20cottoncountwouldbefinerthana20worstedcountbecausetheformerhas16,800yardsper pound (15,362 meters per 453.6 grams) and thelatter has 11,200 yards per pound (10,214 meters per453.6grams).

Table4.2providestypicalyarnnumberanddeniercomparisons.Whenusingthistable,rememberthata200-denierfilamentyarnisofequalweightperunitoflength(andapproximatethickness)toa40-countwor-stedyarn,a27-countcottonyarn,a14-countwoolen(run)yarn,a74-countlinen(lea)yarn,anda45-countmetric.

TherearemanyothervariationsofyarnnumbersusedoutsidetheUnitedStates.

Ply Yarn Counts and Singles EquivalentSpunyarnsthatarepliedareexpressedas,forexample,40/2(cottontype).Thismeansthattwoyarnsof40/1eachhavebeen twisted together.Thethicknessoftheresultingplyyarnisabouttwicethatoftheoriginal40/1yarn,oraboutthesamethicknessas20/1yarnbecausethis isaninverseproportionsystem.Thesinglesequiva-lentofa50/2is25count,andofa45/3is15count.

Filament yarns are rarely plied because they gainlittlebybeingplied.Whentheyare,theusualmethodofexpressingsuchayarnwouldbe,forexample,two-ply40denier.Thesinglesequivalentofsuch ayarnwouldbe80denier.

Plyyarnsandsingle-yarnequivalentsareillustratedinFigure4.15.

The Tex SystemThe tex system is intended to replace all the exist-ingcountanddeniersystemswithasinglesystemfor

weight of the yarn is indirectly proportional to theyarn-countnumber.Cottonyarn,forexample,whichisusedforsheervoilefabrics,maybeasfineas100count,whereasthickeryarnsusedinmanypoplinfabricsmaybea30count.Heavycottonduckfabricusedfortrucktarpsmaybemadeof5-countyarn.

How Spun Yarn Count Is ExpressedThemethodofexpressingyarnsizeofspunyarnsdiffersby thefibercontent.Yarns spunon thecotton count system, for cotton and cotton blends, are designatedasc.c.forcottoncount.TheymayalsobespecifiedasNe forNumberEnglish andcc couldbe replacewithNec.Cottonandcotton-blendyarnsareexpressedbytwo numbers:Thefirstistheyarnsizeandthe secondindicatestheyarnply.Forexample,50/1meansasize-50 single yarn. (In oral communication, it is called a“fiftysingle”or“fiftiesyarn”.)A70/1isasize-70singleyarnor70s;60/2yarniscalleda60two-plyor60stwo.

Worsted,worstedblends,andacrylicfibersarespunon the worsted count system and are designated byw.c.orNew.Theseyarnsare indicated inthereverseorderfromthecottoncountsystem.Forexample,1/50(referredtoasone50orsingles50)isasinglesyarnof50-count size. A 2/40 yarn is two size-40 yarns pliedtogether.Thisyarnis calledatwo-40syarn.

Woolenandwoolenblendsyarnsaredesignatedbythetermrun,orNarsuchas4-runyarn.Theyarerarelypliedandaresingleyarnsunlessotherwiseindicated.

Linenyarnsareexpressedbythetermlea,or NeL,whichisusedforflax,jute,hemp,andramiefibers.Theyarealmostneverpliedbecausethefiberlengthissolongthatplyingdoesnotimprovetheyarnmeasurably.Thus,they are considered single yarns unless otherwise indi-cated.Yarnsasfineas400-leaareusedtomakefinelace.

Spunyarnscanalsobeexpressedinthemetricsys-tem.Theyarnsize is indicatedusingthetermmetric.For example, a 50-count metric yarn would be desig-natedasa50smetric.Themetric yarn-countsystemexpressesthenumberofkilometersofyarnperkilogramofweight.Thesystemisusedforallspunyarnsandisanindirectcountmethod.ItmaybeindicatedbyNmandisfrequentlyusedininternationalmarketsforanyspunyarnexceptspuncotton,whichisindicatedbyNe.

Several classifications are used for determiningyarncounts.Theseclassificationsarecalledyarn-countstandardsandaredifferentforeachfiber-spinningsys-tem.Theyarn-countstandardrepresentsthenumberofyardsinonepoundofanumber1countofthatspecificyarn.Thefollowingstandardsareingeneraluse:

FabSci10e_066-087_ch04.indd 82 9/22/11 10:57 AM

Page 33: fabric science

Y A R N S A N D S E W I N G T H R E A D S

A 83 F

distorted for at least the useful life of the product.Howadequatelya specific threadperforms these tasksdepends on proper thread selection for the specifiedfabricandseamtypeused.American&Efird,Inc.,isamajorthreadmanufacturer.

Fibers Used for ThreadsThefibersusedforsewingthreadsareprimarilycotton,nylon,polyester, and rayon.Cotton-coveredpolyesteris the most widely used because of its relatively lowcostandhigh versatility.Thepropertiesandcharacter-isticsof eachof thefibersprevailwhen theyareusedas threads, and these properties should be consideredin thread selection for specific end uses. Rayon, forexample, isusuallyused for thread intendedprimarilyforembroideryordecorativestitchworkratherthanforseamingtoholdpartstogether.

designatingallyarnsizes.TheInternationalOrganiza-tion for Standardization (ISO) has adopted this sys-tem and it is utilized in the sewing thread business.Thetexsystemisadirectnumberingsysteminwhichhighertexnumberscorrespondtoincreasinglyheavier(thicker)yarns.Thetexstandardusesgramsper1,000meters.Thus,a10dyarnusedforpantyhosewouldbeequivalent to a1.1 tex yarn.Decitex (dtex) is oftenusedwhenreferringtoaverylowtexnumber.Thus5.6texwouldbe560dtex.

Sewing ThreadsSewing threadsarespecialkindsofyarnsthatareengi-neeredanddesignedtopassthroughasewingmachinerapidly, to form a stitch efficiently, and to functionwhileinasewnproductwithoutbreakingorbecoming

Table 4.2 Yarn number Conversions

Denier Worsted CottonWoolen

(Run)Linen (Lea) Tex Metric

Fineyarnsrange

50* 160 106 56 298 5.6 180

75 106 72 37 198 8.3 120

100 80 53 28 149 11.1 90

Mediumyarnsrange

150 53 35 19 99 16.6 60

200 40 27 14 74 22.2 45

300 27 18 9.3 50 33.4 30

400 20 13 7.0 37 44.4 22.5

Coarseyarnsrange

500 16 11 5.6 30 55.5 18

700 11.4 7.6 4.0 21 77.7 12.9

1000 8.0 5.3 2.8 15 111 9

1500 5.3 3.5 1.9 10 166 6

2000 4.0 2.7 1.4 7 222 4.5

*Muchfinerfilamentyarns,aslowas10denier,arecommonlyused.

Figure 4.15Plyyarnandsinglesequivalents:(a)spunyarn,(b)spunyarn,and(c)filamentyarn.

60/2 30/1 60/3 20/1 100d/3-ply 300d

singles equivalent singles equivalent singles equivalent a cb

60/1 60/1 60/1 60/1 60/1 100d 100d 100d

FabSci10e_066-087_ch04.indd 83 9/22/11 10:57 AM

Page 34: fabric science

F A B R I C S C I E N C E

A 84 F

willdeterminetheeaseofmanufacture,durabilityoftheproduct,andsatisfactionoftheconsumer.

Thread size should be as fine as possible, consis-tentwiththestrengthrequirementsoftheseam.Finerthreadstendtobecomeburiedbelowthesurfaceofthefabricandare,therefore,subjectedtolessabrasionthanseamswithheavierthread,whichareontopofthefab-ric.Finerthreadsalsorequiresmallerneedles,producinglessfabricdistortionthanheavierneedles.

Thebreakingstrengthofaseam(seep.321)shouldbe less thanthatof the fabric sewn.Manyauthoritiesagreethattheseamshouldbeabout60percentofthefabricstrength.Thisistoensurethatifexcessivestressisplacedona seam, the seam, rather thanthe fabric,breaks.Seamsareeasilyrepairable;fabricisnot.

Ifagarmentistobewashedinhotwater,thenitsthreadshouldhaveexcellentresistancetocolorchangefromthismedium.Also,thethreadshouldnotshrink asaresultofthecleaningmethod.

Important Thread Factors That Govern Seam AppearanceWhenwoven-filamentyarnfabricsand/orfabricsthathavebeenfinished withresinsaresewn,thereissome-timesatendencyforseamstopuckerandrippleratherthanto lieflatandsmooth.Thetendency isgreaterinlightweightfabricsthaninheavyweightmaterials.Someof thecausesofpuckeringareexcessivetensiononsewingthreadduringthesewingprocess,displace-mentormovementof fabricyarninthesewingopera-tion,andthreadshrinkagethatisgreaterthanfabricshrinkage.

Types of ThreadsThreadsmaybespun,filament,orcore-spuntype.Eachhasdistinctivepropertiesandthereforecertainadvan-tages in specific seams.Acomparisonof these threadtypesisshowninTable4.3.

Allsewingthreads,whetherspun,filament,orcorespun, are ply yarns. Sewing threads are more highlytwisted and firmer than regular yarns and are oftentreated with special finishes or lubricants to improvesewability.

Thread FinishesThreadsareproducedwithvariousfinishes,suchasmer-cerized,soft,glacé,andbonded.Inaddition,specialfin-ishes,whichincludeflame-resistantandheat-resistanttypes(forhigh-speedsewing),arealsoproduced.Table4.4 indicates the properties and use characteristics ofthreadfinishes.

Thread SizesSizes (weightperunit length)of threadaremarketedand expressedwiththeirTexnumberdesignation(seep.82).Anolder systemof specifying thread size, theticketnumbersystem,basedondenierandyarn-countsystems,isstillinusebutisgraduallybeingreplacedinthethreadindustry.Table4.5indicatestypicalTexnum-bersinthreadapplicationsforvarioussewnproducts.

Important Factors in Thread SelectionSelecting the correct thread for assembly of finishedgoodsisofcritical importance.Thetypeofthreadused

Table 4.3 Comparison oF sewing Thread TYpes

Spun Filament Core Spun

Lowerstrengththanfilament. Higherstrengththanspun;permitsuseoffinerthreadwithoutsacrificeofseamstrength.

Combinesthebestfeaturesoffilamentandspunthreads.

Versatileandadaptabletoawidevarietyofmachineadjustmentconditions.

Producesneatestseams,butcarefulmachineadjustmentsnecessary.

Especiallyusefulinseamingdurable-pressgarments.*

Lesslikelythanfilamentthreadtocauseseampucker.

Greaterpossibilityofseampuckerthanwithspunthread.

Sameseampuckeringtendencyasspunthread.

Leastcostly. Lesscostlythancorespun,butmorecostlythanspunthread;texturedfilamentthreadswouldbegoodforknitsbecausetheyhaveadditionalstretchability.

Mostcostly.

*Residualresinspresentinpermanentpressgarmentsareabsorbedbythethread,causingstrengthlossandabrasion-resistancelossinthecottoncoverofthethread.Thepolyestercoreisunaffectedbytheresin,thusprovidingcontinuingseamintegrity.

FabSci10e_066-087_ch04.indd 84 9/22/11 10:57 AM

Page 35: fabric science

Y A R N S A N D S E W I N G T H R E A D S

A 85 F

u Stitches per inch. Seams with a large number ofstitchesperincharemorelikelytopuckerbecausemoreyarndisplacement isoccurring.Stitchesperinch, therefore, should be kept at a minimum. Ifpossible,theyshouldbekeptwithinarangeof8–12stitchesperinch.

u Sewing machine adjustments. The bottom fab-ricandtopfabricofasewnseamshouldfeedintothemachineatthesamerateifsmoothseamsareexpected. In some instances, use of a fine-toothsewingmachinefeeddogaids inuniformfeeding.Sewing machine operator skills also play a majorroleinuniformfeedingofseamcomponents.

Puckering of seams can frequently be reduced oreliminatedthroughawarenessofthefollowingfactors:

u Thread size. Heavyweight thread should be usedfor heavyweight fabrics, lightweight thread forlightweight fabricsandextrafinethread for sheerfabricsorfabricsmadeofmicrodenieryarns.

u Direction of seam. Seams made parallel to thewarp pucker most seriously, those on the fillingpucker considerably less, and seams on the biashardlypuckeratall.Sometimesturningapatternslightlyoff-grainresultsinapucker-freeseam.

u Thread tension. Fabrics susceptible to puckeringshould be sewn with the lightest thread tensionpossible.

Table 4.4 Thread Finishes and Their uses

Type Description Sewing Properties and Uses

Soft Naturalcottonthreadwithoutfinishesthatappearssomewhatfuzzy.Smallamountoflubricantsometimesaddedtoimprovesewability.

Excellentsewability,lowestcost.

Mercerized Treatedcottonthreadthatisstronger,morelustrous,morestable(lessstretch)thansoftcottonthread.Thefinishreducesthethreadloopstrength.

Increasedtensilestrength,lustrousappearance,andbrightershadesprovideforbetterseamsthansoftthreads.Morecostlythansoftthreadandusedinpremiumproducts.

Glacé Highlypolishedcottonthreadthatisdifficulttounravel.Thepolishandfinishareusuallyobtainedwithwaxesandstarches.

Strongestcottonthread.Rarelyusedinapparel.Usedinthemanufactureofshoes,luggage,canvasgoods,andsimilarapplications.

Bonded Thetermappliesonlytothreadsofmanufacturedfibers,bothfilamentandspun.Waxesandresinsproducehighpolish,eliminatefuzz(onspuns),bondtogetherfilamentsandpliedyarn,andimpartasmoothprotectivecoating.

Increasedstrengthandsewabilitycomparedtosamethreadunbonded.Apparelusagelargelyinheavyweightandcoated-fabricsewing.Mainlyusedformanufactureofshoes,luggage,tents,andotherheavy-dutyapplications.

Table 4.5 sewing appliCaTions bY Thread size

Fine Tex (18 Through 30)

Medium Tex (30 Through 60)

Heavy Tex (60 Through 105)

Extra Heavy Tex (105 Through 135)

Blouses

Dresses

Lingerie

Sleepwear

Swimwear

Otherlightarticles

Aprons

Athleticwear

Caps

Coats

Draperies

Foundationgarments

Jeans

Pants

Rainwear

Shorts

Windbreakers

Footwear

Overcoats

Parkas

Protectiveclothing

Workwear

Decorativestitchingorwhenabolddesignlookisdesired

Luggage

Golfbags

FabSci10e_066-087_ch04.indd 85 9/22/11 10:57 AM

Page 36: fabric science

F A B R I C S C I E N C E

A 86 F

STUDY QUESTIONS

1. Explain why combed yarns are more costly thancardedyarnsofthesamefibercontentandsize.

2. What arenovelty yarns?Commenton theuseofnovelty yarns for fabrics to be used for children’splaywear.

3. Isiteasiertomakespunyarnfromstaplefibersorfilament yarn from filament fibers? Explain youranswer.

4. Whatismeantbytheterm“growth”withregardtofabricsmadefromstretchyarn?

5. Whatdifferencesinperformancewouldyouexpectinajacketmadefromwoolenyarnsascomparedtoonemadefromworstedyarns?

6. Rank the following five yarns from the lightest(thinnest)totheheaviest(thickest):

a. 40/2cottonb. 2/40worstedc. 70-deniernylonfilamentd. 13-run-woolene. 50-leaflax

7. Explain how a sewn seam made from fine threadmightactuallybemoreserviceablethanonemadefromheavierandstrongerthreadofthesamefiberandtype.

8. Whyareplyyarnsmorelikelytobefoundinbetter,higher-pricedgarmentsthaninmoderatetolower-costitems?Explainyouranswer.

9. Youarelaunchingalineofjuniordressesmadeofmicro polyester. What advantages might yarns ofthisfiberhaveoverdresseswithyarnsofsilk?

TasselAtasselisagroupingofparallel,even-lengthyarnshanginglooselyfrom aknob.Itisusedprimarilyasanornamentandismadeinvaryingversionsincul-turesthroughouttheworld.ThewordtasselcomesfromtheLatin“tassau”whichreferstoaclasp.

IntheMiddleEasttasselswerewornastalis-mans(charms towardoffevil spirits). InOxfordandCambridgeUniversity tasselswere tradition-allywornbyundergraduatesontheircaps.Gradu-ationtasselshavebeenusedintheUnitedStates

since the19thcentury.The tassel,hanging fromthemortarboard, ismoved fromthe right side totheleftsideupongraduationfromcollege.Thetas-selalsohasbeenusedas astatussymbolthatdif-ferentiatedindividualsinagroup.Thisappliedtomilitaryuniforms(rank),religiousgarments(posi-tions),andcolleges(leveloflearning).

Today tassels are found on furniture, shoes,drapery,garments,andornamentalcords.Deco-rativeknotsandbeadscanbeused tohighlightthetassel.

Textile Connection

FabSci10e_066-087_ch04.indd 86 9/22/11 10:57 AM

Page 37: fabric science

Y A R N S A N D S E W I N G T H R E A D S

A 87 F

Yarns and Sewing Threads

FABRIC SCIENCE / Swatch Kit Assignment

Usetheswatchkittofindexamplesofthefollowingkeyterms.Indicatetheswatchnumberandfabricnameforeach.

u Spunyarns:indicatefivesamples.

u Filamentyarns:indicatefivesamples.

u Cardedyarns:indicatefivesamples.

u Combedyarns;indicateonesample.

u Woolenyarns;indicateonesample.

u Worstedyarns:indicateonesample.

u Plyyarns:indicatethreesamples.

u Textureyarns:indicatetwosamples.

u Monofilamentyarns:indicateonesample.

u Stretchyarns:indicatethreesamples.

u Noveltyyarns:indicatetwosamples.

u Crepeyarns:indicateonesample.

u Blendedyarns:indicatethreesamples.

u Mixture:indicatethreesamples.

FabSci10e_066-087_ch04.indd 87 9/22/11 10:57 AM

Page 38: fabric science

FabSci10e_088-117_ch05.indd 88 9/22/11 11:00 AM

Page 39: fabric science

A 89 F

ObjectivesuToconveyhowwovenfabricsareproduced.

uToexplainwhywovenfabricslookandperformthewaytheydo.

uTorecognizevariousweavesandknowtheiridentifyingcharacteristics.

uTodefinetheterminologyusedregardingwovenfabrics.

uToidentifyvariouswell-knownwovenfabrics.

air-jetloombackbalancedtwillbasketweavebiasbottombroken-twillweavechevronclip-spotpatternclothrollcolor-and-weaveeffectcrepe-back satincut-pileweavefabricdobbyheaddobbypatterndoublecloth

endfacefillingfilling-facesatinfilling-pilefabricfloatharnessheddleherringbonejacquardheadjacquardloomjacquardpatternjetloomleft-handtwilllenoweaveloom

multiphaseloomnappedfabricoffgrainongrainpickpilefabricplainweaveprojectileloomrapierloomreedribbedright-handtwillsateenfabricsatinweaveselvageshed

shuttleshuttleless loomtoptwillweaveuncut-pileweavefabricwarpwarpbeamwarp-facesatinwarppilewater-jetloomweavewovenfabricwovenpilefabricyarnsperinch

(clothcount)

Key Terms Related to Textiles

chapter five

WOVEN FABRICS

Use fabrics in the Woven Fabrics section of the Fabric Science Swatch Kit for this chapter.

Swatches 28 through 48 focus on various Woven Fabrics.

FabSci10e_088-117_ch05.indd 89 9/22/11 11:00 AM

Page 40: fabric science

F A B R I C S C I E N C E

A 90 F

The LoomWovenfabricisproducedonaloom(Figure5.2).Thefollowingisasimplifiedexplanationoftheprocessuti-lizedtoproducewovenfabric:

u Thewarp beam,locatedatthebackoftheloomisalargerolleronwhichallthewarpyarnstobeusedforthefabricarewoundparalleltoeachother.

u Thewarpyarnspassthroughtheharnesses,whichlooklikepictureframesholdingmanythinverticalwirescalledheddles,eachwithaholeinthemid-dle.Eachwarpyarnisthreadedthroughtheholeofaheddleandthusiscontrolledbythatharness.

Over 4,000 years ago, man created fabric throughthe use of a crude wood-framed loom. Typically

thisweavingdeviceheldyarnsinanuprightpositionastheywereinterlacedwithoneanotherbyhand.Prime-valmanusedthistomakefabrictoclotheandprotect.Ascivilizationbegantodevelop,somewovenfabricwasusedtoindicatestandingwithinthecommunity.Even-tually,royaltyandreligiousfiguresusedornatelywovenfabrictoindicatetheirstature.Loomswerealsousedtodepict stories inwoven fabric, someofwhicharenowhighlyvalued(e.g., tapestry).Centuries later,as loomsbecame more sophisticated and yarns smoother andfiner,loomswereusedtocreatesomeoftheworld’smostintricatewovenfabrics.

Woven fabrics are made by interlacing two setsofyarnsatrightanglestoeachother.Thelength-wiseyarnsareknownaswarpyarns,orends,andthewidth-wise yarns are known as filling yarns, or picks. Thelength-wiseedgesofthefabricaretheselvages.Thesel-vageisusuallyeasilydistinguishablefromtherestofthematerial.(Seep.93.)

Grain indicates a direction parallel to either thewarp or filling yarns. The term on grain is used if afabrichasbeencutparalleltoeitherthewarporfillingyarns.Adirectionnotparalleltoeitheroftheseyarnsiscalledoff grain,orbias.Fabriccutoffgrainresultsinaskewedportionofthetextileproduct(e.g.,pantslegordrapery). Woven fabrics elongates most in a directionthatis45°tobothsetsofyarns.Thereasonforthisisthatthereismaximumyarnbendingandshiftingfromthepullingforcebeingexerted.Pullingthatisongrainresults in only a slight yarn extension, with the leastamountusuallyinthewarpdirection.

Wovenfabricsalsohavetheirbestdrapeinabiasdirection.Thisistheresultofthebendingandshiftingoftheyarnsfromthefabricweight.Somegarmentsarecutonthebias(i.e.,thebiasdirectionisverticalinthegarment)toobtainmaximumdrapability,asshowninFigure5.1.Aproblemthatcanoccur,however, is thegarmentmaygrow(i.e.,increaseinlength)andbecomeuneveninlengthwhenworn.

Biasbindingsarenarrowstripsoffabriccutinthebiasdirectionusedtofinishtheedgesofseamsinsewnproducts. This binding elongates to conform to theshapeofcurvedseams,thuseliminatingthepuckeringorsmallwrinklesthatwouldoccurifthebindingwerecutongrain.

Figure 5.1Sketchofagarmentcutonthebias.

FabSci10e_088-117_ch05.indd 90 9/22/11 11:00 AM

Page 41: fabric science

W O V E N F A B R I C S

A 91 F

Production LoomsFor early looms, the insertion of the filling yarn wasdone byhand,withtheweaverpassingthefillingyarnover and under different warp yarns. Later, harnesseswereaddedtoloomswhichallowed groupsofyarnstobelifted.Alsowiththeuseofashuttletheweavercould

u Whenaharnessorgroupofharnessesisraisedwithothersleftinthedownposition,aV-likeopeningisformed.Thisiscalledtheshed.

u Afilling yarn is inserted in the shed and travelsacross the width of the loom, passing over somewarpyarnsandunderotherwarpyarns.(SeeFig-ure5.3.)

u Thereedisacomb-likedevicethatpushesthefill-ingyarnintheshedintothebodyofthecloth.

u Thesequenceinwhichharnessesareraisedorlow-ereddeterminestheweaveofthefabric.

u The woven fabric produced by the repetition oftheabovestepsisslowlywoundontothecloth rolllocatedinthefrontoftheloom.

Types of LoomsProductionloomscanbecategorizedseveralways,suchas by method of raising ends to form the shed (e.g.,dobbydevice,orjacquardattachment—seep.106),bynumberofsheds(onetomakeasinglefabricortwotomakeadoublefabric),orbymethodofinsertingthefill-ingyarn.Themostsignificantadvancesinweavingareinthemethodsofinsertingthefillingyarn(Figure5.4).

warp yarn

warp beam

harnesses

shuttle

heddles

reed

cloth roll

cloth

Figure 5.2Asimplifiedsketchofatwo-harnessloom.

Figure 5.3Theinterlacingofwarpyarnsandfillingyarns.

FabSci10e_088-117_ch05.indd 91 9/22/11 11:00 AM

Page 42: fabric science

F A B R I C S C I E N C E

A 92 F

Thespeedofaloom,andthustheloom’sproduc-tivity,isdesignatedbythenumberofpicksperminute(ppm)a loomcaninsertforaspecifiedwidth.Themaxi-mumnumberofmetersperminute(m/min.) indicatesthemaximumlengthoffillingyarnthatcanbeinsertedinaminute.Thesemeasurementsarecriticalsincetheycontrol productivityor the lengthof time required toweaveaparticularlengthoffabricandthereforeaffectthecostofafabric.

Shuttleless loomsavailable in today’smarketplaceoperateat speedsthatproduce fabricatahighrateofproductivity. They are designed to function using dif-ferentfibercontents,yarncounts,structures,andmodi-fications. They must be energy efficient, quiet, andcompact inspaceusage.Theyareequippedwithstateof the art electronics, including internet-ready touchscreenterminals.Althoughtheuseofshuttleloomsisverylimited,theyhavebeenusedtoproduceauthenticdenimforvintagelookinggarments.

Projectile Loom Aprojectile loomusesaprojectiletoinsertthefillingyarns.Aprojectileisasmall,lightgrip-perdevice(aboutthesizeofapocketknife)thatispro-pelledacrosstheloom,pullingthefillingyarnbehindit.Itcanutilizearangeoffillingyarnsandproducefabricsatavarietyofwidths.Therangeofwidthsusuallyfallswithin190centimeters(75inches)to540centimeters(213inches). Itisusedtoproducedenimandsheeting.This loomalsocanproducefabricupto18feet(5.49meters)wideandisusedfortheproductionofcarpet.

Since the projectile loom drags the filling yarnacrossthewidthoftheloom,a strainisplacedonthefillingyarn.Thusthismethodisnotsuitedforweavingwithweakorfragilefillingyarns.Thisloomisidealforfabricstobemadeofmediumweighttocoarseorbulkyyarns,aswellasyarnsmadeofhardfibers,suchasjute,andfabricstobemadeofmetalthreads.

With a production of only 400 ppm and limitedversatility,projectileloomsarebeingreplacedbyair-jetandrapierlooms.

Rapier Loom The rapier loom uses a rapier rod orsteel tapetopull thefillingyarnacross the loomoradoublerapierwherethefillingyarnistransferredatthemidwaypointfromonerapiertotheother.Thisloomisnotedforalargerangeofpatternsproduced.Becausetherapierrodisnotinfreeflightasisaprojectile,lessstrainisplacedonthefillingyarn.Thusfineordelicateyarnscanbeused.

The rapier loom is used to produce high-qualitywool and silk fabrics along with fine to coarse spunyarns and delicate filament yarns. It is also utilized

insert thefilling yarn at a greater rate.A shuttle is awoodendevicewithabobbinplacedinsidewithfillingyarnwoundaroundit.Astheshuttleisprojectedacrossthe loom, the filling yarn unwinds from the bobbin,leavingatrailofyarnbehind.Addingpowertoshuttleloomsmechanizedtheweavingprocessandsignificantlyincreasedtherateofproductionyetagain.

Most looms used for production are shuttlelesslooms. These looms employ various other devices tobringthefillingyarnthroughtheshed.Withshuttlelessloomstheyarncomesdirectlyfromconesplacedat thesideoftheloom.Oncethefillingyarnisbroughtacrosstheloom,theyarniscut,oftenleavingafringeattheedgesofthefabric.Exceptforthemeansoftransportingtheyarnacrosstheshed,thestepsintheweavingpro-cessarethesame.Themaindevicesusedtoinsertthefillingyarnacrosstheshedarereferredtoasprojectile,rapier,jet,ormultiphase.

Figure 5.4Insertingthefillingyarnforshuttlelesslooms.

yarn package

yarn package

yarn package

yarn package

projectile

single rapier

double rapier(yarn has been transferred)

air or water jet

air or water jet

FabSci10e_088-117_ch05.indd 92 9/22/11 11:00 AM

Page 43: fabric science

W O V E N F A B R I C S

A 93 F

minute).Itisusedforthestaplefabricsofbasicweaves,suchasplain,rib,orbasictwills.

Loom ProductionThe filling yarns are inserted at a constant rate (e.g.,650 picksperminute).However,picksper inch(ppi)isdeterminedbytherateatwhichthewarpyarnspassthroughtheloomdeterminesthepicksperinch,whichaffects the tightness or looseness of the fabric. Forexample,ifthewarpyarnsmoveattherateof5inchesperminuteandthespeedoftheloomis650picksperminute,thepicksperinch(ppi)oftheresultingfabricis 130 ppi (650 ÷ 5 = 130). Loom production (yardsproducedperhour)islowandmorecostlywhenmakingfabricswithhighpicksperinch.

Theendsperinchof thefabriciscalculatedbythenumberofwarpyarnsonthewarpbeam.Forexample,if9,000warpyarnsarewoundonawarpbeamtomakeafabric60incheswide,thefabrichas150endsperinch(9,000÷60=150).Ifthedesiredfabrichas160endsperinchand is60 incheswide, then thenewwarpbeammusthave9,600ends(160×60=9,600).

Fabric FeaturesSeveralfeaturesarefoundinallwovenfabrics:

u Selvage

u Warpandfillingyarns

u Faceandback

u Topandbottom

u Yarnsperinch

Knowledgeofthesefabriccharacteristicsisneededtounderstandfabricstructureandsuitabilityinparticularuses.

The SelvageTheselvageisalengthwiseedgeofafabric.Itisusu-ally between ¼ and ½ inch (.64 cm and 1.27 cm)wideandexistsonbothedgesofthecloth.Thetermselvageisderivedfromthedescriptivetermself-edge(Figure5.5a–d).

Themainpurposeoftheselvageistoensurethatthe edgeof the fabricwill not tearwhen the cloth isundergoingthestressesandstrainsofthefinishingpro-cess.(SeeChapter10.)Sheetsandbathtowelsaretwoproductsinwhichtheselvageisleftintactasafinishededgeofthefabric.

to produce technical textiles, such as fabrics made ofglassorhigh-strengthfiberssuchasKevlar®forairbagsusedinautomobiles.Itcaninsertfrom900meters(980yards) to1,300meters (1,422yards)of filling yarnperminuteforfabricranginginwidthfrom140centimeters(55inches)to280centimeters(110inches).

Jet Loom Jet looms take the filling yarn across theloom by using a high-speed jet of either air or water.Theforceoftheairorwatercarriestheyarnfromonesidetotheother.Jetloomsarefasterthanprojectileorrapier looms(higherpicksperminute).Theycannot,however,produceasgreatavarietyoffabrics(noheavyand bulkyyarns),norcantheyproduceaswideafab-ric(jetshavelessyarn-carryingpowerthanprojectilesand rapiers).Jetloomsalsodolessdamagetothewarpbecausethereisnoabrasionofthisyarnbythejetsofairorwater.Thisisincontrasttotheprojectileorrapier,whichridesacrossthewarpyarnsleftinthedownposi-tionoftheshed.

Withair-jet looms, the initial propulsion force isprovidedby amainnozzle.Relaynozzlesalongtheshedproduceadditionalboosterjetstohelpcarrytheyarnsacrosstheloom.

Air-jet looms are used for spun or filament yarnfabrics suchasthose foundinmen’souterwear, sheet-ing, and denim. It has a speed of 1,000 ppm and up.Widthsvary from190centimeters (75 inches) to540centimeters(213inches).

Withwater-jet looms,thereisonlyamainnozzletoprovidethepropulsionofthefillingyarn.Theseloomsrequirelargeamountsofcleanwaterwithoutmineralsinittoproduceefficiently.

Becausewetfabriccannotbestoredinaroll,water-jetloomsareequippedwithefficientdryingunits.Theseunitsusevacuumsuctionandheattoremovethewaterfromthefabric.Water-jetloomsarebestsuitedforweav-ingfilamentyarnsmadeofhydrophobicfibers,suchasnylon, although they can handle some blends, suchaspolyester/cotton.These loomscannotbeusedwithyarnsmadeoffibersthatlosestrengthwhenwet(e.g.,rayon).

Multiphase Loom Multiphase looms offer enor-mousoutput for light tomediumweight fabrics.Thisisaccomplishedwiththeuseofmultipleshedsoperat-ingseparatelyacrosstheloominsteadofonlyoneshed.Thus, filling yarns can be inserted one after another,similartoawave,astheytravelacrossthewidthoftheloom. This system is not as versatile as other looms,butitcanproducefabricatarateof2,800ppmwithaweftinsertionrateof5,500meters/minute(6,015yards/

FabSci10e_088-117_ch05.indd 93 9/22/11 11:00 AM

Page 44: fabric science

F A B R I C S C I E N C E

A 94 F

drapabilityofthefabricmustbecheckedbythedesignerto ensure that it meets the garment requirements. Inall cases, distinguishing warp from filling is necessary.Finally,atextileexpertmakingacompleteanalysisofaclothmustbeabletoidentifyboththewarpandfill-ing yarns in order to report such information as size,amountoftwist,andfibercontent.

Thefollowingaresomeofthewayswarpyarnscanbedistinguishedfromfillingyarns:

Selvage The warp yarns are always parallel to theselvage.

Yarn sizesUsuallythewarpyarnsarethinner,sotheyabradelessastheypassthroughtheloomandrubagainstthevariousparts(e.g.,heddles,reed).Afabricthatcontainsbothfilamentyarnsandspunyarnsusuallyhasthefilamentyarnsasthewarpset.

TwistForthemostpart,spunwarpyarnshavemoretwistthanspunfillingyarns.Becausetheyusuallyarethinner,moretwistisnecessarytoenablethemtohavesufficientstrengthtowithstandthetensionsexertedontheyarnsinweavingandinfinishing.

Various techniques are used to make the selvageareastrongerthanthebodyofthecloth,includingusingheavier warp yarns; more warp yarns per inch; pliedwarpyarns;greater twist, if spunwarpyarns;anddif-ferentweave.Becausetheselvageisusuallyconstructeddifferentlythanthe body,itisfairlyeasytoidentify.

If the selvage warp yarns are different from thebodywarpyarns,theirshrinkagecharacteristicsmaybedifferent.Iftheselvagewarpyarnshavegreatershrink-ageduringthefinishingprocess,atightselvageoccurs,resulting in the puckering of an area within severalinchesof the fabricedge.This isaproblemwhenthematerialisunrolledonthecuttingtableandtheclothdoesnotlieflat.

Identifying Warp Yarns and Filling YarnsOne way to better understand the characteristics ofwoven fabric is to know the differences between thewarpyarnsandthefillingyarns.Becausefabricswatchesaremountedwiththewarpyarnsvertically,itmustbedeterminedwhichsetofyarnsisthewarpsothemount-ings are correct. More importantly, garments are usu-allycutwiththewarpyarnsrunninglengthwise,sothe

c d

ba

Figure 5.5Varioustypesofselvages:(a)Selvageasproducedbytheshuttleloom.Selvagesmadeonashuttlelessloomsuchas(b)fringe,(c)leno,and(d)tucked-inselvage. c d

ba

FabSci10e_088-117_ch05.indd 94 9/22/11 11:00 AM

Page 45: fabric science

W O V E N F A B R I C S

A 95 F

whichthewarpyarnsorthefillingyarnsappearmoreononesidethanontheothershowsadifferencebetweenthefaceandback.Fabricswithaplainweave(seep.97)orlenoweave(seep.103)arereversible,butfabricswithasatinweavearenot(seep.101).Inasatinfabric,thewarpyarnspredominateonthefaceandthefillingyarnsonthebacksothatthetwosidesdiffergreatlyinappear-ance.Usuallytheshinier,smoothersideistheface.Anexceptionisantiquesatininwhichslubfillingyarnscre-atetheslightlyirregulareffectonthesurface.

Somefinishes,suchasnappingorbrushing,affectonlyone surfaceof thecloth,whereasothers, suchasmercerizing,penetratetheentirefabric.Nappinggivesafabricanobviousfacesideas,forexample,inaflan-nelmaterial.Mercerizing,however,produces thesamechangeonbothsides,asinabroadclothfabric;thusareversible fabric results. Inprinted fabrics, thecolor isusuallyplacedonlyonone side.Therefore,unless thefabric is very sheer, the printed side is obvious and isconsidered the face. Some sheer printed fabrics mayappeartobereversiblebecausetheprintdesignseemstobethesameonbothsides.

Caution:Agarmentshouldnotbemadewithsomepartscutfromonesideofthefabricandotherpartscutfromtheotherside.Eventhough bothsidesofthefabricmayinitiallyappearalike,thereisoftenaslightdiffer-ence in luster or color that does not become obviousuntil the garment is made and worn. This differencemaybecomesignificantaftercleaningsandwear.

Top and BottomBesideshavingafaceandaback,somefabricshaveatopandabottomonthefaceside.Wherethereisadif-ference,itisusuallycausedbytheweaveorthefinish.Inpilefabricssuchasvelveteenandcorduroy,thepileisnotperfectlyerect,butliesatanangle.Thecolormayvaryfromdarktolightasthefabricisturned180°on aflatsurfacebecauseofthedifferenceintheangleoflightreflection.Sometimesthesefabricsareusedingarmentswherethepileliesupwardinordertoobtainaricherordarker color. With fabrics having an obvious top andbottom,thegarmentmustbemadewithallitspartsinthesametop-downorbottom-downdirection.

Afabricwithawovenorprintedfigureinanobvi-ously upright position (e.g., horse, tree) can be cut inonlyonedirectionbecauseineverypieceformingthegarment, the figure must be in the upright position.Printedfabricsthatcanonlybeusedinonedirectionarecalleddirectionalprints.

Mostfabrics,however,whenrestingonaflatsurfacewiththefacesideupandthewarpyarnsvertical,have

Yarns per inchUsuallytherearemorewarpyarnsper inch than filling yarns per inch, making thefabricstrongerinthelengthwisedirection.Thisisnecessarybecausemostof the tensionexertedonthefabricinthefinishingprocessesisinthelength-wisedirection.Sometimes,however,theendsandpicksperinchareequal(e.g.,80square-printcloth)or occasionally the picks per inch is greater (e.g.,softfilledsheeting).

Ply yarnsAsdiscussedinChapter4,apliedyarnisstrongerthanasingleyarnofthesamesize.Thus,thewarpyarnsareoccasionallypliedtogiveaddedstrength,andthefillingyarnsusuallyremainsingle.

Stiffness In 100 percent spun-yarn fabrics, thewarp yarns are generally stiffer than the fillingyarnsbecausetheyusuallyhavemoretwist.In100percentfilament-yarn fabrics, thefilling yarns areusuallystifferbecausetheygenerallyarethicker.Astiffersetofyarnsusuallyresultsinlessfabricdrap-abilityinthatdirection.

StretchabilityUsuallythereismoreelongationinthe width-wise direction. In most cases there aremoreendsperinch,sothepicksusuallyhavemorecrimpastheyinterlace(gounderandoverthewarpyarnsmorefrequently)toagreaterdegree.

StripesMostwovenstripesappearinthelengthwisedirection. Warp-wise woven stripes only requiretheappropriatecoloryarnstobeproperlygroupedwhenthewarpismadeonthewarpbeam.Whenfabriciscutwiththestripeinthelengthdirection,thegarmentgivesthewearerthe illusionofmoreheightandaleanerlook.Checksandplaidsarecre-atedbymakingstripesinboththewarpdirectionandthefillingdirection.

Face and BackFabricdevelopersgenerallyaddressissuessuchasqual-ityordurability,withtheyarnsonthefaceofthefabric.Thus,fabricshaveatechnicalfacesideandatechni-calbackside.Thefacesidehasthebetterappearanceandusuallyformstheoutsideofthegarment(orothertextileproduct).Sometimesfashiondictatestheuseofthebackofa fabricas theoutsideof thegarment fortheparticular effect desired. Fabric developers gener-allyaddressqualityordurability issueswiththeyarnsonthefaceofthe fabric.

Therearevariousreasonsthatthefaceandbackofclothappeardifferent.Thetwosidesofafabricmaybedifferentbecauseof theweaveorfinish.Any fabric in

FabSci10e_088-117_ch05.indd 95 9/22/11 11:00 AM

Page 46: fabric science

F A B R I C S C I E N C E

A 96 F

classactionsuitandsettlement.Threadcounthaslongbeen recognized by consumers as a tool to determinequality (Figure 5.6). A contradiction in cloth countcausesdoubtandconfusionforconsumers.

Tolearnhowtodeterminetheyarnsperinchofawovenfabric,seepage309.

Determining the Weave of a Fabric

Woven fabric is analyzed to determine the weave. Itis done by determining the order in which the yarnsinterlace. Fabric is usually analyzed on the face side,butsometimestheweavemaybemoreclearlyseenontheback.Todeterminetheweaveofthefabric,everyinterlacingisexaminedtodeterminewhetherthe warpyarnorthefillingyarnisonthesurface.The weavemaybeillustratedongraphpaperindicatingthelocationofthewarpyarnonthesurface.Ifthewarpyarnisonthesurfaceofthefabric,itisindicatedbymarkinginonebox onthegraphpaper;ifthewarpyarnisonthebackofthefabric, theboxisleftempty.Refertopage314forfurtherinformation.

Theverticalandhorizontalrowsofsquaresarethesamesize.Aweavediagramonlyshowstheorderinwhichtheyarnsinterlace(Figures5.7a–c).Theweavediagramdoes not show the relative number of yarns per inchbetweenwarpandfilling,nordoes it indicate theyarnsizeandtype.Thussheetingfabric,voile,overcoatfabric,and liningcouldallhave the sameweavediagrambutentirelydifferentappearancesandend-useapplications.

the same appearance as when the fabric is turned sothattheedgethatwasatthetopisatthebottom.Thus,itusuallydoesnotmakeanydifferenceinappearancewith these fabrics if a garment is made with its partsplacedfromtop-to-bottomorifitspartsareturned180°andplacedbottom-to-top.Infact,mostmass-producedappareliscutthiswaytointerlockpatternsefficiently.Nevertheless, this could be undesirable because theremaybeaslightdifferenceincolororlusterthatisnotnoticeableinasmallerpieceoffabricbutisobviousinthefullgarment.

Yarns Per Inch: A Measure of Fabric QualityTheyarns per inchinafabricisgivenbytwonumberswithan×betweenthem.Forexample,80×74(pro-nounced “eighty-by-seventy-four”)means80yarnsperinch in thewarpand74yarnsper inch in thefilling.Thefirstnumberisforwarpyarnsperinchandthesec-ondisforfillingyarnsperinch.Afabricwiththesamenumberofyarnsper inchinbothdirections is saidtobesquare.An80-squareprintclothhas80endsand80picksperinch.Theyarnsperinchinthewarpandinthefillingisknownasthefabric count,fabricdensity,orclothcount.

Yarnsper inchisameasureof fabricquality.Twobroadclothsmaydiffer inpricebecauseonehasmoreyarnsperinch.Ahighernumberofyarnsperinchgivesthe fabric more strength, more weight, better hand,reducedpossibilityofyarnsshiftingoutofplace(yarndistortion; see p. 324), and better abrasion resistance.Increasingtheyarnsperinchalsoincreasesthecostofthefabric.

Thetypenumbersgivenforsheetingarebasedonthenumberof yarnsper square inch.The sumof theyarnsperinchinthewarpandtheyarnsperinchinthefillingisreferredtoasthetypenumber.Forexample,ifsheetinghas100endsand100picksperinch,thetypenumberis200(100plus100).Itisalsoreferredtoas200-count.Forotherfabrics,thevalueisgivenas100×100,andnotasasum.

Historically, manufacturers of sheets with a clothcount of 100 × 100 made of single yarns would indi-catea200threadcountonthepackage.Recentlysomemanufacturersofsheetshavecountedplyyarnsastwoseparateyarnswhenindicatingthethreadcount.Thusthesamesheetmadeof2plyyarnsmightindicatea400thread count. This confusion triggered a concern forthe industry as well as the retailers and resulted in a

Figure 5.6PercalesheetsbyMarthaStewartCollection™forMacy’s.

FabSci10e_088-117_ch05.indd 96 9/22/11 11:00 AM

Page 47: fabric science

W O V E N F A B R I C S

A 97 F

Weave FloatsWarp yarns and filling yarns in a fabric interlace witheachother.Whenoneyarn doesnotinterlacewiththenextadjacentyarn,butpassesovertwoormoreadjacentyarns, itissaidtofloat.Ifawarpyarnpassesovertwoormoreadjacentfillingyarns,awarpfloatresults.Whenthefillingyarnpassesoverwarpyarns,afillingfloatoccurs.

Floats tend to make the fabric surface flat andincreasethe amountofluster.Theyalsoenableyarnstoslideunder eachother in the fabric andare, therefore,usedwhenfabricsofmanyyarnsperincharetobemade.(Seep.102.)

Whenthefloatisrelativelylong,asnaggingprob-lem frequently results. The yarn can easily catch andbreak on broken fingernails or other rough surfaces.Floatsalsoweaken the fabricbecause they reduce thefrequencywithwhichyarnspass fromone sideof thefabrictotheother(fromthefacetothebackorfromthebacktotheface).Thisaffectcanbeoffsetbyincreasingtheyarnsperinchofthefabric.

Basic Fabric WeavesTherearethreebasicweaves:plainweave,twillweave,and satinweave.Allotherweavesareavariationoracombinationoftheseweaves.

Thetypeofweaveusedinafabricdependsonthedesiredappearanceandperformance(seeTable5.1).Suchfactorsasluster,strength,pattern,coloreffect,and,mostimportantly,cost,areconsideredbeforethefabricweaveischosen.

Plain WeavePlain weaveisthesimplestandthemostusedweave.Itisfound inawiderangeoffabrics,fromthesheeresttotheheaviest.Fabricswithaplainweavearerevers-ibleunlessonesideismadethefacebyafinishingorprintingprocess.

21 16 11 6 1

22 17 12 7 2

23 18 13 8 3

24 19 14 9 4

25 20 15 10 5

22 17 12 7 2

23 18 13 8 3

24 19 14 9 4

25 20 15 10 5

21 16 11 6 1

a

c

b

Figure 5.7(a)Theinterlacingyarnsofasatinweave;(b)thenumberedsquaresthatcorrespondtotheinterlacingsoftheweave;and(c)theweaveongraphpaper.

Table 5.1 Comparison oF basiC Weave properTies

Weave Luster Snag Resistance Surface EffectTearing Strength

Wrinkle Resistance

Plain Poor Good Flat,uninteresting Low Poor

Twill Fair Good Twilllines Medium Fair

Satin Good(especiallywithfilamentyarns)

Pooriflongfloats Smooth High Good

FabSci10e_088-117_ch05.indd 97 9/22/11 11:00 AM

Page 48: fabric science

F A B R I C S C I E N C E

A 98 F

samewarpyarn.Thethirdandfourthfillingyarnsweavethesameasthefirstandsecond.Theplainweave,there-fore, makes one complete cycle on two ends and twopicks.Bydefinition,we say the repeatof thisweave isontwoendsandtwopicks.Morecomplexweaveshavelargerrepeats.

Plain-weave fabrics require only two harnesses toweave the body of the fabric (excluding the selvage)becausetheweaverepeatseverytwoends.Oneharnesscontrolshalfthewarpyarns(1,3,5,etc.),andthesec-ondharnesscontrolstheotherwarpyarns(2,4,6,etc.).Whenoneharness israised,theotheris lowered,andthenthesequenceisreversedforthe nextpick.

Plain-weave fabricshavefirmconstructions.Theytendtowearwellandravellessthancomparablefabricsofotherweaves.Because the surface isplain, itoffersagoodbackgroundforprintedanddecorativedesigns.

Plain-weave fabricstendtowrinklemorethanfab-ricsofotherweaves.Frequentinterlacingdoesnotallowtheyarnstomoveinthefabrictorelievestressfromthebentfibers.Ahighnumberofinterlacingsalsoresultsinlessbiasstretch.Plainweavesusuallyhavelittlesurfaceinterestunlesscoloredyarnsareusedtomakedesigns(for example, a plaid) or special yarns or finishes areusedtoproducetexture.

The tearing strength of a plain weave is lowerthanthatofanyotherweave.Becausethisweave hasnofloats,whentearingaplain-weavefabric,theyarnsbreakoneatatime.Whentearingotherwovenfabrics,however, theyarns shiftandbunchtogether fromthetearingforcebeingexerted.Thefabrictearingstrengthofsuchfabricsishigherbecauseseveralyarnsmustbetornsimultaneouslyinsteadofonlyoneatatime.

Ribbed Plain WeaveAfabricwithaplainweavemayhavearibbedsurface.Theribisproducedbecausethefillingyarnsarethickerthanthewarpyarns.Theribcanbeverypronounced,as in a bengaline or ottoman fabric; easily visible, asin a faille or poplin fabric; or less noticeable, as in abroadclothortaffeta.Therib,however,canalwaysbedetectedbyrunningafingernailupanddownthefabric.

Although rib effects are popular, they can haveproblems.Thefillingyarnsthatformtheribsmayhavebeenmadebulkybyhavinglittletwistand/orshortsta-plefibers.Becausewearoccursmainlyonthetopoftheribs,iftheheavyfillingyarnsarenotwellprotectedbythesetofthinnerwarpyarns,thefabricwillnotwearwellbecausetheheavyyarnswillabradequickly.

Ribbed fabricswiththinwarpyarnsandfineribspossessbetterdrapeandasmoothersurface,andfabrics

Morefabricsaremadewithplainweavethananyotherweave.Theseincludesuchwell-knownfabricsasgauzeandchiffon(sheer),gingham,chambray(shirting/blouseweight),taffetaandchintz(mediumweight),andburlapandcanvas(heavierweight).

Inplainweave,eachwarpyarnpassesalternatelyoveroneandthenunderonefillingyarn,forthewholelengthofthefabric.Twoadjacentwarpyarnsinterlaceexactlyopposite.Onewarpyarngoesunder the samefillingyarnthatthenextwarpyarngoesover.Thethirdandfourthwarpyarnsweave thesameasthefirstandsecond,respectively(seeFigure5.8aandb).

As shown in Figure 5.8 each filling yarn passesalternatelyoveroneandthenunderonewarpyarn,forthefullwidthofthefabric.Twosucceedingfillingyarnsweave exactly opposite. When one filling yarn passesoverawarpyarn,thenextfillingyarnpassesunderthe

plain weave

warp yarns a

b

fillin

g ya

rns

Figure 5.8(a)Plainweaveand(b)plainweaveongraphpaper.

FabSci10e_088-117_ch05.indd 98 9/22/11 11:00 AM

Page 49: fabric science

W O V E N F A B R I C S

A 99 F

Ina3—1twill(threeup,onedown),eachwarpyarnpassesoverthreefillingyarnsandthenunderonefillingyarn.Thewarp is on the face three timesmore thanthefilling,formingawarp-facetwill.Ina1—3twill(oneup,threedown),thewarppassesoveronefillingyarnandthenunderthreefillingyarns,toproduceafilling-facetwill.A2—2twillhasbothwarpandfillingshowingto the same extent on the face, and it is known as abalancedtwill.Abalancedfabricwouldhaveaboutthesamesizeandnumberofwarpandfillingyarnsperinch.

withlargeribspossessanunevensurfaceandmorebody.Sometimes, the ribbed fabrics are also called unbal-anced fabricsbecausethesizesof thewarpandfillingyarns,aswellasthenumberofendsandpicksperinchwithinthefabric,aregreatlydifferentfromoneanother.

Ribbedfabricscanalsobemadewitharibweave—avariationofaplainweave.Theweavecreatesribsineither thewarporfillingdirectionwhen twoormoreyarnsinterlaceinthesamesequence.Awarpribcreatesa ribacross the fabric in thewidthdirection(ribs).Afillingribcreatesaribinthewarporlengthdirection(cords).Examplesofribbedfabricincludegrosgrainandrepp,amongothers.

Basket WeaveAmajor plain-weavevariation is thebasket weave.Basket weaves are made by having groups of two ormorewarpyarnsinterlacingas oneyarnwithgroupsoftwoormorefillingyarnsthatalsointerlaceasoneyarn. The groups of yarns interlace in plain-weavesequence. Fabrics with basket weaves are reversibleunless the finish or print makes one side the face.Twowell-knownfabricsmadewithbasketweavearemonk’sclothandhopsacking.

Thetwo-by-two(2×2)basketweaveisthemostcommon.Inthisweave,thewarp yarnsinpairsinter-laceinplain-weavesequencewiththefillingyarnsinpairs.(SeeFigures5.9aandb.)Theweaverepeatsonfour ends and four picks and requires two harnessestomake.

Basket weave is a decorative weave. Most basket-weave fabrics are made with relatively few yarns perinch and frequently with low-twist yarns to increasetheweaveeffect.Thus, these typesof fabric tendnottobedurableandeasilyshrinkwhenwashed.Theyarefrequentlydifficulttosewbecausetheyarnscanmoveeasily;thisalsocausesthefabrictoloseitsshape.

Twill WeaveTwill weaves (Figure 5.10) produce diagonal lines onthe cloth. In a right-hand twill, the diagonals runupwardtotheright; ina left-hand twill,thelinesrunupwardtotheleft.Thedirectionofthetwillonthebackof the cloth is opposite to the twill line on the face.Somewell-knowntwillweavefabricsaredenim,gabar-dine,serge,andchino.

Therearemanytwillweaves.Thesimplestisa2—1twill(referredtoastwoup,onedown)ora1—2twill(oneup, two down), which repeat on three ends and threepicks.(Onlythreeharnessesarerequiredforbodyofthecloth.)Mosttwillsaremadeonfewerthansixharnesses.

a

b

Figure 5.9(a)A2×2basketweaveand(b)a2×2basketweaveongraphpaper.

a

b

Figure 5.10Denimtwillweave(a)backand(b)face.

a b

FabSci10e_088-117_ch05.indd 99 9/22/11 11:00 AM

Page 50: fabric science

F A B R I C S C I E N C E

A 100 F

Mosttwillsareeitherwarpfaceorbalanced.(SeeFigure5.11a–c.)Thisproduces amoreobvious twill lineandalsoamoreabrasion-resistantsurface.

In a twill weave, every warp yarn interlaces inthesameorder,whichmaybe2—1,

2—3,3—2,oranyother

sequence. However, each succeeding warp yarn startsthesequenceofoneormorefillingyarnshigheroroneor more filling yarns lower. If each succeeding warpyarntotherighthasthecorrespondinginterlacingonefillingyarnhigher, theweave isa45°right-handtwill(seeFigure5.12aandb).Ifeachsucceedingwarpyarntotherighthasacorrespondinginterlacingonefillingyarnlower,theweaveisa45°left-handtwill.Thestepcanalsobemorethanone.Ifthecorrespondinginter-lacingonthesucceedingwarpyarnistwofillingyarnshigherorlower,a63°twillweaveisproduced.Steppingupordownthreefillingyarnsproducesa70°twill,upordownfourproducesa75°twill.Mosttwillsare45°twillsbut thedifference inyarn sizeof thewarp(finer)andthefilling(coarser)maycausetheperceptionofa63°twill(i.e.,steepertwillline).

Atwillweavewithadiagonallinegreaterthan45°isalsoreferredtoasasteeptwill.Ifthediagonallineisless than45°, it is sometimes referred to as a reclinedtwill.Figure5.13showsthedifferenttwillangles.

Important FeaturesTwilllinescanbemademoreprominentbyusingpliedyarns,high-twistyarns,twillweaveswithlongerfloats,highyarnsperinch,andyarntwistoppositetothetwill-linedirection.Fabricswiththeseprominentlines(e.g.,gabardine)maybecomeflattenedbywearandpressure,and thusbecomeshiny.

Twillsarewidelyusedforworkclothes(e.g.,denim),suitingfabrics(e.g.,serge),anddressfabrics(e.g.,surah).Twillweaveshavefewerinterlacingsthanplainweave,which permits more yarns per inch in the fabric andmakestwillsmorecompact,stronger,heavier,andmoredurable thanplain-andbasket-weave fabrics. In twill,thefloatsareshort,soyarnsnaggingisnotaproblem.

Broken-Twill WeaveAlthough the twill linesusually run inonedirection,sometimesafabriccombinesright-andleft-handtwills.Thisweave iscalledabroken-twill weave. It ismadefrom a regular twill weave in which the twill runs inone direction(e.g.,right)foradesirednumberofyarns,and thenthedirectionofthetwillisreversed(e.g.,left)foradesirednumberofyarns.Thepatternthenrepeats.

Awell-knownbroken-twilldesignischevron.Thisdesignproducesstripesinazig-zageffect.Usuallyyarns

a b c

Figure 5.11(a)Balancedtwill2—2;(b)warp-facetwill2—1;and(c)filling-facetwill1—2.

a

b

Figure 5.12(a)45°right-handtwillweaveand(b)45°right-handtwillongraphpaper.

FabSci10e_088-117_ch05.indd 100 9/22/11 11:00 AM

Page 51: fabric science

W O V E N F A B R I C S

A 101 F

Onesetofyarnsformsmostoftheface;theotherset forms most of the back. In awarp-face satin, theface ispredominantlywarpyarns.Afilling-facesatinhasfillingyarnspredominantonthe face.Thusthereare no balanced satins comparable to the balancedtwills.(SeeFigures5.15a–d.)

Satinweavesaredesignatedbythenumberofhar-nessestheyrequireinweaving.Asatinmaybenameda five-harness satin, or a five-shaft satin. Five is thelowestpossibleandalsomostcommonnumberofhar-nessesformakingsatin.Someseven-harnessandeight-harnesssatinsarealsoproduced,butbeyondeightisnoteconomical.

Forafive-harnesssatinthereareonlyfiveinterlac-ingsinonerepeatoftheweave.Thenumberofinter-lacingsisthesameasthenumberofharnessesusedtoproducetheweave.Thelengthofthefloatsinsatinisonefewerthanthenumber ofharnessesused.Thenum-berofharnessesusedisalsothesizeoftherepeatinthewarpandinthefillingdirections.

Satin is also thenameof a fabricof satinweave.Satinfabricismadefromfilamentyarns,withthewarpyarnspredominantontheface.Satinfabricsaresmoothandlustrousforanumberofreasons:lustrousfilamentyarnsareused;theweavehasfewinterlacings,and thus,longfloats;andthefaceyarnsareveryfineandcloselypacked. Since the greatest luster is in the lengthwisedirection(thedirectionofthefloatsofsatin),garmentsusingthisfabricaremadesothisdirectionisverticalinthegarmenttomaximizetheluster.

Sateen fabricisadurablecottonfabricusuallywitha filling-face satinweave. It isnot as lustrous as satinfabricbecause spunyarns areused in it.Because it isalsoheavier,andismadewiththickeryarns, itisnotasdrapableassatinfabric.

Increpe-back satin, thewarpyarnsarefineandhavelittleornotwist,andthe fillingyarnsarehighlytwisted.Thefaceofthefabricisalmostentirelywarpyarns, and the back is almost entirely filling yarns.Becauseofthehightwist,thefillinggivesthebackacrepe,orpebbly,appearanceandleavesthefacefairlysmooth.

Satinweavesproduceaveryevensurfacebecauseofthemanywarporfillingfloats.(Satinshavetheminimumnumberofinterlacings,whicharewidelydistributed.)

Althoughthelongfloatsoftheyarnsprovidelustertothesatin-weavefabrics, theyarealsoresponsibleforthepoorwearingqualityofmanyofthesecloths. Thefloatscausetheyarnstobegreatlyexposedtoabrasiveforces.Also,withfilamentyarnscommoninthesefab-rics,thefloatscatchonroughsurfacesandthefilamentsbreak. Thus, satin-weave fabrics are most common in

in two different colors are used to accentuate thesedesigns. Herringbone is considered a broken twill bymany.Itissocalledbecausetheverticalstripesofbothright- and left-hand twill resemble the backbone of aherringfish.(SeeFigure5.14.)

Satin WeaveInatruesatin weave,thereisonlyoneinterlacingforeachwarpyarn,andonlyoneinterlacingforeachfillingyarnineachrepeatoftheweave.Also,notwointerlac-ingsever touchorareadjacent.Thismeans the satinweavefabricshaverelativelylongfloats.

Figure 5.13Degreeoftwillangle.

45

63

70

75

27 20 15

Figure 5.14Herringboneweaveshownongraphpaper.

FabSci10e_088-117_ch05.indd 101 9/22/11 11:00 AM

Page 52: fabric science

F A B R I C S C I E N C E

A 102 F

thatdoes havefloats.InFigure5.16athefillingyarnisinterlacingwith six yarns,whereas inFigure5.16b thefillingisinterlacingwitheightyarns.Thus,satin-weavefabric is thestrongestbecause itcanbemade withthemostyarnsperinchsinceithasthefewestinterlacings.

endusesthatarenotsubjecttohardwear,suchaseve-ningdresses,finelingerie,anddraperies.

Undercertainconditions,however,goodabrasionresistanceandstrengthcanoccurinsatin-weavefabrics.Thelongfloatsfoundinthisweaveenabletheyarnstoslideunderoneanother,thusallowingmoreyarnsperinch than if woven with shorter floats or none at all.Ifthefabricismadewithaverylargenumberofyarnsperinch,anextremelydurablefabricresultsbecausethefiberisverydense.Withyarnstightlypacked,andusingspunyarns,snaggingisnotaseriousproblem.Examplesofseveralofthesefabrics,whichalsohavesatisfactorydrapability, are the sateen materials used for militarycombatuniformsfrequentlyusedforcamouflage.

Which Weave Makes the Strongest Fabric?

Weaves with long floats produce the strongest fabricbecausethesefabricscanbemadewiththegreatestnum-ber of yarns per inch. Figure 5.16a shows the yarns attheedgeoffabricwithaweavethathasnofloats.Figure5.16b showstheyarnsattheedgeofafabricwithaweave

a b

dc

Figure 5.15(a)Five-shaftwarp-facesatinweave;(b)five-shaftfilling-facesatinweave;(c)five-shaftwarp-facesatinweaveongraphpaper;and(d)five-shaftfillingfacesatinweaveongraphpaper.

b

a

Figure 5.16Weaveinfluenceonmaximumyarnsperinchofafabric.Noticethatillustrationbhasfewerinterlacingsandthereforemoreyarnsperinch.

FabSci10e_088-117_ch05.indd 102 9/22/11 11:00 AM

Page 53: fabric science

W O V E N F A B R I C S

A 103 F

all wovens,plusanadditionalsetofyarnstocreatethepile surface.

There are two basic types of pile-weave fabrics:thewarp-pile fabrics,whichhaveanextrasetofwarpyarns,andthefilling-pile fabrics,whichhaveanextraset of filling yarns. When the pile yarns are cut, theresultingfabricisreferredtoasacut-pile weave fabric.Theseyarnsarecutbetweeninterlacingstoformmanycutends,whichpointuponthesurfaceof theclothandformthepile.Ifthepileyarnsarenotcut,anuncut-pile weave fabricisproduced.(SeeFigure5.18.)

Velvetisanexampleofacutwarp-pileweavefab-ric,andterryclothisanexampleofanuncutwarp-pileweave fabric. (See Figure 5.19.) Filling-pile weave fab-rics,suchascorduroyandvelveteen,arealwayscut.

Anapped fabricisdifferentfromapile fabric.Napis a fibrous surface produced by brushing up fibers ontheclothduringatextilefinishingprocess.(Seep.205.)Extrayarnsarenotusedtoproducethesurfaceeffect.

When warp yarns are removed from corduroy orvelveteenfabrics,theyarecoveredwithshortlengthsoffibers.Thesame occurswithfillingyarnsremovedfromvelvet.Thepiecesofpileyarnsthatwerecutclingtotheyarnsthatwereremoved.

Cut-Pile FabricsCut-pile fabrics are cut on the face after the fabric iscompletely woven. Two methods are used for makingcut-warppilefabrics.Inonemethod,adouble clothiswoven(seep.106)withpileyarnsinterlacingbetweenand connectingthetwofabrics.The completeddoubleclothiscutintotwofabricsby cuttingtheinterlacingwarpyarns.Thesecutyarnsformthepileforeachoftheresultingfabrics.Inthe secondmethod,afteranumberoffillingyarnshavebeeninserted,aspecialrodwithabladeatoneendisinterlacedinsteadofafillingyarn.Theharnessesoperatesothatonlypilewarpyarnspassovertherod.Afterseveralmorefillingyarnshavebeen

Special Fabric WeavesVariousspecialfabric weavesbesidesthebasicweavesare also used. Three of the most common specialweaves are leno weave, pile weave, and weaves thatmakeadoublecloth.

Leno WeaveInthesimplest leno weave,thewarpyarnstwistbackand forthinpairsaroundeachpick,firmlyholdingthefillingyarninthefigure-eightloopsformed.Becausethefillingyarnsarefirmlyheldinplace,theycannotshiftinthewarpdirection(Figure5.17).However,thewarpyarns can shift in the filling direction. Adhesive maybeusedinfinishinglenofabricstocementtheyarninplacetofurtherreduceslippage.

Incountingyarnsperinchinlenoweave,thetwowarpyarnsthattwisttoformaloopforthefillingcountas two separate yarns. They do not form a ply yarn.Theseyarnstwistingidentifythisasalenofabric.

Leno weave is especially useful for reducing yarnslippageinfabricsthatrequireyarnsspacedfarapart.Ithasgreaterfirmnessandstrengththanplainweaveofthesamelowclothcount.Theconstructionisusedinmosquitonetting,sheercurtains(e.g.,marquisette),andsomesummerapparel fabrics inopenandsee-throughconstructions. It isused for industrialpurposesandaspackaging for fruits and vegetables. It is also used tomakechenilleyarns(seep.80).

Pile WeavesWoven-pile fabricsarematerialwitharaisedhairlikeorfurlikesurface.Twowell-knownfabricswithsuchasur-facearevelvetandterrycloth.Thesurfaceis producedwithanextrasetofyarns(warporfilling)knownaspileyarns.Thus,pilefabricshavetheregularwarpyarnsandfillingyarns(calledgroundyarns)thatarecommonto

Figure 5.17Lenoweave.Noticehoweachpairofwarpyarnstwiststoholdthefillingyarns.

FabSci10e_088-117_ch05.indd 103 9/22/11 11:00 AM

Page 54: fabric science

F A B R I C S C I E N C E

A 104 F

auniformeffect.Velvet,acut-pilewarpfabricisespe-ciallysensitivetocrushingandmustbestoredsothatthepileisnotflattened.1Also,specialcaremustbeexer-cisedincleaningandrefinishingvelvetapparel.

Pileconstructionaffectsthefabricwearability.Theshortlengthsofcut-pileyarnmayhaveaVshapeoraW shape.TheW-shapepileismorefirmlyheldinplacebecauseitinterlaceswiththreeyarns,andthe V-shapeinterlaceswithonlyoneyarn.Thus,theW-shapepileyarnisheldmoresecurely,preventingabaldspotfromdeveloping.

TheW-shapepile,however,isnotasdenseastheV-shapepilebecausethelatterhastwopileendsforeachinterlacing,andtheW-shapepilehastwopileendsforeverythreeinterlacings.(SeeFigure5.20.)ToobtainthesamepiledensityforaW-shapepileasforaV-shapepile,

wovenbeyondtherod,therodisremovedandtheknifeattheendoftherodcutsallwarpyarnsthatpassovertherod.Thecutyarnsstanduptoformthepile.Theweaving continueswith the insertionof the rod afterweavingafewadditionalfillingyarnsandtheremovaloftherodafterweavingafewmorefillingyarns.

With filling cut-pile fabrics, there is no raising ofyarnsbywires.Thepile-fillingyarnsarewoventofloatoveragroupofwarpyarns.Thepileyarnsarethencutatthecenterofthefloat.Theendsofthecutyarnspro-ducethecut-pileeffect.Thefloatsin corduroyfabricareplaced in lengthwise rows,and thefloats invelveteenarerandomlyspaced.Thus,whencorduroyfabriciscut,the characteristicwaleorhill-and-valley effect is pro-duced.Thethicknessofthewalescanbevaried,fromnarrow(usedforapparel)toverywide(usedfor furni-turefabric).Whenvelveteenfabriciscut,anoverallcut-pilesurfaceisproduced.Decorativepatternsandeffectscanbecreatedbycuttingfloatsselectively.

Cut-pile weave fabrics are made with differentheightsofpile.Forexample,velvethasalow pileheight,velourhasahigherpile,andplushhasstillhigherpile.

The face of cut-pile fabrics has an up-and-downdirection (top andbottom)becauseof thepositionofthe pile. A garment made with the pile fabric facingdownward offers a smoother surface for light and soappearsmorelustrous.Ifthepileisup,thecolorisricherbecausemoreoftheinteriorofthefabric(andcolor)isvisible.However,thefabricis lessdurablebecausethepilefibersaremoreexposedtorubbingforces.

Incuttingfabricforagarment,thepileofallpiecesinthegarmentmustlieinthesamedirectiontoproduce

Figure 5.19Thesevelvetjacketsareofawarp-pileweavefabric.

1. Yardgoodsofvelvetareshippedandstoredonspecialboltsthatkeepthelayersseparatetoavoidcrushing.

Figure 5.18Filling-pileweavefabric:groundfilling(purpleanddarkblue),groundwarp(brown),andpilefilling(lightblue).

FabSci10e_088-117_ch05.indd 104 9/22/11 11:00 AM

Page 55: fabric science

W O V E N F A B R I C S

A 105 F

endforonegroundend,twopileends fortwogroundends,orsomeothersimplearrangement.

Twowarpbeamsareused forweavingterry.Ononebeam,thewarpyarnistight,andontheother,theyarnisquiteloose.Theextralengthintheloosewarpyarnformstheloopsinthefabric.Apile warpyarnmaybealmostfourtimeslongerthanagroundwarpyarnfromthesamecloth.

Friezefabric,athickpilefabricwithpatternsmadefromits loopsurface,usedforupholstery,isanexampleofanuncut-pileweavefabric.

As incut-pileweave fabrics,a strongground fab-ricwithalargenumberofyarnsperinchandadensepile makes a durable uncut-pile material. High loopsandthick,low-twistpileyarnsmakeamoreabsorbent,but less durable, fabric. Towels rented at the beachfrequentlyarescratchyandhavepoorabsorption,butareusuallyverydurablebecauseofthehigh-twistpileyarns.

moreyarnsper inchwouldhavetobeused.Adenserpile can better resist crushing, gives better cover, andstandsmoreerect,butalsoismorecostly.

At times combinations of V-shape and W-shapepileareusedinthesamefabric.TheV-shapeaddsdepthtothepileandtheW-shapeaddsstability.Thisalterna-tive is oftenutilized in the constructionofwidewalecorduroy.

Different ground weaves are used for cut-pile fab-rics.Usuallythebodyofcorduroyandvelveteenfabricsaremadewitheitheraplain, rib,or twillweave.Thebaseconstructionwilladdtothedurabilityofthefabric.Aribortwillweavewilllockinthepilemoresecurely.Atwillweavecanresultinastrongerfabric(moreyarnsperincharepossible;seep.100),thusthetwill-backpilefabricsareusuallymoredurablethanthosewithaplainweaveground.

Uncut-Pile FabricsTerryclothisanexampleofafabricwithanuncut-pile weave(Figure5.21).Thefabricconsistsofgroundwarpand fillingyarnsplusanextrasetofwarpyarnsforthepile, in the formof loops on the surfaceof thecloth.The loops are formedbyhaving theextrawarpyarns(pileyarns) raisedbyawire insertedacross the loom.Thewireisthenremoveduntilthenextsetofloopsistobeformed.

Thewarpdirectionof terry is readilydeterminedbecause the extra yarn that forms the pile is length-wise.Theweavevaries so that theremaybeonepile

knife

a

bc

d

e

Figure 5.20Doubleclothpileweaving.Knifecutspilewarpyarnstomaketwovelvetfabrics:Vpileformation(top)andWpileformation(bottom)with(a)groundwarp(top);(b)groundfilling(top);(c)pilewarp;(d)groundwarp(lightblue)(bottom);and(e)groundfilling(bottom).

Figure 5.21Terryclothisanexampleofapilefabric,oftenusedfortowels.

FabSci10e_088-117_ch05.indd 105 9/22/11 11:00 AM

Page 56: fabric science

F A B R I C S C I E N C E

A 106 F

designsexceedthecapacityofharnesslooms,aspecialloommustbeused.This loomusuallyhasnoharnesses,andtheends arecontrolledbyajacquard headlocatedatthetopoftheloom.Theloomisreferredtoasajac-quard loombecausethecontroldevicewasperfectedin1805byJoseph-MarieCharlesJacquard.

Thejacquardheadusesacomputertapetocontrolthewarpyarns,inthesamewaythatapunchedpaperrollercontrolsthekeysin aplayerpiano.Thepositionof the holes in the tape determines the sequence inwhich the warp yarns are moved. Hooks and needlesareusedtoraiseandlowerthewarpyarnsbycontrol-lingacordattached toeachheddle.Becausetherearenoharnesses,anycombinationofyarnscanberaisedorloweredtoproducethedesign.

The jacquard loom operates more slowly than dotheother,simplerlooms,sothefabricsproducedonthisloom are more expensive. Damask, tapestry, and bro-cadeareseveralfabricscommonlymadewithjacquarddesigns.

Sometimesthepileloopsarecutinaterryclothfordecorativeeffect.Thisisthenconsideredacut-pilefabric.

Double Cloth and VariationsAdoubleclothisactuallytwofabricsheldtogetherbyaseparatesetofyarns.Eachfabric ismadeusingonesetofwarpyarnsandonesetoffillingyarns(atotaloftwowarpandtwofillingsets),withathirdsetofwarpyarnsmovingbackandforthbetweenthetwolayersoffabricstoholdthemtogether.Allyarnsarewovensimultane-ouslytoproducethedoublecloth.

Somedoubleclothsarespecificallydesignedtobecutintotwoseparatefabrics,suchasvelvet.Here,bothof the resulting fabrics have a cut-pile surface. Otherfabricsarestructuredtoremainasonefabric,suchassometapestries.

Adouble-cloth fabricused tomakecoatsmaybemadewithasolidcolorfaceandplaidback.Blanketsaresometimesmadeinthismanner.Somefabricsresembleadouble-clothconstructionbutaremadewithoneseteachofwarpandfilling.Thethree-dimensionaleffectistheresultoftheweaveforcingsomeoftheyarnstoberaised.Anexampleofthisfabrictypeispiqué.

Woven DesignsIfafabriccontainingawovendesigniscarefullyexam-ined(usingapickglass),itisclearthatthedesignwascreatedbylongandshortfloatsaswellastheplacementofinterlacings.So-calledwhite-on-whiteshirtingsandbrocadesareexamplesofthistypeoffabric.Dependingon their design and how they are produced, they areknown as dobby patterns, jacquard patterns, clip-spotpatterns,orcolorandweaveeffects.

Dobby PatternAdobby patternisadesignthatcontainssimplegeo-metricformsormotifs.Itismadeonaloomwithaspe-cial harness control mechanism called a dobby head.Theloom,referredtoasadobbyloom,usescomputer-controlled mechanisms to determine which harnessesareraisedorlowered.Sinceupto32harnessescanbecontrolledthisway,complexandexpensiveweavescanbeproduced.Ifmorecomplexdesignsaredesired,ajac-quardloommustbeused.

Jacquard PatternA jacquard pattern is a design that contains verydetailed, intricatemotifs(Figure5.22).Becausethese

Figure 5.22Thedesigninthisfabriciscreatedbyajacquardloom.

FabSci10e_088-117_ch05.indd 106 9/22/11 11:00 AM

Page 57: fabric science

W O V E N F A B R I C S

A 107 F

Whereverawarpyarnandafillingyarninterlace,asmallspotofthecoloroftheyarnpassingoverisseenonthefaceofthecloth.Thesumofthecolorsofalltheyarns interlacingon the faceproducesvarious stripes,checks,andplaids.

Technology AdvancementsFrom a design and production perspective, advancesintechnologyhaveenabledtheindustrytoproduceavariety of woven fabrics more quickly and effectivelythaneverbefore.Theyhaveallowedthewoven-fabricsindustrytheopportunitytooffervalue-addedmerchan-dise with a shortened production cycle. This quickturnaroundhasfuelednewopportunitiesintheuseofwovenfabricsinbroadapplicationsforboththeappareland interiorfurnishings industries.

The initial design can be made in minutes withthe colored pattern shown on the computer screen.Anymodificationsand/oralternativescanbeproducedwiththesameease.Theimagesofthecolormonitorsareveryrealistic,asarethedesignsthatarereproducedbycolorprinters.Thesecomputer-generateddesignsaresentdirectlytobuyersanywhereintheworldandwhenapprovedcanbeelectronicallytransmittedtocomputer-operatedloomsystemsatthetextilemill.

Theapplicationofvarioustechnologiesallowsthetextile designer to work directly with the consumer(e.g.,dressdesigner).Anychanges incolororpatterncanquicklybeaccomplished.Theprint hardcopythatisfinallyapprovedusuallyhasaremarkablesimilaritytothefabrictobemade.Thedesignercanchoosethetypeofyarn (e.g., tightnessoftwistandthickness)aswell as the surface (e.g., smooth or brushed, slightlyblurredlook).

Equipmentisnowavailablethatcanscanawovenfabric and analyze the warp and filling yarns, colors,theclothcount,andtheparticularweave.Thiscanbedone to actual fabric samples that are as complex asmultifaceted dobby patterns found in upholstery andmen’ssuiting.

The fabrics canbe shownas a three-dimensionalobject. Thus the effects of changing in yarns, fabricconstruction(ypi),andfinishcanbeviewed.Alsobothsidesofthematerialcanbeseen.

The garment designer can also use a computersystemtodrawthe garmentonthescreen.Whenthegarmentiscompletedandapproved,anypatternoffab-ricstoredinthecomputercanbedisplayedonthegar-ment.Thegarmentcanalsobedisplayedonamodel,withthecomputersimulatingdraping,shadowing,and

Clip-Spot PatternWovendesignscanalsobeobtainedbyusingextrawarpyarnsorfillingyarns.Inaclip-spot pattern, theextrayarnsinterlaceinthefabrictomakeasimpledesignandthenfloatuntiltheyarnsagaininterlacetorepeatthepattern.Thelongfloatsbetweenthepatternsareoftencutawayanddiscarded.Theendsofthecutyarnsareeasilyseenonthebackofthefabric.

DottedSwissfabrichasextrafillingyarn,andclip-spot shirting fabriccontainsextrawarpyarn tomakethedesign.

Thedurabilityofthedesign(i.e.,howwelltheextrayarnsremaininthefabric)dependsonthenumberofinterlacingsinthedesignandtheclosenessoftheyarnsinthefabric.Theadditionalyarnsdonotsubstantiallyaffectthestrengthofthefabric.

Color-and-Weave EffectAcolor-and-weave effectisapatternproducedinafab-ricbyusingacertainweaveandacertainarrangementof differently colored yarns in both the warp and thefilling. A houndstooth pattern is a common exampleof a color-and-weave effect design (Figure 5.23). Thehoundstooth pattern shown in the chapter openingpagesismadefromatwo-up,two-down,45°,left-handtwill.Inthisexample,bothwarpandfillinghaveblackand whiteyarnsarrangedfourof onecolor,followedbyfourofthesecondcolor.

Figure 5.23Houndstoothplaid.

FabSci10e_088-117_ch05.indd 107 9/22/11 11:00 AM

Page 58: fabric science

F A B R I C S C I E N C E

A 108 F

Thefabricyarnsperinchmustalsobeconsidered.Afabricwithgreaterwarpyarnsorfillingyarnsperinchcosts more than one with fewer yarns because it hasgreater yarn content.Themorepicksper inch in thefabric,thefeweryardsoffabricperhourareproduced.Increasingordecreasingtheendsperinchusuallyhasnoeffectontheproductionrateoftheloom.

Thenumberofyarnsperinchand thetypeofyarnsusedinafabricaffecttheweightofthefabric.Therefore,fabric weight directly affects the cost of woven cloth.Infact,sometextilesareboughtandsoldprimarilyonthebasis oftheirweight.ThisismorefullydiscussedinChapter15.

Othercostsincludethosefordyeingorprintingandfinishing.Theseareasarediscussedinsubsequentchap-ters. Basic fabric types, such as broadcloth and printclothintheirvariousconstructions,arewidelysoldandtradedinthetextilemarket.

New DevelopmentsThree major concerns for the manufacturers of prod-uctsare:thecostofrawmaterials,capitalcosts,andthecostsofenergy.Becauseoftheseconcernsallindustriescontinuestoevaluateandreshapetheiroperationsandequipment.Thefollowinglistpresentsopportunities intheweavingindustry:

u Enhancedmillflexibility

u Quickerresponsetodemandshifts

u Developmentofniche(special)products

u Jointventures

u Increasedproductivity

u Improvedabilitytousenewfibers,yarns,andfinishes

Classic Woven FabricsThis section contains a brief description of many oftheclassicwovenfabrics(Figure5.24).Identifyingfea-turesareemphasizedandageneralindicationoftheiruseisalsoincludedtohelpthereaderobtain abettermentalimageofthecloth.Itshouldbenotedthatthefollowing glossary of classic woven fabric names canonlygivethereaderanapproximatementalpictureofthefabricslisted.Asareinforcement,itisstrongly rec-ommended that, wherever possible, the actual fabricbeexamined,manyofwhichareintheFabric Science Swatch Kit.

light-patternchangestocreatearealisticthree-dimen-sionalform.Aprintoutcanbeproducedfordistributiontocustomers,salespersonnel,ormanagement.

Technological advanceshaveprovided theoppor-tunity for full integrationofdesignandproductionofwoven fabric.Technologyhasgiven the textile indus-trythecatalysttoenhancethedesigner’screativity,tosuggest production alternatives when needed, and toestablishaccurateinformationregardingquickdeliveryofgoodsto aglobalmarketplace.

Factors Affecting the Cost of Woven Fabrics

Thesellingpriceofafabricisbasedonthecosttopro-duce it aswell as thedemand for the cloth. Fabric isboughtandsoldbothinunfinishedandfinishedstates.The following are some of the factors that affect thecostofproducingwovenfabrics:

Fiber content:Thecostoffibersisbasedonqual-ity as well as generic type. Pima cotton is moreexpensivethanupland cottonbecauseitisabetter-qualityfiber.Polyesterismoreexpensivethanace-tatebecauseof thehigher costofmanufacturing.Antron®nyloncostsmorethantheregulartypeofnylonforthesamereason.

Yarn type: The cost of yarns is based on fibercontent and the type of yarn. Novelty yarns aremoreexpensivetoproducethantheregulartype.High-twist spun yarns cost more than low-twistspunyarnsof the sameyarn sizebecause the for-mertakelongertoproduce.Thinnerspunyarnsareusuallymoreexpensivethanthickeryarnsforthesamereason.Worstedyarnismoreexpensivethanwoolen yarn because additional production stepsarerequired.Lighter-weightfilamentpolyesteryarn(lowerdenier)ismoreexpensivethanheavierpoly-esteryarncomposedofthesamenumberoffilamentfibersbecausesmallerspinneretteholesareusedtomake the lighter fibers, causing lower productionrate.Plyyarnismorecostlythananequivalentsizesingleyarnbecauseboththinneryarnsandaplyingprocessarerequired.

Construction:Theweaveusedisanimportantfab-riccostfactor.Ajacquarddesigncostsmorethanaplain,twill,orsatinweavebecauseofadditionalpreliminary and loom set-upcosts, the lowerpro-ductionofthejacquardloom,andtherelativelyfewjacquardloomsoneoperatorcantend.

FabSci10e_088-117_ch05.indd 108 9/22/11 11:00 AM

Page 59: fabric science

W O V E N F A B R I C S

A 109 F

The origins of woven-fabric names are varied.Batiste,forexample,wasnamedforitsFrenchcreator,Jean Batiste, a linen weaver. Denim was named afterthe French city in which it first appeared (fabric “deNîmes” or “from Nîmes”). Corduroywas derived fromtheFrenchcordduroi,meaning“King’scord.”Taffetaisthemodernname fortheoldPersianfabricnametaftah.Challis originated from the Native American wordshallee,meaningsoft.Cheeseclothwasnamedafteritsoriginaluse—towrapcheese.

Seersuckerisaclassicwovenfabricwithapuckeredeffect.Itiscreatedwithtwowarpbeamsoneontopofthe other. The first is under tension while the secondisnot.Theresultantfabrichasapermanentlypuckeredorcrinkledeffect,whichmakesthefabric,andthusthegarment,appear tobe lesswrinkled.ThenamecomesfromaPersianwordmeaningmilkandsugar.

It shouldbenoted that these classicwoven fabricnamesaregivenprimarilyonthebasisoftheappearanceandapproximateweightofthefabrics(seeTable5.2).Forexample,poplin fabrics,althoughtheyvary somewhat,all have fine horizontal ribs and are constructed simi-larlywithregardtoyarnsizes,yarnsperinch,andfabricweight.

Agreatnumberoffabricsinusetodaydonotpos-sessclassicnames.Theyare referredtoeitherby stylenumbers(e.g.,StyleNo.473)orbynamesgiventothembythemill,converter,orstore(e.g.,“SeaBreeze”forasheer curtain fabricor “IronWear” for a verydurablework-clothes fabric). Sometimes fabrics are referred tobynamesthatdescribetheirenduse,suchas“shirtingfabric”or“dressfabric.”Mostofthesefabricsaredevel-opedforaparticularmarketandthenfalloutoffashionwithinoneortwoseasons.Thus,thestudentoftextilesshouldnotdespairifheorshedoesnotrecognizevari-ousfabricsinthemarketplacebecausethereisanexcel-lentpossibilitythattheyareofthenonclassictype.Seepages112–116foraGlossaryofClassicWovenFabrics.Itincludesalistofdefinitionsforclassicfabricswithadescriptionofeachfabric’scharacteristicsanduse.

Fabrics are referred to as classic or traditional fab-ricswhentheyhavebeeninuseformanyyearsandarecontinuallymadeinvirtuallythesamemannerbytextilemills.Althoughoriginallythese fabricswereeither100percent cotton, flax, silk, or wool, now they frequentlyaremadewithyarnsblendedwithmanufacturedfibers.Excessivecostordisappearingendusearetwomainrea-sonssomeclassicfabricshaveceasedtobemade.

Figure 5.24Theskirtofthisdressisanexampleofawell-knownclassicwovenfabric—tulle.Theparticularfibercontent,yarntype,andfabricconstructionyieldsveryfine,slightlystiff,net-likefabric.

FabSci10e_088-117_ch05.indd 109 9/22/11 11:00 AM

Page 60: fabric science

F A B R I C S C I E N C E

A 110 F

A product that can be considered as one of themostsuccessfuleverproducedisthedenimfabric.Denim jeans became popular among young andoldalike,ofbothsexes,inalleconomicandsocialclasses,withbothradicalandconservativedressers,and invirtuallyallpartsoftheworld.Neverbeforehastheentireworldadoptedaclothingfashionsounanimously.

OriginTheoriginofdenimwasinNîmes,France,whereafabric“sergedeNîmes” wasdeveloped.Itwasacoarse, twilled fabric made of cotton, which wasvery strong and durable. The sails of the Niña,Pinta,andSantaMaríaweremadefromthisfabric.

A version for trousers was later developed,called“denim”(“deNîmes”or“fromNîmes”).Sail-ors from Dung, India, wore trousers made of thisfabric and hence the name “dungarees.” A cen-tury later, the trousers became known as “jeans,”thenamederivedfromthetrouserswornbysailorsfromGenoa.

The first exclusively American denim jeansweremadebyaBavarianimmigrant,LeviStrauss,ontheWestCoastinabout1850.Theywerecre-ated as durable pants that could stand up to therigorsofgoldminingandotheroutdooractivities.Theonlycoloravailablewasblue,hencetheterm“bluejeans.”

Thedenimfabric,aswellasitsprecursors(e.g.,canvas), were very stiff. They had to be washedthoroughly before they became comfortable towear.Therewassomecolorbleedingfrommostofthegarments,thustheyhadtobewashedseparatelyto prevent undesirable coloring of other garmentsin the wash load. Such conditions were tolerableforworkclothessincethiswasexpectedfrompastexperiences.

Cowboysadoptedjeansastheirown.Attempt-ing to eliminate wrinkles in their jeans, whichcouldrubandcreatesoresafteradayofriding,theywould sit in a water-filled horse trough and thenridealldayinthewetjeans.Theresultwasapairofjeanssunbakedintheformoftheman’sbody.

(Inthe1960sandlater,manyownerswoulduseabathtubtoobtainasnug,body-conformingfit.)

Evolution of Blue JeansJeansmovedintothe20thcentury,carryingtheirblue-collarimageuntilthe1950s.Thenanewseg-ment of consumer was recognized—the teenager,whomade jeans theuniformofAmericanyouth.Blue jeans became an anti-establishment symbolofthe1960sandtheanti-warmovement.Salesofbluejeansgrewrapidlyduringthisdecade.

Inthe1970s,theimpactofthecounter-culturedeclined. Jeans became an expression of a moreleisurely life. Jeans were being purchased not forsociologicalreasons,but fortheirinherentvirtues—durability,comfort,value,andthenon-necessityofironingthem.Jeansalsoembodiedthenewsexual-ityemerginginU.S.culture.

The wearing of this garment spread to othercountries,helpedbynewtechnologiesthatencour-agedrapidglobalcommunications,aglobaltrans-portationsystem,andglobalbusiness servicesandrulesoftrade.

Design InfluenceIn the late 1970s, designers became involved inmaking denim jeans a fashion item. Jeans weremadeforwomenforthefirsttime—withdifferentproportionsthanthoseformen.

Fashiondesignersbrandedtheirtailoredjeansby “signing thebackpockets of their own jeans.”Thehighpriceof these signature jeansprovedofsecondaryimportancetothe strongfashiontrend.

Theevolutionofdenimandbluejeanscontin-uedwiththeintroductionofpre-washed(tosoftenthe fabric) and pre-shrunk (for better fit) jeans.Thenthepre-wornlookevolved—themoreworn,thebetter,includingholesinthekneesandfrayedlegbottoms.Toincreasethewornlook,abrasives,suchasstones,wereputinthecommercialwash-ing machines used by jean manufacturers. (Thisprocessalsofurthersoftenedthefabric.)Thiswascalledstonewashing.

Textile Connection

FabSci10e_088-117_ch05.indd 110 9/22/11 11:00 AM

Page 61: fabric science

W O V E N F A B R I C S

A 111 F

Auniqueversionofthedenimjeanoccurredin1990whenamanufacturerfired shotguns intothegarmentstocreateholes.Thistookthe“rippedjean”conceptonestepfurther.

Periodically,thebluejeansilhouettewasalteredtofollowthe trendofthetimes—fromastraight-legcut,tobellbottoms,toaflaredsilhouette,andbackagaintoastraightleg.Bluejeanshavealsodevel-opedintodifferentstylesfordifferentagesandbodyproportions (e.g., skinny leg, relaxed fit, boot cut,etc.)aswellasforvariouspricecategories.

Changing the FabricDenim began to find a multitude of other enduses—denimjackets,shorts, furniturecoverings,anddogbeds.Thisdiversityhelpedspurinnova-tions,suchas lighterweight fabrics(e.g.,10oz.),various colors (not only blue), prints, finishes,andweavesotherthanthetraditionaltwillweave(e.g., dobby).Other changes included theuseofpolyester/cotton blends and novelty yarns (e.g.,slub)aswellasthedevelopmentofstretchdenim.

Table 5.2 Woven FabriCs by Common CharaCTerisTiCs

Sheer Light Heavy Ribbed

BuckramCheeseclothChiffonCrinolineDottedSwissGauzeMarquisetteNinonScrimTulle

BatisteCalicoChambricChambrayGinghamLawnMadrasNainsookOrgandyOrganzaOxford(ribweave)PercaleToiledeJouyVoile

BurlapCanvasCrashCretonneDuckMuslina

OsnabergSailclothTickingb

BengalineBroadclothFailleGrosgrainOttomanPoplinReppTaffeta

Twill Woven Design Brushed Cord Novelty Yarn

CavalrytwillCheviotChinoDenimDrillGabardineJeanSergeTweedWhipcord

BrocadeBrocatelleDamaskFriezeHuckMatelasséPiquéTapestry

ChallisFlannelFlanneletteMelton

BedfordcordDimity

AntiquesatinAntiquetaffetaButcherfabricHonanPongeeShantung

Pile Puckered Lustrous Miscellaneous

CorduroyTerryclothVelvetVelveteen

Crepe(types)PlisséSeersucker

CharmeuseChintzFoulardHabutaiPeaudesoieSateenSatinSurah

Monk’sclothSharkskin

aAlsoismadeinlighterweight.bSometimeswithwovendesign.

FabSci10e_088-117_ch05.indd 111 9/22/11 11:00 AM

Page 62: fabric science

F A B R I C S C I E N C E

A 112 F

Antique satin: Satin fabric with slub filling yarnsprominentonthedullside(back).See satin.Usuallyusedfordraperies,withthebackastheexposedside.

Antique taffeta:Heavy,crisptaffetawithslubfill-ingyarns.Seetaffeta.

Barkcloth:Medium-weightfabricwitharoughsur-facethatresemblesthebarkofatree.Usedforfur-nitureslipcoversanddraperies.

Batiste:Lightweight,plain-weave,softfabric.Madeprimarily of cotton (blend) but can be of wool(blend). If made of wool, it is lighter than challis.Usedfor dresses.

Bedford cord: Heavy, cotton-type fabric withprominent lengthwise raised cords on the face.Usedfortrousersandupholstery.

Bengaline: Medium-weight, lustrous fabric withprominentcrosswiseribs.Ribsarecoveredwithfil-amentwarpyarns.Lighter,withthinnerribs,thananottoman,butheavier,withmoreprominentribs,thanafaille.Usedforcummerbundsandlapelsoftuxedos,coats,andupholstery.

Broadcloth: Lightweight, plain-weave, tightlywoven, thin-yarn fabric with slight crosswise rib.Madeofcotton(blend)orwool(blend).Ifcottontype,ithasalustroussurfaceandresemblesalight-weightpoplin.Usedforshirts.Ifawooltype,itisslightlyheavierandwasaone-waybrushedsurface.Usedfordresses.

Brocade:Heavy,luxuriousfabricwithsupplemen-tarywarpyarnsorfillingyarns,formingaslightlyraisedjacquard design.Usedforapparelanddeco-rativefabrics.

Brocatelle:Heavy,luxuriousfabric,similartoabro-cadebutwiththejacquarddesignpuffeduporblis-tered,makingitverynoticeable.Alsohasaheavywidthwiserib.Usedfordraperiesandfurniture.

Buckram: Lightweight, plain-weave, open con-struction, stiff, cottonlike fabric. Has slightlymore yarns per inch and stiffer than crinoline.Used for apparel interfacing and interlining, andbookbindings.

Burlap: Heavy, plain-weave fabric with open con-struction and coarse, irregular yarns usually madeof jute fiber. Used for sacks, upholstery, and wallcoverings.

Butcher cloth: Medium-weight, plain-weave fab-ricwithslightlyirregularcoarseyarns.Sometimesmadefromflaxandcalledbutcherlinen.Mostfre-quentlymadefrompolyesterblend(e.g.,polyester/cotton).Usedforapparel.

Calico:Lightweight,plain-weave,cotton-typefab-ric,usuallywithbright,smallprint designoncon-trasting background.Usedforblousesanddresses.

Cambric:Lightweight,closelywoven,plain-weave,cotton-typefabricwithslightluster.Usedforunder-sidesofchairsandchildren’sdresses.

Canvas:Heavy,plain-weave,cotton-type,durablefab-ric.Usedfortents,awnings,andindustrialpurposes.

Casement cloth:Anyopen-constructedfabricusedfordraperies.

Cavalry twill:Medium-weight,durable,worsted-typefabricwithprominent,fancytwilllines.Usedforslacks.

Challis:Lightweight,plain-weave,slightlybrushed,supple,woolen,or cotton-type fabric,usuallywitha printed design. Used for dresses, scarves, andinfants’wear.

Chambray: Lightweight, plain-weave, cotton-typefabric usually with colored warp and white fillingyarns.Squareconstruction(about80×76)andusedforshirts.

Charmeuse:Lightweight,satin-weave,silklikefabricwithsofthandandvery shinyface.Usedfordressesandpajamas.

Cheesecloth: Very lightweight, plain-weave, soft,cotton-type fabric, with very open construction.Usedforpolishingclothsanddresscostumes.

Cheviot: Medium/heavy, rough, twill-weave fab-ricwithfuzzysurfaceandunevenyarns.Similartotweed,butmorecasualinappearance(suitableforroughuse).Usedforsuitingandcoats.

Glossary of Classic Woven Fabrics

FabSci10e_088-117_ch05.indd 112 9/22/11 11:00 AM

Page 63: fabric science

W O V E N F A B R I C S

A 113 F

Chiffon:Lightweight,sheer,plain-weave,silklikefabric.Filamentyarnsarehighlytwisted.Usedfordresses.

Chino:Medium-weight,closelywoven,twill-weave,cotton-typefabricwithaslightshine.Usedforuni-formsandpants.

Chintz: Light- to medium-weight, plain-weave,closelywoven,fine,cotton-typefabricwithaglazed(polished) finish. Usually printed in bright colors.Usedfordraperies,upholstery,anddresses.

Corduroy: Medium-weight cotton fabric withlengthwisewalesproducedbycuttingthepilefill-ingyarns.Usedforslacksandjackets.

Covert: Lightweight overcoating fabric, usuallymadewithtwoshadesofthesamecolor(e.g.,darkbrownandmediumbrown).Aruggedfabricwithatwillweave.Eitherwoolenorworsted-type,andusedforcoats,uniforms,andhuntingclothing.

Crash: Medium-weight, plain-weave, coarse, cot-ton-type fabric with uneven yarns. Often madefromflaxandusedforlinentowels,curtains,wom-en’sjackets,andbookbindings.

Crepe: Fabric with a pebbly or crinkled surface.Obtainedbyusingcrepe(high-twist)yarns,chemi-cals,orweave.Used forapparelorhome furnish-ings. Varieties include crepe-back satin, crepe dechine,andgeorgette.

Crepe de chine:Light-tomedium-weight,finecrepefabricwithcrepefilamentyarns.Seecrepe.

Crepe-back satin:Satinfabricwithcrepesurfaceonthedullside(back).Seesatin.

Cretonne: Light- to medium-weight, plain-weave,closely woven cotton-type fabric similar to anunglazed(unpolished)chintz,butnotasfinequal-ity. Usually printed with large designs. Used fordraperiesandslipcovers.

Crinoline:Lightweight,plain-weave,stiff,cotton-typefabricwithveryopenconstruction.Stifferandslightlymorecloselywoventhancheesecloth.Usedforsup-portinghoopskirtsorhemedgesandinterlining.

Damask: Heavy, bright, fine-yarn fabric with areversejacquarddesignonbothsides.Flatterthanbrocade.Usedfordraperiesandtablecloths.

Denim: Medium-weight, twill-weave, cotton-typefabric.Warpiscoloredandfillingiswhite orgray.Traditional color is indigo blue, which usuallybeginstofadeafteronlyafewwashings.Usedforslacksandworkclothes.

Dimity:Lightweight,sheer,cotton-typefabricwithlengthwise cords formed by grouping several warpyarns together (rib weave). Plain-weave sectionsoccur between the cords. Used for curtains anddresses.

Donegal tweed: Plain-weave tweed with colorfulnuborslubyarns.Seetweed.

Dotted Swiss:Lightweight, sheer,fine-yarn fabricwithsmalldottedareasthathavebeeneitherwoven(clip-spotdesign)orflocked(glued)toachievethedoteffect.Usedfordressesandcurtains.

Drill:Medium-weight,durable,cotton-type fabricwith twillweave.Similar todenim.Calledkhakiwhendyedthatparticularcolor.Usedforpockets,workclothes,andsneakers.

Duck: Medium- or heavyweight, plain-weave,durable, cotton-type fabric. Slightly lighter thancanvas,butheavierthansailcloth.Usedforapparelandindustrialpurposes.

Duchess satin: Heavy, rich-looking satin fabric.Usedfor weddingdresses.Seesatin.

Faille: Medium-weight, semilustrous fabric withvery noticeable crosswise ribs. Used for eveningdresses.

Faille taffeta:Taffetawithveryvisiblecrosswiseribs.Seetaffeta.

Flannel: Light- tomedium-weight, soft cotton, orwoolen-typefabric,usuallybrushedonbothsides.Usedforshirtsandpajamas.

Flannelette: Light- to medium-weight soft cot-ton-type fabric,usuallybrushedonlyonone side.Lighter weight than flannel. Used for shirts andpajamas.

Foulard:Alightweight,filament-yarn,twill-weavefabric with a soft hand. Frequently printed withsmall overall design (foulard print). Similar tosurah.Usedforscarves,ties,anddresses.

(continued on next page)

FabSci10e_088-117_ch05.indd 113 9/22/11 11:00 AM

Page 64: fabric science

F A B R I C S C I E N C E

A 114 F

Frieze:Heavy,thick,rough-surfacepilefabricwithpatterns made from its raised, small loop surface.Theloopsaresometimesshearedtogiveacut-pileeffect.Ribbedeffectonface.Usedforupholstery.

Gabardine: Medium-weight, fine-yarn, durable,twill-weavefabricwithslighttwilllines.Cotton orworstedtypes.Usedforslacksandsuits.

Gauze:Verylight,sheer,open-construction,plain-weave, cotton-type fabric. Used for dresses, cur-tains,andbandages.

Georgette: Light, sheer fabric with crepe surface.Usuallyhasthesameyarnsinwarpand filling.Seecrepe.

Gingham: Lightweight, plain-weave, cotton-typefabric,usuallywithaplaidorcheckpattern(ging-ham plaid or gingham check). Used for shirts,dresses,andcurtains.

Grosgrain: Heavy, closely woven lustrous fabricwith pronounced crosswise ribs. Used for ribbons(narrow-widthfabric),graduationgowns,andvest-mentsinchurches.

Grospoint: Heavy, thick, rough-surface pile fab-ricwithloopsurface.Haslargerloopsthanfrieze.Usedforupholstery.

Habutai:Lightweight,plain-weave,spun-yarn,soft,silklikefabric.

Harris tweed: Trademark for tweed fabrics fromislands of the Outer Hebrides off the northerncoastofScotland.Usedprimarilyforsportjackets.

Honan: Lightweight, plain-weave, silklike fabricwithslightlyuneven(thickandthin)yarnsinbothwarpandfilling.Usedforblousesanddresses.

Hopsacking: Heavier-weight, coarse, irregularyarns made with basket weave. Resembles burlapfabric. Used to store hops, but now also used forapparelandwallhangings(whenprinted).

Huck:Medium-weight,flat,coarse,cotton-typefab-ric,usuallywithdobbydesign.Thespunfillingyarnshavelowtwisttoaddtoabsorbency.Usedfor towels.

Irish tweed: Tweed fabric from Ireland, usuallywithwhitewarpandcoloredfilling.Seetweed.

Jean:Medium-weight,fine-yarn,cotton-type,dura-ble fabricwithslight twill lines.Lighterandfinerthandrillfabric.Usedforslacksandskirting.Thetermjeannowusuallyreferstoslacks.

Lamé:Aflat,lightweightfabricwovenwithmetal-lic yarns that create a shiny surface. Used fordresses,blouses,andeveningwear.

Lawn:Lightweight,fine,plain-weave,cotton-typefabric, slightly stiff. A little less sheer than voile.Usedforblousesanddresses.

Madras:Lightweight,usuallyplain-weave,carded,spun-yarn fabric, frequently made with a plaiddesign so that colors can bleed when fabric iswashed (bleeding Madras), resulting in ever-changing shades. Imported from Madras, India.Usedforshirtsanddresses.

Marquisette: Lightweight, sheer, open-construc-tion fabric with leno weave. Similar to mosquitonetting.Usedforcurtains.

Matelassé: Medium- or heavyweight, luxurious,jacquardweave,double-clothfabricwithablisteredor quilted surface. Used for draperies, upholstery,andeveningdresses.

Melton: Heavyweight, closely woven woolen fab-ric,completelyfulled(i.e.,felted)withnap. Usedforcoatsanduniforms.

Moiré taffeta: Taffeta with moiré or watermarkdesign.See taffeta.

Monk’s cloth: Heavyweight, soft, coarse, cotton-like fabric with pronounced basket weave design.Usedforslipcoversanddraperies.

Muslin:Light-tomedium-weight,plain-weave,stiff,unfinishedcotton fabricwith speckledeffect fromthe“trash”content(i.e.,foreignmattersuchastwigsandleavesnotthoroughlyremovedduringprocess-ingtocutcosts).Usedfordesignersamplegarmentsand interfacing. When finished, the fabric is softandusedforsheets,furniturecoverings,anddresses.

Nainsook: Lightweight, plain-weave, cottonlikefabric, either crisp or soft. Slightly heavier thanlawn.Usedforblousesandinfants’wear.

FabSci10e_088-117_ch05.indd 114 9/22/11 11:00 AM

Page 65: fabric science

W O V E N F A B R I C S

A 115 F

Ninon:Lightweight,plain-weave,sheer,open-con-structionfabricwithhigh-twistfilamentyarnsthatgivethefabricacrisphand.Heavierthanchiffon.Warpyarnsgroupedintwos.Usedforcurtainsandeveningwear.

Organdy: Lightweight, plain-weave, cotton-typeopen-constructionfabricwithfine-spunyarnsandastifffinish.Usedforblousesandcurtains.

Organza:Similartoorgandy,exceptmadeofsilkormanufactured filament fiber.Used for dresses andtrimmings.

Osnaberg:Medium-toheavyweight,coarse,dura-ble, plain-weave, cotton-type fabric that is unfin-ished.Usedforindustrialpurposes.

Ottoman: Heavy, lustrous fabric with large hori-zontal ribs covered by the warp yarns. Similar tobengalinebutheavier.Usedforupholstery,draper-ies,andeveningdresses.

Oxford: Lightweight, soft, cottonlike fabric withsmall 2 × 1 basket weave (rib weave) repeats. Finewarp and coarse filling yarns, with smooth surface.Usedforshirts.

Panné velvet: Velvet fabric in which the surfacepileisflattenedinonedirection.Seevelvet.

Paper taffeta:Lightweighttaffetawithacrispfin-ish.Seetaffeta.

Peau de soie:Heavy,twill-weave,satin-effect,luxu-rious,soft,silklikefabric.Usedforeveninggowns.

Percale:Lightweight,plain-weave,fine-yarn,combedcotton-typefabric.Usedforsheets(upto200yarnspersquareinch),dresses,andblouses.

Piqué: Medium-weight, crisp, cotton-type fab-ric with raised dobby design. Some patterns usedarecords,waffle,andbird’seye.Usedforwomen’sandchildren’swear,collarsandcuffs,andinfants’bonnets.

Plissé:Lightweight,plain-weave,puckered-striped,cotton-type fabric. Slightly resembles seersucker.Usedfordressesandsummerpajamas.

Pongee:Lightweight,plain-weave,silklikefabricwithslight-slubfillingyarns.Usedforblousesanddresses.

Poplin: Medium-weight, cotton-type fabric withfinehorizontalribs.Usuallyasolidcolor.Usedforgolfjacketsandraincoats.

Repp: Medium-weight, spun-yarn, coarse fabricwithdistincthorizontalribs.Similartopoplin,butwithmoreobvious ribs.Used forneckties, uphol-stery,andsportswear.

Sailcloth: Medium- to heavyweight, plain-weave,durable, cotton-type fabric. Slightly lighter thanduck.Usedforjackets,shorts,andboatsails.

Sateen: Medium-weight, cotton-type fabric withsatin weave and semi-lustrous surface. Used forslacks,workuniforms,andshoeuppers.

Satin:Medium-weightfabricoffilamentyarns.Satinweavehasfine,closelywovenwarpyarns.Highlylus-trous,smoothfaceanddull,rougherback.Usedforfancydresses.Varietiesincludeantiquesatin,crepe-backsatin,duchesssatin,andslippersatin.

Scrim:Verylightweight,sheer,open-construction,plain-weave,cotton-typefabric.Similartoslightlystiffcheesecloth.Usedforcurtainsandassupportfornonwovenfabrics.

Seersucker:Lightweight,cotton-type,color-stripedfabric.Alsowithpermanent,length-wise,alternat-ing,puckered-stripedandflat-stripedsections.Usedfordressesandsportjackets.

Serge:Heavy,worsted-type,durable,solid-colored,smooth-surfacefabricwithtwillweave.Yarnsthathave a higher-than-normal twist and are closelywoven result in fabricbecoming shinyafterwear.Usedforsuits.

Shantung:Medium-weight,plain-weave,silklikefab-ricwithpronounced-slubfillingyarns.Heavierandmoretexturedsurfacethanpongee.Usedfordresses.

Sharkskin: Medium-weight, semilustrous hard-finish,twill-weave,worstedorsynthetic-typefabric.Thesurfaceresemblestheskinofashark.Usedforsuitsandskirts.

Surah:Lightweight,silklike,lustrous,finefabricwithtwillweave.Frequentlyprinted.Usedfordressesandblouses.

(continued on next page)

FabSci10e_088-117_ch05.indd 115 9/22/11 11:00 AM

Page 66: fabric science

F A B R I C S C I E N C E

A 116 F

Taffeta:Medium-weight,plain-weave, lustrous fab-ric,madewithfilamentyarns.Slightcrosswiseribs.Fabrichasgreatrustlewhenrubbed.Usedfordresses,blouses,andwomen’ssuits.Varietiesincludeantiquetaffeta,failletaffeta,moirétaffeta,papertaffeta,andtissuetaffeta.

Tapestry:Heavy,spun-yarn,ribbedfabricwithcol-oredjacquarddesignresultingfromdifferent-coloredgroupingsoffillingyarns(visibleasstripesonfabricback).Madewith two setsofwarpyarns and twosetsof fillingyarns.Usedforwallhangings,uphol-stery,andhandbags.Withhand-woventapestry,thefillingyarnsusedtoproducethedesignonlyinter-lacewithin theperimeterof thedesignbeingcut.Theyarnsarelefthangingfringelikeontheback.With machine-made woven tapestry, these fillingyarnsweavefromselvagetoselvage.

Terry cloth:Medium-weight,soft,cotton-typefab-ricwithlow-twistyarnsformingsurfaceloops.Usedfortowelsandbeachrobes.

Ticking:Heavy,strong,closelywoven,cotton-typefabric,usuallymadewithstripesorwovendesign.Usedformattressandpillowcoverings,upholstery,andworkclothes.

Tissue faille:Lightweightfaille.Seefaille.

Tissue taffeta: Lightweight, transparent taffeta.Seetaffeta.

Toile de Jouy: Light- to medium-weight, plainweave, fine, cotton-type fabric, usually with onecolor-printed scenic design. Used for interior fur-nishingsandclothing.

Tulle: Very fine, slightly stiff, silky, netlike fabric.Usedforweddingveils,partygowns,andtrimmings.

Tweed: Medium- to heavyweight, woolen, rough-twill-weavefabricwithafuzzysurface andcolorednuborslubyarns.Usedforsuitsandcoats.VarietiesincludeDonegaltweed,Harristweed,Irishtweed,andScottishtweed.

Velvet: Medium-weight, manufactured or silk-filament yarn fabric with cut-pile surface thatstands erect. Used for dresses, suits, and interiorfurnishings.

Velveteen:Medium-weight,cotton-typefabricwithcut-pile surface that liesflat.Used fordressesandrobes.

Voile:Lightweight,sheer,crisp,plain-weave,high-twistspun-yarn,cotton-typefabricwithvery,veryfineyarns.Usedforcurtainsandblouses.

Whipcord: Heavy, strong cotton or worsted-typefabricwithprominent,round,diagonaltwilllines.Similartoheavygabardinewithamore prominenttwillline.Usedforridingclothesanduniforms.

FabSci10e_088-117_ch05.indd 116 9/22/11 11:00 AM

Page 67: fabric science

W O V E N F A B R I C S

A 117 F

STUDY QUESTIONS

1. Whydowovenfabricsstretchmoreonthebias,ordiagonal,direction?

2. Statethreereasonsfabricswiththesameweavecanhavedifferentappearances.

3. State two major indicators of quality in a velvetfabric.

4. Which of these two fabrics would be the morecostlytoproduce,assumingthattheyareidenticalinallotheraspects(e.g.,fibercontent)?Explain.

FabricA:120×80 FabricB:110×90

5. Youareinastoreandseetwosheetsforsale.Eachis labeled“200percale.”Whatdifferences incon-structioncouldtherebebetweenthesetwofabrics,eventhoughbothhavethesameidentification?

6. Statethreereasonsonesideofawovenfabriccanbedifferentfromtheotherside.

7. Other than by dyeing or printing, indicate threewaysbywhichafabricwovenwiththeplainweavemaybegivenaddedsurfaceinterest.

8. Awovenfabricwithjacquarddesigncontainslongfloats.Whatpotentialproblemswouldresult fromthisconstructionifthefabricisusedforapparel?

9. Whichofthefollowingfabricsislightest,assumingthateachfabricismadewithsize40/1yarns?Why?

a. 100×70b. 90×90c. 110×70d 100×80

10. Compareahigh-countfabric(manyyarnsperinch)withasimilarlow-countfabric,consideringthefol-lowingcharacteristics:

a. Abrasionresistance.b. Cover.c. Drape.d. Flameresistance.e. Seamslippage.f. Shrinkagepotential.g. Stability.h. Strength.i. Windresistance.

A. Foreachindicatetheswatchnumberandthefabricname. 1. Findfivewovensamplesthathaveanobviousfaceandback. 2. Findfivewovensamplesthatareplainweave. 3. Findfivewovensamplesthataretwillweave. 4. Findthreewovensamplesthataresatinweave.B. Indicatetheclothcountforthefollowingwovensamples: 1. Sample#2 4. Sample#13 2. Sample#9 5. Sample#16 3. Sample#10C. Answerthefollowingusingcarefullyconstructedsentences,correctspelling,and

properpunctuation. 1. Whydoessample#25havenyloninthewarpdirection? 2. Whataretwowaystodistinguishthewarpfromthefillinginswatch#97? 3. Whatistheeasiestwaytodistinguishthewarpfromthefillinginsample#35? 4. Whatproducestheridgesinsample#36?

Woven Fabrics

FABRIC SCIENCE / Swatch Kit Assignment

FabSci10e_088-117_ch05.indd 117 9/22/11 11:00 AM