fabrication and optimisation of an electrical motorisation for mini-uav in hovering

17
1 Fabrication and optimisation of an electrical motorisation for mini-UAV in hovering Nicolas Achotte , Jérôme Meunier-Carus, G. Poulin, J. Delamare, O. Cugat Laboratoire d’Electrotechnique de Grenoble - France L.E.G L.E.G

Upload: esben

Post on 09-Jan-2016

28 views

Category:

Documents


0 download

DESCRIPTION

Fabrication and optimisation of an electrical motorisation for mini-UAV in hovering. Nicolas Achotte , Jérôme Meunier-Carus, G. Poulin, J. Delamare, O. Cugat Laboratoire d’Electrotechnique de Grenoble - France. Specification sheet. Hovering Dimensions Mass Autonomy - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Fabrication and optimisation of  an electrical motorisation  for mini-UAV in hovering

1

Fabrication and optimisation of an electrical motorisation for mini-UAV in hovering

Nicolas Achotte, Jérôme Meunier-Carus,

G. Poulin, J. Delamare, O. Cugat

Laboratoire d’Electrotechnique de Grenoble - France

L.E.GL.E.G

Page 2: Fabrication and optimisation of  an electrical motorisation  for mini-UAV in hovering

2

Electric propulsion chain for hoveringGlobal/elementary optimisation

• Traction

• Output power

• Rotation speed

• Figure of Merit

• Hovering

• Dimensions

• Mass

• Autonomy

• Noise

• Payload

Specification sheet

Optimisation tool necessary !

• Voltage

• Current

• Efficiency

• Capacity (A.h)

Page 3: Fabrication and optimisation of  an electrical motorisation  for mini-UAV in hovering

3

Electrical motorisation for mini-UAV

• Experimental study– Hovering power evaluation– Test bench– Experimental results and characterisations– Realisation of global traction chain

• Design of an planar miniature magnetic motor– Modelling– Structure choice & dimensioning

• Optimisation of the entire chain

• Perspectives - Conclusion

Page 4: Fabrication and optimisation of  an electrical motorisation  for mini-UAV in hovering

4

Power needed to hover a given mass

Theory : Momentum theory (Rankine, 1865; Froude, 1885; Betz, 1920)

Figure of merit : ~ hovering ‘’ efficiency ‘’

Mechanical power for hovering :

P

TvM

air2

mg

R.M

mgP

R

m 23

Page 5: Fabrication and optimisation of  an electrical motorisation  for mini-UAV in hovering

5

Test bench

Propeller

Motor

Speed sensor

Thrust sensor

Torque sensor

Speed controller

Fully automated

laptop

Batteries

Ball bearings

Page 6: Fabrication and optimisation of  an electrical motorisation  for mini-UAV in hovering

6

Tests on propellers

Dimensions (50 cm) and non compressible fluid condition

Low Reynolds Number <100000

• Experimental study necessary.• Modeling of Performances• Implementation into Pro@Design Optimisation framework

High speed propeller necessary to build and optimise the electrical chain

Mass of the motor and converter 1/rotation speed

For a given power, Ibatteries 1/rotation speed

Page 7: Fabrication and optimisation of  an electrical motorisation  for mini-UAV in hovering

7

Tests on propellers

0

100

200

300

400

500

600

700

800

0 1000 2000 3000 4000 5000 6000 7000

Speed propeller (rpm)

Th

rust

(g

)

0.11x0.2

0.12x0.25

0.18x0.28

0.2x0.38

0.28x0.51

0.257x0.512

Results in Hovering

0

100

200

300

400

500

600

700

800

0 10 20 30 40 50

Mechanical Power (W)

Th

rus

t (g

)

0.11x0.2

0.12x0.25

0.18x0.28

0.2x0.38

0.28x0.51

0.257x0.512

Best working point

• Diametre = 50 cm

• Thrust = 500 g

• Pmechanical= 26 W

• Rotation speed = 1630 rpm

• Figure of merit = 0.6

Page 8: Fabrication and optimisation of  an electrical motorisation  for mini-UAV in hovering

8

Tests on converters and motors

Brushless Motors : Inner rotor (high speed, low torque): gearbox necessary.

Outer rotor (low speed, high torque).

Test on Model motor AXI 221226 + speed controller Jeti advance 18-3P (Direct drive)

Working point: speed > 3500 rpm for efficiency > 60 % Gearbox (still !) needed…

Page 9: Fabrication and optimisation of  an electrical motorisation  for mini-UAV in hovering

9

Tests on batteries

Our application : high power and energy density required

Lithium Chemistry ( 3,6 V; Idischarge >2 C; Energy density = 140 Wh/kg)

Kind of battery

Nb of elements

Mass (g)

Av Voltage1 Element

(V)(at 1 C)

Capacity(Ah)

Max Continuous discharge current (A)

P max continous

(W)

Energy density(Wh/kg)

Li-IonPanasonic

CGR-18650A

3 141 3,6 1,832,18 C= 4 A

35 (32 min)

135

Li-PolyKokamSLPB

526495

2 137 3,6 31,66 C= 5 A

30,5 (35 min)

132

Tests results for 2 suitable batteries:

Page 10: Fabrication and optimisation of  an electrical motorisation  for mini-UAV in hovering

10

Global traction chain test in hovering

50 cm

Results:

• Autonomy = 33 min • Payload = 141 g• Pelectrical= 35 W• Efficiency = 65 %

0

50

100

150

200

250

300

350

400

450

500

550

0 5 10 15 20 25 30 35 40

Time (min)

Th

rust

(g

)

Mass of components

Payload = 141 g

0

50

100

150

200

250

300

350

400

450

500

550

0 5 10 15 20 25 30 35 40

Time (min)

Th

rust

(g

)

Mass of components

Payload = 141 g

Off-the-shelf components can fullfill the specification sheet but…

Important improvements are possible:

• On the propeller mass (85 g at present).• On the propeller speed (for motor and converter optimisation).• On the motor (better torque for direct drive and high efficiency).

Page 11: Fabrication and optimisation of  an electrical motorisation  for mini-UAV in hovering

11

Design of a new dedicated planar motor

Objective : build a brushless motor adjusted to the propeller

Specification sheet : mechanical power and low rotation speed

Model : based on the electromotive force created by a conductor under a magnetic flux variation

Software : Pro@Design

Optimisation goal : minimise the mass of the motor and maximise its efficiency

Constraints : width and thickness of the windings, diametre of the stator and rotor, etc.

Results : Pareto curves (point = minimised mass for a given efficiency)

Page 12: Fabrication and optimisation of  an electrical motorisation  for mini-UAV in hovering

12

Structure

Disk rotor

Planar stator

Rotor sandwich

Stator sandwich Single gap structure

Page 13: Fabrication and optimisation of  an electrical motorisation  for mini-UAV in hovering

13

0

5

10

15

20

25

30

35

20 40 60 80 100efficiency (%)

mas

s (g

)

structure 1

structure 2

structure 3

Structure choice

30 g

20 g

-10 %

-7 %

Page 14: Fabrication and optimisation of  an electrical motorisation  for mini-UAV in hovering

14

Optimisation of the entire chain

m

23

k

mP

Propeller model Motor modelPj = R.i2, (Joule losses)

e = B.L.v, (e.m.f)

Pin = e.i + Pj,

efficiency = Pout/Pin

mass = .V

Batteries model

Batteries data baseVoltage, Current,

Energy, Power, MassPropellers data base, k, Diameter, Mass

Overall mass Autonomy

The best solution

Objectives : maximise the autonomy and the payload for a given overall mass

Page 15: Fabrication and optimisation of  an electrical motorisation  for mini-UAV in hovering

15

Conclusion

• Carefully selected off-the-shelf components can presently comply with the specification sheet

• if smartly associated

• but multi-constraint optimisation is necessary

• dedicated planar motors can enhance the performances

Page 16: Fabrication and optimisation of  an electrical motorisation  for mini-UAV in hovering

16

• Macro Fibre Composite actuators as an alternative to drive morphing structures

• Applications : flapping wings, flaps,…

Threshold of 770 V, deflection of 20 mm

To be optimised in terms of number, optimal speed, MFC dimensions control to be applied to UAV

Perspectives

Page 17: Fabrication and optimisation of  an electrical motorisation  for mini-UAV in hovering

17

Thank you for your attention !

Any questions ?Any answers ?