face centered cubic, fcc

31
face centered cubic, fcc Atoms are arranged in a periodic pattern in a crystal. The atomic arrangement affects the macroscopic properties of a material. Crystals are relatively easy to model. Many important materials (silicon, steel) are crystals Institute of Solid State Physics Crystal Structure Technische Universität Graz body centered cubic, bcc simple cubic

Upload: annice

Post on 25-Feb-2016

51 views

Category:

Documents


2 download

DESCRIPTION

Institute of Solid State Physics. Technische Universit ät Graz. Crystal Structure . Atoms are arranged in a periodic pattern in a crystal. The atomic arrangement affects the macroscopic properties of a material. Crystals are relatively easy to model. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: face centered  cubic, fcc

face centered cubic, fcc

Atoms are arranged in a periodic pattern in a crystal.

The atomic arrangement affects the macroscopic properties of a material.

Crystals are relatively easy to model.

Many important materials (silicon, steel) are crystals

Institute of Solid State Physics

Crystal Structure Technische Universität Graz

body centered cubic, bcc

simple cubic

Page 2: face centered  cubic, fcc

Crystals

unit cell

Bravais lattice Crystal

=

1 1 2 2 3 3r n a n a n a

1 2 3lattice vectors , ,a a a

a1

a3

a2

Page 3: face centered  cubic, fcc

•Primitive Vectors:

a1  =  ½ a Y + ½ a Za2  =  ½ a X + ½ a Za3  =  ½ a X + ½ a Y

•Basis Vectors:

B1  =     0     (Na)   

B2  =  ½ a1 + ½ a2 + ½ a3  =  ½ aX + ½ aY + ½ aZ  (Cl)

Example NaCl

http://cst-www.nrl.navy.mil/lattice/struk/b1.html

Page 4: face centered  cubic, fcc

14 Bravais lattices

http://en.wikipedia.org/wiki/Bravais_lattice

Points of a Bravais lattice do not necessarily represent atoms.

Page 5: face centered  cubic, fcc

Unit Cell

Choice of unit cell is not unique

1 2 3a a a

volume of a unit cell =

diamond

a1

a3

a2

Page 6: face centered  cubic, fcc

Wigner-Seitz Cells

bcc fcc

Rhombic dodecahedron

http://britneyspears.ac/physics/crystals/wcrystals.htmhttp://en.wikipedia.org/wiki/Rhombic_dodecahedronhttp://en.wikipedia.org/wiki/Truncated_octahedron

Truncated octahedron

Page 7: face centered  cubic, fcc
Page 8: face centered  cubic, fcc

Coordination number

Number of atoms touching one atom in a crystal

Diamond 4Graphite 3bcc 8fcc 12hcp 12sc 6

Page 9: face centered  cubic, fcc

atomic packing density

HCP FCC

close packing density = 0.74random close pack = 0.64simple cubic = 0.52diamond = 0.34

Page 10: face centered  cubic, fcc

From: Hall, Solid State Physics

Fcc

conventional unit cell showing close packed plane

Primitive unit cell Wigner-Seitz cell

Page 11: face centered  cubic, fcc

Crystal planes and directions: Miller indices

bcc Wigner Seitz cell

KOH rapidly etches the Si <100> planes

[ ] specific direction< > family of equivalent directions( ) specific plane{ } family of equivalent planes

Page 12: face centered  cubic, fcc

Cementite - Fe3C

Unit cell

cell 5.09000 6.74800 4.52300 90.000 90.000 90.000 natom 3Fe1 26 0.18600 0.06300 0.32800 Fe2 26 0.03600 0.25000 0.85200 C 6 0.89000 0.25000 0.45000 rgnr 62Cohenite (Cementite) Fe3 C

Asymmetric unit

Generated by PowderCell

Page 13: face centered  cubic, fcc

GroupsCrystals can have symmetries: translation, rotation, reflection, inversion,...

1 0 00 cos sin0 sin cos

x xy yz z

Symmetries can be represented by matrices.All such matrices that bring the crystal into itself form the group of the crystal.

AB G for A, B G32 point groups (one point remains fixed during

transformation)230 space groups

Page 14: face centered  cubic, fcc

http://www.pdb.org/robohelp/data_download/biological_unit/asymmetric_unit.htm

Asymmetric Unit

Page 15: face centered  cubic, fcc

http://it.iucr.org/A/

Page 16: face centered  cubic, fcc
Page 17: face centered  cubic, fcc

simple cubic

http://cst-www.nrl.navy.mil/lattice/

Po

Number: 221

Primitive Vectors:

a1  =  a Xa2  =  a Ya3  =  a Z

•Basis Vector:

B1 = 0  

Page 18: face centered  cubic, fcc

fcc

http://cst-www.nrl.navy.mil/lattice/

Al, Cu, Ni, Sr, Rh, Pd, Ag, Ce, Tb, Ir, Pt, Au, Pb, Th

Primitive Vectors:

a1 = ½ a Y + ½ a Za2 = ½ a X + ½ a Za3 = ½ a X + ½ a Y

Basis Vector:

B1 = 0  

Number 225

Page 19: face centered  cubic, fcc
Page 20: face centered  cubic, fcc

hcp

http://cst-www.nrl.navy.mil/lattice/

Mg, Be, Sc, Ti, Co, Zn, Y, Zr, Tc, Ru, Cd, Gd, Tb, Dy, Ho, Er, Tm, Lu, Hf, Re, Os, Tl

Page 21: face centered  cubic, fcc

bcc

http://cst-www.nrl.navy.mil/lattice/

W Na K V CrFe Rb Nb Mo Cs Ba EuTa Primitive Vectors:

Basis Vector:

B1 = 0

a1  =  - ½ a X + ½ a Y + ½ a Z

a2  =  + ½ a X - ½ a Y + ½ a Z

a3  =  + ½ a X + ½ a Y - ½ a Z

Page 22: face centered  cubic, fcc

NaCl

http://cst-www.nrl.navy.mil/lattice/

Page 23: face centered  cubic, fcc

CsCl

http://cst-www.nrl.navy.mil/lattice/

Page 24: face centered  cubic, fcc

perovskite

http://cst-www.nrl.navy.mil/lattice/

Page 25: face centered  cubic, fcc

ybco

http://cst-www.nrl.navy.mil/lattice/

Page 26: face centered  cubic, fcc

graphite

http://cst-www.nrl.navy.mil/lattice/

Page 27: face centered  cubic, fcc

diamond

http://cst-www.nrl.navy.mil/lattice/

CSiGe

•Primitive Vectors:

•Basis Vectors:

Number: 227

a1  =  ½ a Y + ½ a Za2  =  ½ a X + ½ a Za3  =  ½ a X + ½ a Y

B1  =  - 1/8 a1 - 1/8 a2 - 1/8 a3  =  - 1/8 a X - 1/8 a Y - 1/8 aZ

B2  =  + 1/8 a1 + 1/8 a2 + 1/8 a3  =  + 1/8 a X + 1/8 a Y + 1/8 aZ

Page 28: face centered  cubic, fcc

http://cst-www.nrl.navy.mil/lattice/

zincblende

ZnSGaAsInP

Page 29: face centered  cubic, fcc

wurtzite

http://cst-www.nrl.navy.mil/lattice/

ZnOCdSCdSeGaNAlN

Page 30: face centered  cubic, fcc

Quartz

http://cst-www.nrl.navy.mil/lattice/

Page 31: face centered  cubic, fcc

body centered cubic, bcc

simple cubic face centered cubic, fcc