facoltà di ingegneria corso di studi in ingegneria informatica · monitoraggio dei parametri...

25
Facoltà di Ingegneria Corso di Studi in Ingegneria Informatica Elaborato finale in Protocolli per reti mobili Dispositivi mobili per il monitoraggio di parametri biomedici Anno Accademico 2011/2012 Candidato: Giuseppe Diego Marchiello matr. N46/0001564

Upload: dohuong

Post on 14-Feb-2019

219 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Facoltà di Ingegneria Corso di Studi in Ingegneria Informatica · monitoraggio dei parametri vitali. Il monitoraggio sta infatti diventando una metodica sempre più diffusa per il

Facoltà di Ingegneria Corso di Studi in Ingegneria Informatica Elaborato finale in Protocolli per reti mobili

Dispositivi mobili per il monitoraggio di parametri

biomedici

Anno Accademico 2011/2012 Candidato: Giuseppe Diego Marchiello matr. N46/0001564

Page 2: Facoltà di Ingegneria Corso di Studi in Ingegneria Informatica · monitoraggio dei parametri vitali. Il monitoraggio sta infatti diventando una metodica sempre più diffusa per il

INDICE

1. Introduzione ...........................................................................................................................................4

2. Sistemi di Monitoraggio dei parametri biomedici..........................................................................5

2.1. Il monitoraggio cardiaco................................................................................................ 6

2.1.1 Valutazione di un elettrocardiogramma.......................................................................... 7

2.2. Monitoraggio della pressione arteriosa ....................................................................... 9

2.3. Monitorggio della saturazione dell’ossigeno............................................................ 10

2.4. Monitoraggio della frequenza respiratoria ............................................................... 11

3. Dispositivi Biomedicali Commerciali..............................................................................................12

3.1 Wireless monitoring systems...........................................................................................12

3.2 Delmar Reynold ................................................................................................................12

3.3 HealtFrontier ECG@home................................................................................................13

3.4 PocketView ........................................................................................................................13

3.5 HomMed ............................................................................................................................13

3.6 Alive ECG Monitor ...........................................................................................................13

3.7 BioHarness BH3 ................................................................................................................14

3.8 WIRELESS SENSOR NETWORKS SRL  – Guardiano elettronico..............................14

3.9 Dynapulse ..........................................................................................................................15

3.10 Bodymedia Sensewear Armband....................................................................................15

3.11 VivoMetrics LifeShirt........................................................................................................15

3.12 AMON................................................................................................................................15

3.13 Intelligent ECG monitor...................................................................................................15

3.14 Remote Human Health Monitoring System..................................................................16

3.15 Georgia Tech Wearable Motherboard ............................................................................16

3.16 Sensitron.............................................................................................................................16

3.17 Portable Telemedical Monitoring Using Wireless Sensors on the Edge of the 

Internet 16

3.18 Ring sensor.........................................................................................................................17

3.19 SmarTex Wealthy ..............................................................................................................17

3.20 WPR wireless sensor.........................................................................................................17

4. Architetture Evolute per il monitoraggio di parametri biomedici. ............................................18

Page 3: Facoltà di Ingegneria Corso di Studi in Ingegneria Informatica · monitoraggio dei parametri vitali. Il monitoraggio sta infatti diventando una metodica sempre più diffusa per il

4.1 Considerazioni sui Modelli Architetturali ................................................................ 18

4.2 L’ Architettura Software di riferimento sviluppata dall’ICAR ‐  CNR.................. 20

4.2.1 Data Layer..........................................................................................................................20

4.2.2 Decisional Layer................................................................................................................21

4.2.3 Action Layer ......................................................................................................................21

4.3 Realizzazione di Componente software per la visualizzazione di un tracciato 

ECG ad una derivazione ........................................................................................................... 22

5. Conclusioni ...........................................................................................................................................23

Page 4: Facoltà di Ingegneria Corso di Studi in Ingegneria Informatica · monitoraggio dei parametri vitali. Il monitoraggio sta infatti diventando una metodica sempre più diffusa per il

1. Introduzione

I recenti progressi nella realizzazione di sensoristica wireless hanno aperto nuove

opportunità in vari campi applicativi, tra i quali uno che desta maggiore interesse è il

monitoraggio dei parametri vitali.

Il monitoraggio sta infatti diventando una metodica sempre più diffusa per il controllo dei

pazienti, sia come ausilio alla prevenzione in soggetti particolarmente a rischio, sia come

strumento di raccolta e monitoraggio costante di parametri vitali in soggetti con accertate

patologie.

Sul mercato si assiste alla continua diffusione di nuovi dispositivi e sistemi software che

consentono il monitoraggio di parametri vitali (e.g. battito cardiaco, saturazione

dell’ossigeno, frequenza respiratoria) e ne controllano il superamento di determinate

soglie generando, eventualmente, degli allarmi. Tuttavia, la quasi totalità dei sistemi di

monitoraggio in commercio, utilizza per la segnalazione di eventuali situazioni anomale

algoritmi e tecniche basate su di un’analisi quantitativa dei parametri monitorati senza

nessun riferimento al contesto nel quale sono rilevati.

In tale ottica, si stanno diffondendo sempre di più sistemi m-Health dotati di servizi

sanitari personalizzati per il paziente, che permettono di migliorare la gestione quotidiana

delle patologie facilitando il selfcare.

Molti sistemi m-health sono già di routine in uso clinico ed in genere incorporano un

dispositivo indossabile o impiantato per il rilevamento dei parametri e un software su di

un dispositivo mobile (smartphone o PDA) per eseguire un insieme specifico di

analisi di tipo clinico.

Nel seguito verrà data una breve descrizione dei principali sistemi di monitoraggio; nel

capitolo 3 verranno illustrati i principali dispositivi commerciali per il monitoraggio di

parametri biomedici. Nel capitolo 4 verrà descritta la piattaforma di monitoraggio

utilizzata con particolare riferimento al componente di visualizzazione del segnale ECG

su dispositivo mobile realizzato per il presente lavoro di tesi.

Page 5: Facoltà di Ingegneria Corso di Studi in Ingegneria Informatica · monitoraggio dei parametri vitali. Il monitoraggio sta infatti diventando una metodica sempre più diffusa per il

2. Sistemi di Monitoraggio dei parametri biomedici

Il sistema di monitoraggio dei parametri biomedici possono essere suddivisi in tre gruppi

sulla base delle modalità di elaborazione dei dati acquisiti [1]:

1) sistemi che registrano i segnali ed eseguono una elaborazione/classificazione off-line;

2) i sistemi che eseguono remotamente una elaborazione/classificazione in tempo reale;

3) sistemi che forniscono una elaborazione/classificazione locale online classificazione in

tempo reale.

I sistemi appartenenti al primo gruppo sono essenzialmente dispositivi di registrazione

(e.g. Holter), i cui dati sono analizzati off-line da sistemi remoti. Il secondo gruppo

comprende i sistemi di telemedicina in grado di eseguire monitoraggio a distanza in

tempo reale [2] [3]. Ad esempio, in molti sistemi appartenenti a tale tipologia, i dati ECG

vengono raccolti e inviati in tempo reale ad una stazione remota utilizzando, ad esempio,

telefonini.

Il terzo gruppo comprende i sistemi che utilizzano i dispositivi mobili di nuova

generazione dotati di adeguate capacità di calcolo e memoria (ad esempio PDA o

smartphone) per eseguire elaborazione locali dei dati relativi ai parametri vitali raccolti

allo scopo di rilevare eventuali anomalie e per la produzione di segnali di allarme [4].

Per ciò che concerne i sistemi appartenenti alla terza tipologia, che sono l’oggetto del

presente elaborato di tesi, tipicamente i sistemi attualmente presenti sul mercato

forniscono funzionalità di elaborazione locale utilizzando semplici tecniche basate sul

supermento di soglie prestabilite di attenzione (es. valore minimo e massimo della

frequenza cardiaca) o tecniche di tipo statistico e/o geometrico.

Il grosso limite di tali approcci (che comunque portano con se il vantaggio di una

realizzazione alquanto semplice), è il non tenere in conto del contesto nel quale vengono

acquisiti i dati.

Come già accennato precedentemente, la sola acquisizione ed elaborazione dei dati in

maniera decontestualizzata può causare notevoli errori nell’identificazione di situazioni

anomale. Si pensi, ad esempio, ad una persona che in fase di monitoraggio effettua una

breve corsa che causa un normale aumento della frequenza cardiaca; ciò comporta un

naturale superamento della soglia precedentemente fissata per segnalare episodi di

tachicardia mentre la situazione in realtà non è da considerarsi potenzialmente

pericolosa.

Page 6: Facoltà di Ingegneria Corso di Studi in Ingegneria Informatica · monitoraggio dei parametri vitali. Il monitoraggio sta infatti diventando una metodica sempre più diffusa per il

La conoscenza del contesto (context awareness), quindi, è un concetto importante per i

servizi dell'applicazione in ambienti mHealth. In generale, se ci riferiamo all’acquisizione

dei parametri vitali di un paziente, il contesto viene identificato dalla postura del

paziente, dal movimento, dalla frequenza respiratoria, etc.

Per sviluppare sistemi context-aware, uno degli approcci più utilizzati è basato

sull'utilizzo di tecniche di intelligenza artificiale e di sistemi di Supporto alle Decisioni

(DSS) basati sulla conoscenza; tuttavia tali metodiche richiedono opportune risorse

computazionali e di memoria.

Recentemente, a causa della crescita della potenza di calcolo e capacità di memoria di

smartphone e PDA, approcci più sofisticati per il rilevamento di anomalie e segnalazione

di emergenza sono stati proposti. In [1] [6] un adattamento rete neurale artificiale per

rilevare automaticamente e classificare anormale condizione cardiovascolare viene

proposto. D'altra parte, l'uso di approcci su dispositivi mobili che adottano DSS in cui la

conoscenza esperto è esplicitamente formalizzata attraverso regole, è ancora un problema

impegnativo.

Un’altra considerazione molto importante è che attualmente la maggioranza dei sistemi di

m-Health disponibili sono sistemi proprietari, ossia chiusi, che prevedono un set specifico

di servizi associato ad un set specifico di dispositivi.

E’ quindi necessario realizzare architetture software flessibili ed adattabili, sia alla

varietà di dispositivi di monitoraggio che si vogliono utilizzare, sia per quanto concerne i

servizi offerti.

2.1. Il monitoraggio cardiaco

Vi sono poche metodiche in medicina che hanno la sofisticata complessità

dell’elettrocardiogramma (ECG): la presenza di pochi elementi, l’onda P, il complesso

QRS, l’onda T ed i loro variabili rapporti sono in grado di generare migliaia di

combinazioni con centinaia di differenti diagnosi; in natura, forse, solo la musica con sole

sette note riesce a realizzare un altrettanto infinita possibilità di combinazioni. E come

per la musica, solo un’attenta preparazione, associata ad una vera e propria “vocazione”,

può consentire una conoscenza realmente approfondita di questa straordinaria metodica.

L’elettrocardiogramma rappresenta a tutt’oggi il più diffuso ed utile strumento

diagnostico di tutte le principali cardiopatie. La lotta all’infarto, l’abbattimento dei

Page 7: Facoltà di Ingegneria Corso di Studi in Ingegneria Informatica · monitoraggio dei parametri vitali. Il monitoraggio sta infatti diventando una metodica sempre più diffusa per il

cosiddetti tempi pre-coronarici, l’appropriatezza all’indicazione delle varie terapie

riperfusive passa sempre e comunque attraverso una corretta interpretazione dell’ECG.

2.1.1 Valutazione di un elettrocardiogramma

Nel 1903 il professor Willem Einthoven, modificando artigianalmente un galvanometro,

riuscì a registrare correnti non amplificate originatesi da un paziente: nasceva così il

primo elettrocardiografo.

Iniziava la storia di un apparecchio che per la sua semplicità e per il suo valore nella

diagnosi cardiologica è attualmente uno degli strumenti più diffusi nella pratica medica.

In maniera molto semplice, l’ECG consiste nella registrazione dell’attività elettrica

prodotta dal cuore.

Non ci si può approcciare alla lettura di un ECG senza conoscere alcuni elementi

metodologici essenziali per la sua corretta interpretazione, spesso fonti di banali errori

d’interpretazione.

Un ECG normale è sempre caratterizzato dalla presenza di determinate deflessioni, anche

se con infinite variazioni da soggetto a soggetto pur sempre nell’ambito della normalità.

Imparare a conoscere un ECG normale è un requisito irrinunciabile per tutti coloro che si

accostano allo studio dell’Elettrocardiografia.

Segnale ECG

Onda P: la deflessione prodotta dall’attivazione atriale

Complesso QRS: l’insieme delle deflessioni che rappresentano l’attivazione del

ventricolo. Esse si dividono in:

o Onda Q: la deflessione iniziale, negativa, seguita dall’onda R

o Onda R: la prima deflessione positiva; può non essere preceduta da

un’onda Q

o Onda S: la deflessione negativa che segue l’onda R

Page 8: Facoltà di Ingegneria Corso di Studi in Ingegneria Informatica · monitoraggio dei parametri vitali. Il monitoraggio sta infatti diventando una metodica sempre più diffusa per il

o Onda R’: una seconda eventuale deflessione positiva

o QS: un’unica deflessione negativa che rappresenta tutta

l’attivazione ventricolare

Si utilizzano lettere maiuscole (Q,R,S) per indicare le deflessioni di ampiezza superiore ai

5 mm, lettere minuscole (q,r,s) per quelle di ampiezza inferiore

Onda T: la deflessione prodotta dalla ripolarizzazione ventricolare

Onda U: la deflessione che può seguire l’onda T

Principali fasi dell’attivazione cardiaca

Alcuni dei sistemi di monitoraggio più sofisticati attualmente in uso possono registrare e

rispondere localmente a segnali ECG [1 , 2]. Questi sistemi incorporano in alcuni casi un

algoritmo per l’analisi degli ECG implementato in un sistema embedded o in un PDA e

che rileva ogni attività cardiaca anomala e invia un allarme all’utente e al centro di

monitoraggio remoto, ma l’attività cardiaca non viene analizzata in relazione allo

stato/contesto del paziente in esame.

La “consapevolezza del contesto” può ridurre notevolmente il carico di lavoro al centro

di monitoraggio.

Questi sistemi [1,2] effettuano anche l’analisi locale dell’ECG e informano il paziente sui

sintomi, consentendo così al paziente di affrontare il problema mentre al contempo

inviano un messaggio di allarme a un centro di controllo, cosicché specialisti cardiologi

possono osservare le anormalità registrate. Questi sistemi attuali [1, 2, 3] sono però ‘non

consapevoli’ del contesto dell’attività del paziente quando un evento viene rilevato, ma lo

sono solo dei dati ECG.

Page 9: Facoltà di Ingegneria Corso di Studi in Ingegneria Informatica · monitoraggio dei parametri vitali. Il monitoraggio sta infatti diventando una metodica sempre più diffusa per il

2.2. Monitoraggio della pressione arteriosa

Il monitoraggio pressorio delle 24 ore (Holter Pressorio o ABPM) è un test non invasivo

che consente di registrare la pressione arteriosa continuativamente per 24 ore, mediante

un piccolo apparecchio (grande più o meno come un “Walkman”) fissato in vita con una

cintura.

E’ molto utile in diverse situazioni:

- nei pazienti che hanno una ipertensione arteriosa instabile (in cui cioè i valori della

pressione arteriosa variano molto da un momento all’altro)

- nei pazienti facilmente emozionabili, che di fronte al medico hanno sbalzi di

pressione, ma che a casa hanno una pressione normale

- nei pazienti ipertesi in terapia farmacologica, per controllare che il farmaco agisca

in ogni momento della giornata, e non solo per alcune ore (la pressione alta infatti,

danneggia le arterie anche se rimane alta solo per alcune ore della giornata)

- nei pazienti che, pur avendo la pressione arteriosa normale, durante il giorno

accusano sintomi che possono far pensare ad improvvisi aumenti o diminuzioni della

pressione (vertigini, sbandamenti, vampate, sudore freddo, senso di svenimento, “testa

vuota”, sanguinamento dal naso ecc.)

- nei pazienti ipertesi che prendono medicine per abbassare la pressione ed accusano

saltuariamente dei disturbi, per capire se i disturbi sono legati ad un eccessiva

diminuzione della pressione (ed in questo caso bisogna ridurre il dosaggio della terapia)

oppure ad altre cause

Il giorno dell’inizio dell’esame, il medico sistema apparecchio e bracciale sul paziente,

inserisce gli opportuni parametri nell’apparecchio e lo avvia. Il paziente indosserà

l’apparecchio per 24 ore, annotando su un foglio ogni dato utile (attività svolta, impegno

mentale, sintomi o disturbi accusati). Durante il periodo di esame, la pressione verra’

misurata automaticamente ogni 15 minuti di giorno e ogni 30 minuti di notte, ma il

Page 10: Facoltà di Ingegneria Corso di Studi in Ingegneria Informatica · monitoraggio dei parametri vitali. Il monitoraggio sta infatti diventando una metodica sempre più diffusa per il

paziente potrà sempre avviare una misurazione manualmente in caso si presenti un

particolare disturbo (vertigine, senso di svenimento ecc. ecc.). Trascorse le 24 ore, il

paziente tornerà dal medico che smonterà l’apparecchio ed esaminerà con l’aiuto di un

computer, i dati memorizzati.

2.3. Monitorggio della saturazione dell’ossigeno

La saturazione di ossigeno è un indice ematico che riflette la percentuale di emoglobina

satura di ossigeno rispetto alla quantità totale di emoglobina presente nel sangue. In

condizioni normali, durante il passaggio nei polmoni, i globuli rossi ricchi di emoglobina

si caricano o saturano di ossigeno, che verrà poi trasportato e ceduto ai vari tessuti

dell'organismo.

La percentuale di emoglobina satura di ossigeno in condizioni normali è maggiore del

95%, con valori ottimali intorno al 97-98%; tuttavia, in presenza di alcune malattie,

principalmente polmonari, una percentuale inferiore di globuli rossi lega e trasporta

ossigeno all'organismo; di conseguenza la saturazione d'ossigeno scende al di sotto del

95% e, raggiunti valori inferiori al 90%, si parla di ipossiemia, ovvero di una ridotta

quantità di ossigeno nel sangue. Un valore inferiore all'80% testimonia uno stato ipossico

grave

L'ipossemia è tipica di varie malattie: ostruzioni delle vie aeree, anemia, sindrome da

distress respiratorio acuto, BPCO, enfisema, malattia polmonare interstiziale, polmonite,

pneumotorace, edema polmonare, embolia polmonare, fibrosi polmonare e sindrome

delle apnee ostruttive durante il sonno. Anche l'altitudine e l'anemia si associano a quadri

di ipossia; per esempio tra i 5000 e i 5500 m di altitudine, la saturazione di ossigeno

scende intorno all'85%.

La saturazione di ossigeno può essere determinata su un campione di sangue arterioso, in

genere prelevato dall'arteria radiale del polso. L'esame non è doloroso, anche se alcuni

pazienti lo considerano un po' più fastidioso rispetto ai classici prelievi venosi da una

vena dell'avambraccio.

La saturazione di ossigeno può essere misurata anche in maniera non invasiva attraverso

apparecchi portatili chiamati plusiossimetri (od ossimetri o saturimetri), che permettono

di stimare rapidamente la quantità di emoglobina legata all'ossigeno applicando l'apposito

sensore ad un dito della mano o al lobo di un orecchio. Il monitoraggio non invasivo dei

Page 11: Facoltà di Ingegneria Corso di Studi in Ingegneria Informatica · monitoraggio dei parametri vitali. Il monitoraggio sta infatti diventando una metodica sempre più diffusa per il

valori di saturazione d'ossigeno è importante sia in ambito domestico, sia in corso di

emergenze sanitarie, per valutare rapidamente la necessità di ricorrere alla ventilazione

assistita.

Il monitoraggio dei valori di saturazione di ossigeno non è importante a soli fini

diagnostici, ma risulta essenziale anche per valutare l'efficacia delle terapie

farmacologiche o di altri trattamenti intrapresi per riportare la saturazione di ossigeno a

valori normali, o per curare la malattia sottostante (ad es, broncodilatatori).

2.4. Monitoraggio della frequenza respiratoria

La frequenza respiratoria è un segno vitale critico che permette di rilevare

tempestivamente la compromissione respiratoria e la sofferenza del paziente

Il monitoraggio in continuo della frequenza respiratoria è particolarmente importante nei

pazienti post-chirurgici sottoposti ad analgesia controllata dal paziente (PCA) a fini di

terapia del dolore perché la sedazione può provocare depressione respiratoria ed esporre i

pazienti a un notevole rischio di lesioni gravi o di morte.

Sebbene le linee guida dell'Anesthesia Patient Safety Foundation (APSF) includano il

monitoraggio dell'ossigenazione e della ventilazione in tutti i pazienti in terapia con

oppioidi, i metodi attuali di monitoraggio della frequenza respiratoria possono essere

limitati dalla loro affidabilità non ottimale o dalla tolleranza da parte del paziente.

Il monitoraggio respiratorio serve per ottenere valori, quali:

PaCO2/PaO2 per valutare quadri di insufficienza respiratoria. E’ un metodo

invasivo che si esegue effettuando emogasanalisi di un campione ematico

arterioso. Valori ridotti di PaO2 (ipossiemia) e/o ridotti di PaCO2 (ipercapnia)

segnalano la comparsa di quadri di insufficienza respiratoria del paziente;

Ossimetria, consiste nella rilevazione della quantità (espressa in %) di Hb legata

all’ossigeno nel sangue arterioso periferico. Viene rilevata da sensori applicati alle

dita, al naso, al lobo dell’orecchio o, nel caso dei neonati, alle mani o ai piedi. I

principi per rilevare i valori di ossimetria . I saturimetri per determinare i valori di

ossimetria sfruttano i principi spettrofotometrici (rileva le modificazioni di

assorbimento della luce da parte dell’Hb differentemente ossigenata) e

pulsossimetrici (rileva il sangue arterioso in quanto pulsatile). Non sempre si

Page 12: Facoltà di Ingegneria Corso di Studi in Ingegneria Informatica · monitoraggio dei parametri vitali. Il monitoraggio sta infatti diventando una metodica sempre più diffusa per il

possono ottenere dei valori attendibili; esistono anche situazioni che limitano la

possibilità di misurare questi valori, come l’ipoperfusione, l’ipotensione, l’uso di

farmaci vasoattivi, l’ipotermia, i movimenti del paziente, Hb patologiche,

spostamento del sensore.

Capnometria, rappresenta la quantità di CO2 nei gas espirati. Questo valore

corrisponde indicativamente alla CO2 dei gas alveolari (PaCO2) e rispecchia i

livelli di CO2 arteriosi. I suoi valori sono normalmente inferiori da 1 a 4 mmHg

rispetto alla PaCO2.

Questi valori, uniti alla corretta osservazione della frequenza respiratoria e del tipo di

respiro, consentono un migliore approfondimento del quadro clinico.

3. Dispositivi Biomedicali Commerciali

Nel presente capitolo viene fornita una breve panoramica dei principali dispositivi di

acquisizione di parametri biomedicali attualmente in commercio.

3.1 Wireless monitoring systems

Molte compagnie attive nell'ambito del monitoraggio in

corsia, stanno producendo sistemi di acquisizione wireless di

parametri biomedici. Spesso si tratta comunque di dispositivi

nati per permettere al paziente un certo margine di mobilità

all'interno dell'ospedale. Le configurazioni adottate non

sembrano a nostro avviso adatte ad un monitoraggio

autonomo in ambito domestico. In questa categoria possiamo citare ad esempio la

General Electric con i sistemi ApexPro e TeleGuard, o la Philips con PatientMonitoring

systems.

3.2 Delmar Reynold

Questo produttore commercializza vari sistemi per l'ECG holter e

monitor di segnali biomedici. Prevede software appositi per l'analisi

in tempo differito dei segnali acquisiti, ma non per l'analisi in tempo

reale.

Page 13: Facoltà di Ingegneria Corso di Studi in Ingegneria Informatica · monitoraggio dei parametri vitali. Il monitoraggio sta infatti diventando una metodica sempre più diffusa per il

3.3 HealtFrontier ECG@home

Si tratta di un dispositivo per l'automonitoraggio capace di

acquisire una derivazione ECG (I o II a scelta) e trasmettere i

dati via telefono tramite un accoppiamento acustico. Rileva

anche alcuni parametri del segnale elettrocardiografico che

possono essere comunicati al medico curante o parzialmente interpretati dal paziente

adeguatamente addestrato. Per la sua struttuta non è adatto ad un monitoraggio continuo

ma può essere usato per effettuare una o più misurazioni giornaliere.

3.4 PocketView

Con una particolare scheda acquisisce ECG su palmari tipo PocketPC,

da cui è possibile effettuare la stampa, l'archiviazione o l'invio dei

tracciati. Mette a disposizione le derivazioni standard e le precordiali. È

possibile effettuare alcune analisi automatiche sui tracciati (solo in

maniera differita) ed inviarli via e-mail.

3.5 HomMed

Si tratta di una serie di apparecchi per il monitoraggio giornaliero

delle condizioni del paziente. Vengono rilevati peso, pressione,

pletismografia. Questi dati possono essere registrati ed inviati ad

un centro di ascolto o ad un medico. Il monitoraggio in questo

caso non è continuo ma avviene ad intervalli di tempo relativamente lunghi

(giornalmente, di solito).

3.6 Alive ECG Monitor

L’Alive Heart Monitor è un dispositivo wireless per lo

screening, la diagnosi e la gestione delle malattie croniche, e

per la salute dei consumatori e del fitness. Questo dispositivo

utilizza la tecnologia Bluetooth per trasmettere in real-time

l’elettrocardiogramma del soggetto monitorato. È alimentato da

Page 14: Facoltà di Ingegneria Corso di Studi in Ingegneria Informatica · monitoraggio dei parametri vitali. Il monitoraggio sta infatti diventando una metodica sempre più diffusa per il

una batteria ricaricabile NP20 agli ioni di litio che garantisce un’elevata durata d’utilizzo;

si stima una durata di circa due giorni di monitoraggio che comprende sia la trasmissione

dei dati al sistema software attraverso bluetooth, sia la memorizzazione dei dati su SD

card posizionata all’interno del dispositivo stesso.

È dotato di due sensori ai quali vanno applicati dei normali elettrodi per la rilevazione

dell’attività cardiaca. È essenziale ovviamente un buon contatto elettrico tra gli elettrodi e

la pelle del paziente, per un’elevata qualità del segnale ECG. La superficie cutanea deve,

pertanto, essere pulita e preparata e gli elettrodi vanno posizionati a seconda del paziente

e della parete del cuore che va monitorata.

3.7 BioHarness BH3

Il BioHarness è un modulo sensoriale multi-parametrico,

non invasivo tra i più evoluti oggi reperibili sul mercato. Il

modulo Bioharness viene associato ad una cintura multi

sensoriale indossabile, realizzata in materiale “Smart

Fabric”, dalla Zephyr, che insieme ai sensori integrati nel

modulo (accelerometro, termometro, ecc.) è in grado di

rilevare, con eccellente precisone, fino a 5 parametri in

tempo reale e precisamente: frequenza cardiaca, frequenza respiratoria, temperatura

pelvica, attività motoria e postura.

3.8 WIRELESS SENSOR NETWORKS SRL – Guardiano elettronico

Il sistema proposto nella versione Smart-Dress presenta

molte analogie con il sistema da noi progettato.

Probabilmente pensato per monitoraggio in ambito

ospedaliero. E’ in grado di condurre statistiche semplici

sui parametri estratti dai vari segnali acquisiti.

Page 15: Facoltà di Ingegneria Corso di Studi in Ingegneria Informatica · monitoraggio dei parametri vitali. Il monitoraggio sta infatti diventando una metodica sempre più diffusa per il

3.9 Dynapulse

Permette la registrazione su PC di pressione arteriosa e frequenza

cardiaca.

3.10 Bodymedia Sensewear Armband

Si tratta di un dispositivo indossabile su un braccio, come alcuni

lettori MP3, capace di acquisire informazioni accelerometriche,

temperatura esterna e del corpo, galvanic skin response,

frequenza cardiaca. I dati sono inviati ad un PC per

l'elaborazione ed il salvataggio. Orientato ad applicazioni in

campo sportivo.

3.11 VivoMetrics LifeShirt

E' un sistema per l'acquisizione di vari parametri biomedici.

Utilizzato principalmente in applicazioni di ricerca, permette di

alloggiare sensori per varie grandezze (ECG, respiro, SPO2,

postura/accelerazioni). I dati sono acquisiti da un apposito palmtop

che ne permette la visualizzazione ed il trasferimento su PC.

3.12 AMON

Si tratta di un sistema per il monitoraggio continuo pulsiossimetrico, che

può misurare opzionalmente anche ECG (1 derivazione), la pressione

sanguigna e l'entità delle accelerazioni subite. L'analisi dei dati viene

fatta a bordo. Un collegamento via radio permette di contattare centri di

ascolto.

3.13 Intelligent ECG monitor

Effettua la registrazione dei dati in forma compressa e può

effettuare una prima analisi. Il sistema monta un DSP per

l'elaborazione e la compressione dei dati ricevuti.

Page 16: Facoltà di Ingegneria Corso di Studi in Ingegneria Informatica · monitoraggio dei parametri vitali. Il monitoraggio sta infatti diventando una metodica sempre più diffusa per il

3.14 Remote Human Health Monitoring System

Analizza un segnale ECG, pletismografia in visibile ed infrarosso, accelerazione. Anche

questo sistema utilizza un'architettura “Split”, con parte di acquisizione divisa da quella

di elaborazione.

3.15 Georgia Tech Wearable Motherboard

Si tratta di un corpetto sviluppato, in collaborazione con l'esercito

USA per monitorare le condizioni dei soldati in missione. Misura

vari parametri (fra cui ECG, respiro), ed integra una fibra ottica,

tessuta nella stoffa, che, con la propria rottura, permette di

individuare la posizione di eventuali colpi ricevuti. Trasmette questi

dati via radio.

3.16 Sensitron

L'azienda sviluppa un sistema wireless per il monitoraggio dei segni vitali, basato su

BlueTooth, che raccoglie vari segnali (pulsazioni, temperatura, ossigenazione,

concentrazione di glucosio, ecc..) e li trasmette tramite ad una stazione base che si occupa

di reinstradarli via web, così da poter essere elaborati e registrati su sistemi remoti. È

pensata per il monitoraggio di pazienti in ambito ospedaliero e casalingo, ma non sembra

prevista la possibilità di elaborare i dati in tempo reale.

3.17 Portable Telemedical Monitoring Using Wireless Sensors on the

Edge of the Internet

Prevede l'uso di una serie di sensori (accelerometri,

respiro, ECG...) che rilevano segnali in varie parti del

corpo, che comunicano via radio con un “personal

server” all'interno di una PAN (Personal Area Network).

Il personal server provvede poi a inviare i dati verso

l'esterno ed attraverso la rete internet per l'elaborazione.

Page 17: Facoltà di Ingegneria Corso di Studi in Ingegneria Informatica · monitoraggio dei parametri vitali. Il monitoraggio sta infatti diventando una metodica sempre più diffusa per il

3.18 Ring sensor

Si tratta di un anello che contiene un sensore

pletismografico ed un apparato di trasmissione.

Ponendo nelle vicinanze una stazione ricevente (che

può a sua volta elaborare o ritrasmettere il segnale) si

può realizzare un monitoraggio pletismografico

continuo.

3.19 SmarTex Wealthy

Il progetto Wealthy, guidato dall'azienda Smartex, ha come

obiettivo lo sviluppo di “indumenti intelligenti” capaci di acquisire

dati per monitorare utenti in situazioni di rischio (malati cronici,

lavori pericolosi, sportivi, piloti..). Il progetto è focalizzato

soprattutto allo sviluppo delle tecnologie per l'integrazione dei

sensori nel tessuto, ma prevede anche la possibilità di

teletrasmettere i dati attraverso connessioni GSM/GPRS.

3.20 WPR wireless sensor

Il monitoraggio dei parametri vitali come glicemia, ormoni, concentrazione di droga è

eseguito con piccoli sensori biomedici indossabili, non invasivi, che possono essere

utilizzati quando necessario sia per la diagnosi che per motivi di sicurezza.

BAN:Body Area Network

Hand-Held-Device(receiver unit)

Wireless sensors

BAN:Body Area Network

Hand-Held-Device(receiver unit)

BAN:Body Area Network

Hand-Held-Device(receiver unit)

Wireless sensors

Nano-sensori intelligenti possono controllare le contrazioni muscolari

e i movimenti degli arti o sostituire funzioni disattivate come aiuti voce, occhio

artificiale, voce artificiale, elementi di contatto in sostituzione di impressioni sensoriali.

Attraverso il trasferimento wireless di informazioni ai servizi medici i sensori possono

monitorare, analizzare e controllare la terapia

Page 18: Facoltà di Ingegneria Corso di Studi in Ingegneria Informatica · monitoraggio dei parametri vitali. Il monitoraggio sta infatti diventando una metodica sempre più diffusa per il

Il paziente può essere trattato nella sua casa con sensori indossabili che registrano i segni

dei parametri vitali fornendo: rilevamento continuo con l'analisi dei trend, rilevamento

automatico di situazioni non-normali e allarme automatico di in caso di emergenza.

La società norvegese WPR Medical ha sposato questa filosofia concentrando i propri

sforzi sull’utilizzo tecnologia BAN con pluralità di sensori anche se, non esiste uno

standard, sono possibili diversi sistemi di radio-frequenza e non essendoci standard

internazionali per i formati dei dati wireless dei segni vitali le soluzioni proprietarie sono

sviluppate senza interoperabilità.

4. Architetture Evolute per il monitoraggio di parametri biomedici.

4.1 Considerazioni sui Modelli Architetturali

Gli approcci per la realizzazione di un’applicazione e/o un sistema possono essere

molteplici. Per sistemi simili a quello che presentiamo in questo lavoro di tesi,

tradizionalmente si adotta un modello di tipo client/server che provvede ad eseguire

l’interfaccia utente e i processi logici sui client e utilizzare il server per la fruizione dei

dati.

Per applicazioni medio-piccole questo è spesso molto efficiente per l’implementazione,

specialmente se non si progetta di modificare l’applicazione o l’ambiente in cui viene

eseguita.

Lo sviluppo di applicazioni utilizzando questo approccio ha però i seguenti svantaggi:

Il mantenimento è difficile. Quando processi logici e interfaccia utente sono

posizionati in segmenti di codice monolitico, un cambiamento di qualcosa spesso

richiede la riprogettazione di qualcos’altro. Trovare il codice che deve essere

modificato è difficile.

- Il riutilizzo di componenti/processi logici è difficile. Le regole dei processi sono

una parte importante di ogni organizzazione e loro vengono applicate

unilateralmente e in modo consistente. Comunque, con questo approccio, la

definizione e l’implementazione di regole deve necessariamente avvenire ogni

volta che un’applicazione viene progettata.

Page 19: Facoltà di Ingegneria Corso di Studi in Ingegneria Informatica · monitoraggio dei parametri vitali. Il monitoraggio sta infatti diventando una metodica sempre più diffusa per il

- Prestazioni limitate. Quando l’interfaccia e i processi logici vengono eseguiti su

un client, sarà limitata la potenza computazionale del client. Non ci sono modi di

aumentare l’efficienza computazionale di un’applicazione.

- La scalabilità è limitata.

Per definizione, le applicazioni tradizionali client/server non possono essere usate in

ambienti computazionali distribuiti. Se si vuole progettare, implementare, e mantenere

applicazioni complesse che vengono eseguite in ambienti computazionali eterogenei si

necessita di separare i livelli logici.

Per questo l’architettura dell’applicazione è strutturata su livelli ed è partizionata in modo

che il codice per ognuno dei livelli sia indipendente dagli altri. Con questo tipo di

architettura, ogni livello logico è responsabile per specifiche azioni.

L’approccio a livelli fornisce i seguenti significativi vantaggi:

Applicazioni flessibili. Per esempio il cambiamento di una regola dei processi non

richiederà un cambiamento dell’interfaccia.

Permette di riutilizzare componenti dell’applicazione. Per esempio lo stesso

processo logico può essere applicato a più finestre.

Si presta bene a sforzi sviluppativi di gruppo. La natura modulare incoraggia i

lavori di gruppo.

Permette di distribuire le parti di un’applicazione su macchine e/o locazioni che

sono le più appropriate. Questo può migliorare molto sia la scalabilità che le

prestazioni.

In definitiva un’architettura a livelli fornisce un framework che può facilmente essere ap-

plicato a un ambiente computazionale distribuito, che permette ai livelli (o anche ai

componenti al loro interno) di poter essere eseguiti su macchine separate.

In un ambiente distribuito, i client non necessitano di conoscere dove un oggetto risiede o

anche il loro ambiente operativo. Le applicazioni distribuite orientate ad oggetti possono

così essere dinamiche. Una volta che è stata partizionata un’applicazione in livelli logici,

si può iniziare a pensare all’implementazione fisica dell’applicazione, ciò è come voler

distribuire questi livelli su una rete.

Page 20: Facoltà di Ingegneria Corso di Studi in Ingegneria Informatica · monitoraggio dei parametri vitali. Il monitoraggio sta infatti diventando una metodica sempre più diffusa per il

4.2 L’ Architettura Software di riferimento sviluppata dall’ICAR - CNR

In questo paragrafo, viene presentata l’Architettura software di riferimento utilizzata nel

presente lavoro. L’architettura di presenta suddivisa in tre layer (strati) come mostrto in

figura.

Architettura del Sistema

4.2.1 Data Layer

È il livello in cui sono acquisiti ed aggregati i dati personali dell’utente, i dati acquisiti

dai dispositivi hardware utilizzati per il monitoraggio e i dati di contesto elementari

generati dalle varie sorgenti informative disponibili.

I dati grezzi vengono in questo livello elaborati dai moduli interni che calcolano alcuni

parametri fondamentali come la frequenza cardiaca, la postura dell’utente e la tipologia di

movimento che sta svolgendo nel momento in cui è sottoposto a monitoraggio.

I moduli previsti per il Data Layer sono:

User Module: mette a disposizione un’interfaccia utente per l’immissione

di dati utili al sistema. I dati richiesti sono indispensabili per rendere il

sistema personale e calcolare le soglie d’allarme in modo personalizzato.

HeartRate Module: contiene i metodi per la detection del complesso QRS

dell’elettrocardiogramma e per il calcolo del picco R utilizzato per la

valutazione della frequenza cardiaca.

Page 21: Facoltà di Ingegneria Corso di Studi in Ingegneria Informatica · monitoraggio dei parametri vitali. Il monitoraggio sta infatti diventando una metodica sempre più diffusa per il

Position Module: è il modulo che si occupa di riconoscere la postura del

paziente. In base ai valori misurati dall’accelerometro è in grado di

rilevare se il paziente è in posizione supina o eretta.

Walk-Run Module: contiene i metodi per il riconoscimento dell’attività

motoria del paziente. È in grado di individuare se il paziente sta

effettuando una corsa o sta camminando.

4.2.2 Decisional Layer

Rappresenta l’intelligenza del sistema che a partire dai dati elaborati dal Data Layer

determina se devono essere intraprese delle azioni e in caso affermativo che tipo di azioni

devono essere intraprese, ad esempio: invio di un allarme o un avviso al paziente.

I moduli previsti per il Decisional Layer sono:

Knowledge-base Module: in questo modulo è contenuta una conoscenza

clinica elementare circa la variabilità della frequenza cardiaca formalizzata

in termini di concetti, relazioni e regole.

Rules-Engine Module: si occupa di processare le regole.

4.2.3 Action Layer

Offre i meccanismi per generare ed inviare messaggi di allarme o per generare avvisi di

notifica al paziente.

I moduli previsti per l’Action Layer sono:

Alarm Generator and Delivery Module: sulla base dell’output del rules-

engine module provvede alla generazione di un SMS che viene inviato al

medico curante del paziente.

Warning Generator Module: in corrispondenza dell’output del rules-engine

module provvede alla generazione di un avviso sul dispositivo mobile del

paziente.

Page 22: Facoltà di Ingegneria Corso di Studi in Ingegneria Informatica · monitoraggio dei parametri vitali. Il monitoraggio sta infatti diventando una metodica sempre più diffusa per il

4.3 Realizzazione di Componente software per la visualizzazione di un

tracciato ECG ad una derivazione

All’interno del Data Layer si è provveduto ad integrare un nuovo componente per la

visualizzazione del tracciato elettrocardiografico su dispositivi mobili.

Il componente GUI contiene tutti gli elementi di interfaccia grafica. È costituito

principalmente della classe principale che rappresenta la finestra principale, dove

vengono visualizzati i dati inerenti alle connessioni dati stabilite con i dispositivi

biomedicali. Questa classe utilizza un MonitoringProxy per collegare qualsiasi sensore.

La connessione è stabilita una volta che il tasto "connect" è stato cliccato, e subito dopo

viene richiamato il DataReceivedListener per il proxy, che si occupa di riceve i dati dai

sensori grazie ai quali verranno aggiornati anche alcuni elementi della GUI come il

livello della batteria, la frequenza cardiaca, la postura, etc…

L'aggiornamento del tracciato ECG viene effettuato richiamando la funzione paint()

attraverso i comando repaint().

L'applicazione mobile sarà dunque costituita da un'altra activity, PlotActivity, che viene

utilizzata per visualizzare i segnali vitali, come ECG, o segnali accelerometrici.

L’activity PlotActivity è costituito da un semplice ImageView per visualizzare il grafico.

Per verificare le prestazioni del componente realizzato sono state simulate diverse forme

d’onda mediante un simulatore hardware di paziente (Datrend AMPS-1) al quale sono

stati applicati gli elettrodi.

Dispositivi Utilizzati nella fase di verifica prestazionale

Page 23: Facoltà di Ingegneria Corso di Studi in Ingegneria Informatica · monitoraggio dei parametri vitali. Il monitoraggio sta infatti diventando una metodica sempre più diffusa per il

Per la realizzazione del modulo software si è scelto il linguaggio di programmazione

Java. La scelta non è stata casuale, ma dettata da numerosi vantaggi che tale tecnologia

offre: essere orientata agli oggetti, ma soprattutto essere indipendente dalla piattaforma,

ossia portabile. Se si vuole, infatti, che lo stesso applicativo giri su più tipologie di

macchine e sistemi operativi, Java diviene una scelta obbligatoria.

.

5. Conclusioni

Con questo lavoro di tesi, dopo un prima descrizione dei principali sistemi di

monitoraggio dei parametri biomedici, la nostra attenzione si e’ focalizzata sui principali

dispositivi commerciali utilizzati per il monitoraggio di parametri vitali che possono

essere rilevati attraverso l’uso di sensori collegati anche a dispositivi mobili al fine di

inviare i dati per l'elaborazione ed il salvataggio.

Questo lavoro e’ stato realizzato con un approccio open ed un’architettura flessibile e

adattabile, sia per far fronte alla varietà di dispositivi di monitoraggio esistenti, sia per

ampliare i servizi offerti utilizzando dispositivi mobili di nuova generazione con elevate

capacità di calcolo e memoria per eseguire elaborazioni locali e rilevare eventuali

anomalie.

I test eseguiti sulla piattaforma di monitoraggio realizzata presso l’ICAR – CNR, per il

presente lavoro di tesi, con particolare riferimento al componente di visualizzazione del

segnale ECG su dispositivo mobile, hanno dimostrato che il sistema e’ estremamente

efficace. I risultati preliminari dimostrano il potenziale di questo sistema per

l'identificazione e la diagnosi di situazioni anomale. Anche quando si tenta di innescare

falsi positivi con movimenti normali ma esagerati, nella grande maggioranza dei casi, il

sistema non genera alcun allarme.

L'uso di questo sistema potra’ essere facilmente esteso dopo ulteriori esperienze di misura

bio-dati in gruppi selezionati di persone in situazioni del mondo reale. Il suo valore

generale e l'uso clinico saranno ulteriormente chiariti con studi sulla valutazione dei costi.

Page 24: Facoltà di Ingegneria Corso di Studi in Ingegneria Informatica · monitoraggio dei parametri vitali. Il monitoraggio sta infatti diventando una metodica sempre più diffusa per il

Bibliografia

R. Fensli, E. Gunnarson, O. Hejlesen, “A Wireless ECG System for Continuous Event

Recording and Communication to a Clinical Alarm Station”, Engineering in Medicine

and Biology Society, IEMBS; 26th Annual International Conference of the IEEE,

September 1-5, 2004, Volume 1, Issue , pp2208-2211

J. Rodríguez, A. Goni and A. Illarramendi, “Real-Time Classification of ECGs on a

PDA”, March, 2005, IEEE Transactions on Volume 9, Issue 1, pp23-34

“Holter Devices Comparison”, available on the website:

www.medcompare.com/matrix/132/Holter-Monitor.html [Last accessed on 01/01/2009]

John G. Webster, “Medical Instrumentation: Application and Design Third Edition”,

Published by Wiley, 1998, ISBN 0471153680

Medtronic Reveal® Insertable Loop Recorder. “The World's First Implantable

Diagnostic Device”, available on the website: www.medtronic.com [Last accessed on

01/01/2009]

V. Thulasi Bai, and Srivatsa S. K, “Design and Simulation of Portable Telemedicine

System for High Risk Cardiac Patients”, International Journal of Biomedical Sciences,

2006, Volume 1, No. 1, pp1306-1216

QRS Diagnostic, “PDAs-Mobile Diagnostic Workstations. QRS Diagnostic”, Sep 82004,

available on the website: www.qrsdiagnostic.com [Last accessed on 01/01/2009]

Pulse Medical Limited, “ECG System, MeditSense 100 H”, Sep 8, 2004, available on the

website: www.pulsemedical.co.uk [Last accessed on 01/01/2009]

D. Konstantas, V. Jones, R. Bults, “MobiHealth –innovative 2.5 / 3G mobile services and

applications for healthcare”, University of Twente Center for Telematics and

Information Technology – APS 7500 AE Enschede

“Global System for Mobile Communication”, The International Engineering Consortium,

www.iec.org [Last accessed on 01/01/2009]

3G, en.wikipedia.org/wiki/3G [Last accessed on 01/01/2009]

I. Sachpazidis, “@Home: a modular telemedicine system” in Proc. 2nd workshop on

Mobile Computing in Medicine, Heidelberg, Germany, April, 2002

C. Kunze, U. Grossmann, W. Stork and K.D. Müller-Glaser, “Application of ubiquitous

computing in personal health monitoring systems” in Proc. 36th Ann. meeting of the

German Society for Biomed. Eng, 2002

J. H. Hong, N. J. Kim, E. J. Cha, T. S. Lee, “Classification Technique of Human Motion

Context based on Wireless Sensor Network”, Proceedings of the 2005 IEEE, Engineering

Page 25: Facoltà di Ingegneria Corso di Studi in Ingegneria Informatica · monitoraggio dei parametri vitali. Il monitoraggio sta infatti diventando una metodica sempre più diffusa per il

in Medicine and Biology 27th Annual Conference, Shanghai, China, September 1-4,

2005, pp5201-5202

J. Healey and B. Logan, “Wearable Wellness Monitoring Using ECG and Accelerometer

Data”, Hewlett-Packard Cambridge Research Laboratory, Wearable Computers, 2005.

Proceedings. Ninth IEEE International Symposium, October 18-21, 2005, pp220-221,

ISBN: 0-7695-2419-2

Bass L., Clements P., Kazman R., Software architecture in practice (2nd edition),

Pearson, Addison Wesley, 2003

Rozanski R., Woods E., Software Systems Architecture, Addison Wesley, 2005

Taylor R. N., Medvidovic N., Dashofy, E.M., Software architecture - foundations,

theory, and practice, John Wiley and Sons, 2010.