faculteit techniek, bestuur en management technische universiteit delft 1 integration of fuel cells...

71
1 Faculteit Techniek, Bestuur en Management Technische Universiteit Delft Integration of Fuel Cells into Society Kas Hemmes Delft University of technology The Netherlands SECTIE ENERGIE EN INDUSTRIE

Upload: cornelius-witham

Post on 11-Dec-2015

216 views

Category:

Documents


1 download

TRANSCRIPT

  • Slide 1

Faculteit Techniek, Bestuur en Management Technische Universiteit Delft 1 Integration of Fuel Cells into Society Kas Hemmes Delft University of technology The Netherlands SECTIE ENERGIE EN INDUSTRIE Slide 2 Faculteit Techniek, Bestuur en Management Technische Universiteit Delft 2 content 1.Technology dynamics theory 2.The bigger picture (landscape) 3.Fuel cell case study 4.Fuel cell dogmas (ASME FC conf. Rochester 2004) 5.Lessons learned and the way forward 6.Energy R&D policy 7.System thinking 8.Six integration concepts (+ fuel cell examples) Slide 3 Faculteit Techniek, Bestuur en Management Technische Universiteit Delft 3 Transitions 1 Slide 4 Faculteit Techniek, Bestuur en Management Technische Universiteit Delft 4 Slide 5 Faculteit Techniek, Bestuur en Management Technische Universiteit Delft 5 Actors Slide 6 Faculteit Techniek, Bestuur en Management Technische Universiteit Delft 6 Sociotechnical systems Source: www.springerlink.com/index/p485077x73t57v24.pdf Slide 7 Faculteit Techniek, Bestuur en Management Technische Universiteit Delft 7 Entrenchment or Lock-in of technology development Institutions MarketsTechnology 1 Operational Elements of an Energy System Slide 8 Faculteit Techniek, Bestuur en Management Technische Universiteit Delft 8 Development of one technology or artifact vs System innovation or Transition Single technology: ICE, Wankel engine, Sterling engine Gas engine, gas turbine, Fuel Cell Transition to a hydrogen economy Hydrogen Fuel Cell plus infrastructure Transition from fossil energy to a sustainable energy supply Both apply to fuel cells, which is sometimes positive sometimes negative for the development of fuel cells. Slide 9 Faculteit Techniek, Bestuur en Management Technische Universiteit Delft 9 The bigger picture drivers for change 1.Finite fossil energy reserves (Club of Rome) 2.Global climate change (Kyoto, Al Gore) 3.Security Of Supply (S.O.S., George W. Bush) 4.Clean air (California, large cities) 5.Economic development through innovation. 6.Sustainable development (Brundtland) Slide 10 Faculteit Techniek, Bestuur en Management Technische Universiteit Delft 10 Fuel cell case study Sir William Grove Slide 11 Faculteit Techniek, Bestuur en Management Technische Universiteit Delft 11 Number of fuel cell publications per year Web of science key word: fuel cell* * 10 -5 Slide 12 Faculteit Techniek, Bestuur en Management Technische Universiteit Delft 12 Slide 13 Faculteit Techniek, Bestuur en Management Technische Universiteit Delft 13 Slide 14 Faculteit Techniek, Bestuur en Management Technische Universiteit Delft 14 Slide 15 Faculteit Techniek, Bestuur en Management Technische Universiteit Delft 15 Daimler/Ballard Slide 16 Faculteit Techniek, Bestuur en Management Technische Universiteit Delft 16 Slide 17 Faculteit Techniek, Bestuur en Management Technische Universiteit Delft 17 Slide 18 Faculteit Techniek, Bestuur en Management Technische Universiteit Delft 18 At top: Technicians inspect a PEM fuel cell in the Gemini 7 spacecraft, 1965. At bottom: Close-up view of installed cell Original NASA caption: "Spacecraft technicians check the fuel cell in the adapter section of the Gemini VII spacecraft. Three modules each containing 32 individual sections are combined with appropriate control devices to make one fuel cell battery with a rated output of one kilowatt. Two of these batteries, each measuring 25 inches in length and 12.5 inches in diameter, provided on board electric power for the Gemini V eight day space mission." Slide 19 Faculteit Techniek, Bestuur en Management Technische Universiteit Delft 19 Slide 20 Faculteit Techniek, Bestuur en Management Technische Universiteit Delft 20 Slide 21 Faculteit Techniek, Bestuur en Management Technische Universiteit Delft 21 Slide 22 Faculteit Techniek, Bestuur en Management Technische Universiteit Delft 22 1970 Alkaline Fuel Cell Vehicle, based on Austin A40 Dj vu ? Slide 23 Faculteit Techniek, Bestuur en Management Technische Universiteit Delft 23 Toyota FCHV-F (Fuel-Cell Hybrid Vehicle-Forklift). Slide 24 Faculteit Techniek, Bestuur en Management Technische Universiteit Delft 24 How can we realize the necessary change in society? Call for innovation and breakthroughs in Science and Technology is loud, but .. we tend to forget about innovation and breakthroughs in the way we organize R&D funding Keywords: Innovation and Dogmas, System thinking and Integration, Slide 25 Faculteit Techniek, Bestuur en Management Technische Universiteit Delft 25 R&D Policy Call for innovation and breakthroughs in Science and Technology is loud, but .. we tend to forget about innovation and breakthroughs in the way we organize R&D funding Keywords: Innovation and Dogmas, System thinking and Integration, Slide 26 Faculteit Techniek, Bestuur en Management Technische Universiteit Delft 26 Linear development model/policy Slide 27 Faculteit Techniek, Bestuur en Management Technische Universiteit Delft 27 Cyclic Innovation Model Berkhout et al.; The cyclic nature of innovation. Vol. 17 Advances in the study of entrepreneurship, innovation and economic growth, Elsevier (2007) Slide 28 Faculteit Techniek, Bestuur en Management Technische Universiteit Delft 28 How can we overcome the dogmas ? *) 1) Polymer fuel cells are inherently expensive and will only be used for niche markets like space applications. 2) Fuel cells are more efficient because they circumvent the Carnot limit. 3) Efficiency is always lower than 100% 4) A fuel cell converts Hydrogen into power and heat. 5) To be economically feasible the fuel cell should be operated at the highest possible power density. 6) also the fuel utilization should be as high as possible. 7) Nernst loss is inevitable and always proportional to utilization. 8) In order to use solid fuels in a fuel cell they must be gasified first. 9) Only low temperature fuel cells are suitable for automotive applications. 10) A fuel cell always has two inlets and two outlets. *) Hemmes; keynote at the ASME FC conference, Rochester 2004 Slide 29 Faculteit Techniek, Bestuur en Management Technische Universiteit Delft 29 System thinking (Amory Lovins) Optimizing Not Just Parts, But Entire Systems Designers and decision-makers too often define problems narrowly, without identifying their causes or connections. This merely shifts or even multiplies problems. Systems thinking the opposite of that dis-integrated approachtypically reveals lasting, elegantly frugal solutions with multiple benefits, which enable us to transcend ideological battles and unite all parties around shared goals. systems thinking also reveals interconnections between problems, which often permits one solution to be leveraged to create many more. Slide 30 Faculteit Techniek, Bestuur en Management Technische Universiteit Delft 30 Six integration concepts 1.Integration of components into a system. 2.Integration of energy sources into Multisource Multiproduct (MSMP) energy systems. 3.Integration of industries into eco-parks. (Industrial Ecology; cradle to cradle). 4.Integration of new technology into existing technology. 5.Integration of sectors. 6.Integration of functions. Slide 31 Faculteit Techniek, Bestuur en Management Technische Universiteit Delft 31 1. Integration of Components into an Energy System YDTCT system boundary i,in (x,t) j,out (x,t) C S loss (x,t) Y = Yield; supply T = Transport C = Conversion S = Storage D = Demand Slide 32 Faculteit Techniek, Bestuur en Management Technische Universiteit Delft 32 Mismatch in time and place YDTCT S Yield & Demand Y(x,t) D(x,t) Standard solution: transport and storage Slide 33 Faculteit Techniek, Bestuur en Management Technische Universiteit Delft 33 However, . System thinking !!! Slide 34 Faculteit Techniek, Bestuur en Management Technische Universiteit Delft 34 1 Classification of energy system 2 3 Linear energy system Co-generation system Tri-generation system Slide 35 Faculteit Techniek, Bestuur en Management Technische Universiteit Delft 35 Not really integrated but still coupled linear energy systems Renewable 1 2 3 Fossil Nuclear E-net Compare to communicating vessels in water systems: 1 Joule wind/solar in the grid saves 2,5 Joule of fossil energy Slide 36 Faculteit Techniek, Bestuur en Management Technische Universiteit Delft 36 Next integration step: Co-firing/Blending Biomass Co-firing F R E-grid Bio-ethanol Bio-diesel mix F R Transport Slide 37 Faculteit Techniek, Bestuur en Management Technische Universiteit Delft 37 Example : simple CHP MSMP c Slide 38 Faculteit Techniek, Bestuur en Management Technische Universiteit Delft 38 Multisource-multiproduct system (MSMP) Source: Martin Geidl (ETH Zurich) Slide 39 Faculteit Techniek, Bestuur en Management Technische Universiteit Delft 39 Multisource-multiproduct system (MSMP) Optimization by using additional degrees of freedom of multi source multiproduct systems How much of each input input to supply the necessary output in an optimal way ? Economically optimal Energy efficient Slide 40 Faculteit Techniek, Bestuur en Management Technische Universiteit Delft 40 A Fuel Cell that produces hydrogen and converts heat into power ? CO + H 2 O ==> H 2 + CO 2 DCFC C Q (solar) Power Syngas C+O 2 = CO Slide 41 Faculteit Techniek, Bestuur en Management Technische Universiteit Delft 41 Electrochemical gasification in a Direct Carbon Fuel Cell 2C + O 2 ==> 2CO S > 0 H < 0 DCFC C Q Power (Solar) Heat can be converted into power with an efficiency higher than the Carnot efficiency! Self regulating process Syngas Slide 42 Faculteit Techniek, Bestuur en Management Technische Universiteit Delft 42 Slide 43 Faculteit Techniek, Bestuur en Management Technische Universiteit Delft 43 Slide 44 Faculteit Techniek, Bestuur en Management Technische Universiteit Delft 44 Integration of solar & fossil in a MSMP system Thermal decomposition Fossil (C x H y ) Solar (or Nuclear) C H2H2 Possible application in the North of Africa to supply the Energy for Europe ?? DCFC PEM Slide 45 Faculteit Techniek, Bestuur en Management Technische Universiteit Delft 45 Also lock-in in Fuel Cell developments MCFC, SOFC DCFC & Proton Conducting Ceramic FC Slide 46 Faculteit Techniek, Bestuur en Management Technische Universiteit Delft 46 Conventional Solution for dealing with fluctuating renewable energy sources. E - power Storage Essentially it is a complex storage device in a linear energy system. Slide 47 Faculteit Techniek, Bestuur en Management Technische Universiteit Delft 47 Storage has become the problem instead of the solution. Electrolyser E - power heat H 2 FC O2O2 H2OH2O H2OH2O E - power Storage Slide 48 Faculteit Techniek, Bestuur en Management Technische Universiteit Delft 48 Conventional Solution is Island Thinking not System Thinking Storage Slide 49 Faculteit Techniek, Bestuur en Management Technische Universiteit Delft 49 MSMP Example: Integration of an Internal Reforming Fuel Cell with wind energy. IR-FC air N2N2 NG Optional (NG/N 2 ) H2H2 E - power H 2 heat Slide 50 Faculteit Techniek, Bestuur en Management Technische Universiteit Delft 50 MSMP: Superwind concept IR-FC NG E - power CO / H 2 heat E - power Slide 51 Faculteit Techniek, Bestuur en Management Technische Universiteit Delft 51 IR - SOFC system flowsheet Slide 52 Faculteit Techniek, Bestuur en Management Technische Universiteit Delft 52 Mode 1 High efficiency mode Input flow rate of NG is kept constant at 2000 kW. The fuel utilization is decreased by decreasing the current density. Three outputs vs Fuel Utilization 1. Electric Power 2. H 2 & CO 3. Heat Slide 53 Faculteit Techniek, Bestuur en Management Technische Universiteit Delft 53 Mode 1 High efficiency mode Slide 54 Faculteit Techniek, Bestuur en Management Technische Universiteit Delft 54 Analysis of Superwind concept OCV = Open Cell Voltage = 100 220 mV u f = fuel utilisation i = current density r = specific resistance Make optimal use of the specific properties of a component (Fuel Cell) Slide 55 Faculteit Techniek, Bestuur en Management Technische Universiteit Delft 55 Superwind Bio- methanisation Fuel cell Transformer Electric grid Residential housing Slide 56 Faculteit Techniek, Bestuur en Management Technische Universiteit Delft 56 THE SUPER-COMBI PROJECT Slide 57 Faculteit Techniek, Bestuur en Management Technische Universiteit Delft 57 3. Integration of new technology in existing technology Development of new technology take a long time Existing technology sometimes not very efficient Existing technology not written off economically Imbedding in existing (knowledge) infrastructure Involve people with practical and tacit knowledge Slide 58 Faculteit Techniek, Bestuur en Management Technische Universiteit Delft 58 Use of fuel cells in a natural gas mixing station IR-FCFCASU heat air N2N2 O2O2 NG NG/N 2 /(H 2 ) H2H2 E - power H2H2 Low T heat E - power Slide 59 Faculteit Techniek, Bestuur en Management Technische Universiteit Delft 59 Replace ASU by a fuel cell IR-FCLow-T FC air N2N2 NG NG/N2/(H 2 ) H2H2 E - power N2N2 Low T heat The system produces electricity in stead consuming it !! (Order of 10-50 MW) Slide 60 Faculteit Techniek, Bestuur en Management Technische Universiteit Delft 60 Use MCFC (or DCFC) for Carbon Capture NG E - power MCFC N 2 /O 2 /CO 2 H 2 O/ CO 2 cathode: l/2 O 2 + CO 2 + 2e - = CO 3 2- anode: H 2 + CO 3 2- = H 2 O + CO 2 + 2e - CO 3 2- The system produces electricity in stead consuming it !! Source: BP Coal fired power plant Slide 61 Faculteit Techniek, Bestuur en Management Technische Universiteit Delft 61 Fuel cell topping-cycle in existing power plant (N. Lior) NG E - power SOFC / MCFC Heat NG air Slide 62 Faculteit Techniek, Bestuur en Management Technische Universiteit Delft 62 If you cant beat them; join them! Fuel CellCarnot Engines 1- fc Waste heat Heat fc c (1- fc ) Slide 63 Faculteit Techniek, Bestuur en Management Technische Universiteit Delft 63 Exergy losses in combined cycle vs Fuel cell topping-cycle (N. Woudstra) Slide 64 Faculteit Techniek, Bestuur en Management Technische Universiteit Delft 64 4. Integration of sectors Widening of system boundaries System thinking Solving more problems with one solution Examples: 4.1 Waste incineration 4.2 V2G (vehicle to grid) Slide 65 Faculteit Techniek, Bestuur en Management Technische Universiteit Delft 65 V2G (vehicle to grid) NL: 6.000.000 cars 50 kW = 300 GW. More than 10 x installed capacity only 10% of the cars needed or ?? Slide 66 Faculteit Techniek, Bestuur en Management Technische Universiteit Delft 66..or all cars on 10 % of maximum power Fuel cell at 10% of maximum power is highly efficient (in principle). Slide 67 Faculteit Techniek, Bestuur en Management Technische Universiteit Delft 67 Slide 68 Faculteit Techniek, Bestuur en Management Technische Universiteit Delft 68 analysis V2G (vehicle to grid) There is/are inefficiencie(s) in the present system (cars stand still) Transport sector en energy sector are integrated Overcapacity is used to approach the thermodynamic limit Batteries can supply ~1 hour of power for NL e.g. to compensate fluctuating wind energy (~ 6. 10 6 * 1 kWh = 6 GWh) Solving more problems with one solution System innovation Slide 69 Faculteit Techniek, Bestuur en Management Technische Universiteit Delft 69 5. Integration of functions Example: Solar pannels on the roof Learn from industrial designers There are a lot of opportunities here Slide 70 Faculteit Techniek, Bestuur en Management Technische Universiteit Delft 70 Conclusions Sustainable Development requires: a broader perspective and approach a different way of thinking system innovation integration in different ways and on different levels. More room for creativity, lateral thinking and 2 photon processes. finally Slide 71 Faculteit Techniek, Bestuur en Management Technische Universiteit Delft 71 R&D Policy When analyzing the often new possibilities and potential of the forms of integration, the question arises whether or not present energy research policies are suitable to deal with these forms of innovation. It is suggested that a more open definition of energy research fields and energy research topics is needed. To accelerate product-, process- and system innovations new innovation theories can be applied like the Cyclic Innovation Model.