fcc-pp - collider first look at the arc lattice r. alemany & b. holzer

18
FCC-pp - Collider First Look at the Arc Lattice R. Alemany & B. Holzer

Upload: rachel-conley

Post on 19-Dec-2015

230 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: FCC-pp - Collider First Look at the Arc Lattice R. Alemany & B. Holzer

FCC-pp - Collider

First Look at the Arc Lattice

R. Alemany & B. Holzer

Page 2: FCC-pp - Collider First Look at the Arc Lattice R. Alemany & B. Holzer

2

Latest News: Geographical / Geological Considerations

J. Osborne and Family

Build the Lattice Design on a modular basis using building blocks that are matched / or “matchable” to each other to follow a large variety of geometries

Page 3: FCC-pp - Collider First Look at the Arc Lattice R. Alemany & B. Holzer

LHC parameters: energy

7000 GeV dipole magnets N = 1232 dipole length l = 14.3 m

dipole field

Basic Cell: €

B dl ≈ N l B = 2π p /e∫

B ≈2π 7000 109eV

1232 15 m 3 108 m

se

= 8.3 Tesla

Where do we come from ??

For the time being we keep the magnet distances as in the case of LHC. tbcccc

Page 4: FCC-pp - Collider First Look at the Arc Lattice R. Alemany & B. Holzer

Magnet aperture scaled down 56mm -> 40mm

1.) assumption: LHC rule holds for the future beam screen

2.) normalised emittance a la LHC ... ??

3.) we keep the required free aperture

Scaling for FCCpp

εn = 3.75 ⋅10−6 m rad

injection energy = 3 TeV

→ ε0 = 9.4 ⋅10−10 m rad

... to be discussed ...

nσ =15 =rmin

εβ→ ˆ β < 680m

→ rmin =12mm

β±=(1± sin

ψ cell

2)L

sinψ cell

0 30 60 90 120 150 18010

12

14

16

18

2020

10

βges ( )

1800

εn = 2.2 ⋅10−6 m rad

Magnets

4.) assumption: dipole B-field increased by factor 2 (Nb3 Sn) -> B0=16T

5.) Quadrupole Magnets:

... to be discussed / to be checked / to be re-iterated

k =g

Bρ=

B0

ra

→kFcc

KLHC

≈ 0.4

h

InB 0

Page 5: FCC-pp - Collider First Look at the Arc Lattice R. Alemany & B. Holzer

Arc Cell V1: First Arc Layout:Lcell ≈ 206.4mLdipole=14.2m12 dipoles

per cell32 cells per

arc12 arcs

4608 dipolesdrifts a la LHC: dipole-quad=3.6mdipole-dipole=1.3mdipole field =16T <--> 50TeV

The storage Ring:12 Arcs, 12 Straights ... yes yes the racetrack will come soon.

LFccpp= Lcell * Ncell/arc * Narc + 12 * Lstraights + 12 * 2 * 2 * Lcelldispcuppr

= 206.4m * 32 * 12 + 12 * 1400m + 12 * 2li-re* 2cells * 206.4m

=105 km

Just as Example and for completeness:

Page 6: FCC-pp - Collider First Look at the Arc Lattice R. Alemany & B. Holzer

Scaling for FCCpp: Dipole Fill Factor for present Version V3:

Pushing the limit (Dipole Fill Factor):12 dipoles per cell, ldipole=14.2m34 cells per arc12 arcsdipole field = 15T <--> 50TeV

or 16T <--> 53.33TeV

ζ =L(Σdipoles)

Lcell

= 82%

For each cell length there is an optimum βmax

and there is an optimum dipole length to fit in a integer number of magnets per cell to optimise the fill factor for E=50TeV

Variables:dipole lengthdipole numbercell length

Constants (??):drift (dipole-dipole) =1.3mdrift (dipole-quadrupole) =3.6mquadrupole length =3.1m

to be discussed !!!

5016 dipolesdrifts a la LHC: dipole-quad=3.6mdipole-dipole=1.3m

Page 7: FCC-pp - Collider First Look at the Arc Lattice R. Alemany & B. Holzer

Cell Optimisation:

for the fun of it ...

scaling dipole lengthscell lengthsβ-functionsfill factors

LHC

Page 8: FCC-pp - Collider First Look at the Arc Lattice R. Alemany & B. Holzer

Dipole Fill Factor: ζ

ζ =L(Σdipoles)

Lcell

The quadrupole length is small compared to overall dipole length per cell-> increasing the cell length is always helpful to optimise ζ.-> however the effect is not dramatic and smaller cell lengths might have optical advantages

Page 9: FCC-pp - Collider First Look at the Arc Lattice R. Alemany & B. Holzer

THE RING VERSION “V3”

Ctot= 99130 m

Lminbeta = 1783.106 m (from DS to DS)Linsertions = 1248.84 m (from DS to DS)

ARC2=34 FODOS

ARC1=R:32.5 FODOs

IP1

IP10IP4

IP7ARC1=L:32 FODOs

12 Arcs 12 straight sections distributed equidistantlydispersion freeLSS ≈1.5 km

Page 10: FCC-pp - Collider First Look at the Arc Lattice R. Alemany & B. Holzer

βmax = 352.76 m

Ntot dipoles = 5016 16 T 99130.304 kmLcell = 208.14 m, 12 dipoles/cell, Ldip=14.2 m

Lquad = 5.17 m based on a second estimation of the attainable gradient for Nb3Sn R =20 mm g = 450 T/m k = 2.67 10-3 m-2

Tip Field = 9 T

FODO CELL CHARACTERISTICS OF THE ARC

Dmax = 2.3 m

Phase Advance ~ 90o

V3

Page 11: FCC-pp - Collider First Look at the Arc Lattice R. Alemany & B. Holzer

V3: Combining the arcs with a – first sketch of a – mini-β

β* = 1.1 m

IP

Lq1’=13 m

Lq1’/246 m Lq

q

Lq2’=30 m Lq3’=13 m

Lqq

l1‘ = l1+(Lq1’/2-Lq1/2)

l2‘=l2+(Lq2/2’-Lq2/2)

Lq2’/2

Lq1/q2=13 m & 30 m β(@IT) ~ 9 km

‘ ‘‘

‘ ‘‘ ‘

Page 12: FCC-pp - Collider First Look at the Arc Lattice R. Alemany & B. Holzer

LQ1 = LQ3 = 13 mLQ2 = 30 mkQ1 = 2.23 10-3 m-2kQ2 = 1.69 10-3 m-2kQ3 = 2.07 10-3 m-2

Lquad (except IT) =5.17 mkQ < 2.66 10-3 m-2 to getg = 450 T/m, d=40 mm apert

V3 first Layout of an IR opticsmore sophisticated work by Roman & Rogelio

β* = 1.1 m

Page 13: FCC-pp - Collider First Look at the Arc Lattice R. Alemany & B. Holzer

β* = 1.1 m

Optics for complete Ring: Version V3:

Page 14: FCC-pp - Collider First Look at the Arc Lattice R. Alemany & B. Holzer

RACE TRACK VERSION V3

Ctot= 100.795 mLSS = 2* 7416.802 m (from DS to DS)Arc = 2* 46689.311 m

Questions to be answered:

even / odd number of IPs per LSS ??Length of LSS ??Distance between IPs in the LSS

Page 15: FCC-pp - Collider First Look at the Arc Lattice R. Alemany & B. Holzer

Racetrack-Latticee: Use the Ring Modules & Recombine them in an adequate manner et c’est ca.

two mini-betas in the LSS arcs combined by disp suppr module disp free region in LSS

Page 16: FCC-pp - Collider First Look at the Arc Lattice R. Alemany & B. Holzer

Small Remark from Impedance Police:40mm coil diameter might be tough

Version V4: Rescaling magnet strengths magnet lengths Cell Lengths for 48mm

Gradient (T/m)

Diameter (mm)

Pole tip field (T)

450 40 9

370 50 9.25

320 60 9.6

Page 17: FCC-pp - Collider First Look at the Arc Lattice R. Alemany & B. Holzer

Next Steps:

Complete the Storage Ring:12 Arcs, 12 Straights

Discuss the magnet parameters

( Re - ) Optimise Cell Lengthadd matching quadrupoles in Dispersion Suppressor Region,add empty cells to design the straights according to the MDI needsinclude a first mini-beta

Finalise in first version the “Modules”

Re-Define the Module arrangement to get a first layout of the Racetrack?? Arrangement and number of IPs per LSS ??

... mid term planning:magnet parameters / multipoles / inter magnet drifts ?? / Combine with IR Design

Ezio Todesco second iteration:g = 450 T/m, d=40 mm apertureg = 370 T/m, d=50 mm apertureg = 320 T/m, d=60 mm aperture

!

!

Page 18: FCC-pp - Collider First Look at the Arc Lattice R. Alemany & B. Holzer

V3 lattice presented here is summarised in a FCC Project Note (waiting for publication)A summary of the scaling to 48mm is in preparation “V4”

Resume’:

Where you find all that:

/afs/cern.ch/eng/fcc/hh ....

Arc Design LATTICE_V3 *

for Ring *

for Racetrack

IR design upscaled_HL-LHC_V0.1

upscaled_LHC_V0.1