f.daviaud spec, cea/saclay, france in collaboration with a. chiffaudel,

24
1 Wall Bounded Shear Flows, Newton Institute, Cambridge, September 2008 F.Daviaud SPEC, CEA/Saclay, France In collaboration with A. Chiffaudel, B. Dubrulle, L. Marié, F. Ravelet, P. Cortet Transition to turbulence and turbulent bifurcation in a von Karman flow VKS team

Upload: melodie-clark

Post on 30-Dec-2015

19 views

Category:

Documents


1 download

DESCRIPTION

Transition to turbulence and turbulent bifurcation in a von Karman flow. F.Daviaud SPEC, CEA/Saclay, France In collaboration with A. Chiffaudel, B. Dubrulle, L. Marié, F. Ravelet, P. Cortet. VKS team. Turbulent von Karman flow. Axisymmetry R π symmetry / radial axis R c =100 mm - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: F.Daviaud  SPEC, CEA/Saclay, France In collaboration with A. Chiffaudel,

1Wall Bounded Shear Flows, Newton Institute, Cambridge, September 2008

F.Daviaud SPEC, CEA/Saclay, France

In collaboration with A. Chiffaudel,

B. Dubrulle, L. Marié, F. Ravelet, P. Cortet

Transition to turbulence and turbulent bifurcation in a von Karman flow

VKS team

Page 2: F.Daviaud  SPEC, CEA/Saclay, France In collaboration with A. Chiffaudel,

2Wall Bounded Shear Flows, Newton Institute, Cambridge, September 2008

Turbulent von Karman flow • Axisymmetry• Rπ symmetry / radial axis

• Rc=100 mm• H = 180 mm• f = 2-20 Hz• Re = 2π Rc f2 / ν = 102 – 106

• fluid: water and glycerol-water

f2

f1

Inertial stirringTM60 propellersVelocity regulation

+ -

Page 3: F.Daviaud  SPEC, CEA/Saclay, France In collaboration with A. Chiffaudel,

3Wall Bounded Shear Flows, Newton Institute, Cambridge, September 2008

Mean on 60 s500 f -1

Mean on 1/20 s1/2 f -1

Mean on : 1/500 s1/50 f -1

3 « scales »

Page 4: F.Daviaud  SPEC, CEA/Saclay, France In collaboration with A. Chiffaudel,

4Wall Bounded Shear Flows, Newton Institute, Cambridge, September 2008

Re = 90Stationary axisymmetric

meridian plane: poloïdalrecirculation

Tangent plane : shear layer

Re = 185m = 2 ; stationary

Re = 400m = 2 ; periodic

First bifurcations and symmetry breaking

Page 5: F.Daviaud  SPEC, CEA/Saclay, France In collaboration with A. Chiffaudel,

5Wall Bounded Shear Flows, Newton Institute, Cambridge, September 2008

Time spectra as a function of Re

Re = 330 Re = 380 Re = 440

220 225 230

0.2

0.1

Periodic Quasi-Periodic Chaotic

Page 6: F.Daviaud  SPEC, CEA/Saclay, France In collaboration with A. Chiffaudel,

6Wall Bounded Shear Flows, Newton Institute, Cambridge, September 2008

Time spectra as a function of Re

Re = 1000 Re = 4000TurbulentChaotic 2000 < Re < 6500

Bimodal distribution :

signature of the turbulent shear

Page 7: F.Daviaud  SPEC, CEA/Saclay, France In collaboration with A. Chiffaudel,

7Wall Bounded Shear Flows, Newton Institute, Cambridge, September 2008

Rec= 330Ret = 3300

Developed turbulence

Globally supercritical transition via a Kelvin-Helmholtz type instability of the shear layer and secondary bifurcations

Transition to turbulence: Azimuthal kinetic energy fluctuations

Ravelet et al. JFM 2008

Page 8: F.Daviaud  SPEC, CEA/Saclay, France In collaboration with A. Chiffaudel,

8Wall Bounded Shear Flows, Newton Institute, Cambridge, September 2008

Multiplicity of solutions

Rec= 330Ret = 3300

Kp= Torque/ρRc5 (2π f)2

Re-1

Page 9: F.Daviaud  SPEC, CEA/Saclay, France In collaboration with A. Chiffaudel,

9Wall Bounded Shear Flows, Newton Institute, Cambridge, September 2008

Turbulent Bifurcation of the mean flow

Bifurcated flow (b) :no more shear layer broken symmetry

two cellsone state

one celltwo states

Symmetry broken: 2 different mean flows exchange stability.

Re = 3.105

Page 10: F.Daviaud  SPEC, CEA/Saclay, France In collaboration with A. Chiffaudel,

10Wall Bounded Shear Flows, Newton Institute, Cambridge, September 2008

Turbulent Bifurcation

Re = 3.105

Ravelet et al. PRL 2004

• Kp = Torque/ρRc5 (2π f)2 ΔKp= Kp1- Kp2

• θ = (f2-f1) / (f2+f1)• Re = (f1+f2)1/2

Page 11: F.Daviaud  SPEC, CEA/Saclay, France In collaboration with A. Chiffaudel,

11Wall Bounded Shear Flows, Newton Institute, Cambridge, September 2008

Stability of the symmetric state

Statistics on 500 runs fordifferent θ

Cumulative distributionfunctions of bifurcation time tbif:

P(tbif>t)=A exp(-(t-t0)/τ)

• t0f ~ 5• τ : characteristic bif. time

Page 12: F.Daviaud  SPEC, CEA/Saclay, France In collaboration with A. Chiffaudel,

12Wall Bounded Shear Flows, Newton Institute, Cambridge, September 2008

Stability of the symmetric state

• symmetric state marginally stableτ → ∞ when θ → 0

exponent = -6

Page 13: F.Daviaud  SPEC, CEA/Saclay, France In collaboration with A. Chiffaudel,

13Wall Bounded Shear Flows, Newton Institute, Cambridge, September 2008

Mutistability = f(Re)

Page 14: F.Daviaud  SPEC, CEA/Saclay, France In collaboration with A. Chiffaudel,

14Wall Bounded Shear Flows, Newton Institute, Cambridge, September 2008

Forbidden zone with velocity regulation

θ = (F1-F2)/(F1+F2)

=

(K

p1-K

p2)/

(Kp

1+

Kp

2)

1 cell (velocity)2 cells (velocity)

Forbidden zone for stationary regimes

Page 15: F.Daviaud  SPEC, CEA/Saclay, France In collaboration with A. Chiffaudel,

15Wall Bounded Shear Flows, Newton Institute, Cambridge, September 2008

Intermittent states (i)

θ = (F1-F2)/(F1+F2)

=

(K

p1-K

p2)/

(Kp

1+

Kp

2)

intermittent states (i)

(s)

(b2)

(b1)1 cell (velocity)

1 cell (torque)2 cells (torque)

Forbidden zone with torque regulation

Page 16: F.Daviaud  SPEC, CEA/Saclay, France In collaboration with A. Chiffaudel,

16Wall Bounded Shear Flows, Newton Institute, Cambridge, September 2008

, fKp

1 ~ Kp

2,

“intermittence”between 2 states

Kp1 Kp

2 1 cell

Kp1 Kp

2 2 cells

Torque regulation: stochastic transitions 1cell state → 2 cells states

Page 17: F.Daviaud  SPEC, CEA/Saclay, France In collaboration with A. Chiffaudel,

17Wall Bounded Shear Flows, Newton Institute, Cambridge, September 2008

Meridional annulus

+

Small curvature, diameter 3/4

VKS dynamo experiment

PropellersTM73

Page 18: F.Daviaud  SPEC, CEA/Saclay, France In collaboration with A. Chiffaudel,

18Wall Bounded Shear Flows, Newton Institute, Cambridge, September 2008

0 0.5-0.5 1-1

Position of the shear layer = f(θ)

SPIV measurements

+

θ = 0.05, without annulus

Po

sitio

n z

of t

he s

ep

arat

rix θc = 0.09

θc = 0.175

without annulus

with annulus

θ = (F1-F2)/(F1+F2)The annulus stabilizes the separatrix

● stagnation point

◦ r = 0.7

Page 19: F.Daviaud  SPEC, CEA/Saclay, France In collaboration with A. Chiffaudel,

19Wall Bounded Shear Flows, Newton Institute, Cambridge, September 2008

Transition 1 cell - 2 cells  at θc= ± 0.175

+

θ = (F1-F2)/(F1+F2)

- quasi-continuous transition- small hysteresis- small Kp difference

very different from TM60 propellers

<K

p>

Kp

> =

<K

p1>

- <

Kp

2>

Page 20: F.Daviaud  SPEC, CEA/Saclay, France In collaboration with A. Chiffaudel,

20Wall Bounded Shear Flows, Newton Institute, Cambridge, September 2008

Transition at θc= ± 0.175

+

Mean ΔKp is continuous

θ = (F1-F2)/(F1+F2)

stochastic transition 1 →2 cells

(s)

(b)(s)… … (b) …

State (b)

State (s)

10 min. acquisitions

○ : θ increasing

● : θ decreasing

Kp

>

Time (sec.)

Time (sec.)

Page 21: F.Daviaud  SPEC, CEA/Saclay, France In collaboration with A. Chiffaudel,

21Wall Bounded Shear Flows, Newton Institute, Cambridge, September 2008

θ = (F1-F2)/(F1+F2)

Kp

>

+

Measurements : 2 – 200 min

Transition at θc= ± 0.175

Page 22: F.Daviaud  SPEC, CEA/Saclay, France In collaboration with A. Chiffaudel,

22Wall Bounded Shear Flows, Newton Institute, Cambridge, September 2008

+

θ = (F1-F2)/(F1+F2)Pro

bab

ility

of p

rese

nce

p(s

), p

(b)

θc = 0.174

p(s

)/p(b

)

θ = (F1-F2)/(F1+F2)

Transition at θc

Cf. de la Torre & BurguetePRL 2007 and Friday talk

Page 23: F.Daviaud  SPEC, CEA/Saclay, France In collaboration with A. Chiffaudel,

23Wall Bounded Shear Flows, Newton Institute, Cambridge, September 2008

Origin of erratic field reversals observed in VKS experiment?

θ = 0.17

Page 24: F.Daviaud  SPEC, CEA/Saclay, France In collaboration with A. Chiffaudel,

24Wall Bounded Shear Flows, Newton Institute, Cambridge, September 2008

Bifurcations in turbulent flows: theory?

1. von Karman : turbulent bifurcation

2. VKS: dynamo action and B reversals

3. Couette flows: turbulent stripes and spirals

Prigent, Dauchot et al.PRL 2002