fdm for elliptic equations with bitsadze-samarskii-dirichlet...

23
Hindawi Publishing Corporation Abstract and Applied Analysis Volume 2012, Article ID 454831, 22 pages doi:10.1155/2012/454831 Research Article FDM for Elliptic Equations with Bitsadze-Samarskii-Dirichlet Conditions Allaberen Ashyralyev 1, 2 and Fatma Songul Ozesenli Tetikoglu 1 1 Department of Mathematics, Fatih University, 34500 Istanbul, Turkey 2 Department of Mathematics, ITTU, 74400 Ashgabat, Turkmenistan Correspondence should be addressed to Fatma Songul Ozesenli Tetikoglu, [email protected] Received 8 April 2012; Accepted 6 May 2012 Academic Editor: Ravshan Ashurov Copyright q 2012 A. Ashyralyev and F. S. Ozesenli Tetikoglu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. A numerical method is proposed for solving nonlocal boundary value problem for the multidimensional elliptic partial dierential equation with the Bitsadze-Samarskii-Dirichlet condition. The first and second-orders of accuracy stable dierence schemes for the approximate solution of this nonlocal boundary value problem are presented. The stability estimates, coercivity, and almost coercivity inequalities for solution of these schemes are established. The theoretical statements for the solutions of these nonlocal elliptic problems are supported by results of numerical examples. 1. Introduction Many problems in fluid mechanics, dynamics, elasticity, and other areas of engineering, physics, and biological systems lead to partial dierential equations of elliptic type. The role played by coercive inequalities in the study of local boundary-value problems for elliptic and parabolic dierential equations is well known see, e.g., 1, 2. In the present paper, we consider the Bitsadze-Samarskii type nonlocal boundary value problem d 2 ut dt 2 Aut f t, 0 <t< 1, u 0 ϕ, u 1 βu λ ψ, β 1, 0 λ< 1 1.1

Upload: others

Post on 01-Sep-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: FDM for Elliptic Equations with Bitsadze-Samarskii-Dirichlet …downloads.hindawi.com/journals/aaa/2012/454831.pdf · 2019. 7. 31. · Allaberen Ashyralyev1,2 and Fatma Songul Ozesenli

Hindawi Publishing CorporationAbstract and Applied AnalysisVolume 2012, Article ID 454831, 22 pagesdoi:10.1155/2012/454831

Research ArticleFDM for Elliptic Equations withBitsadze-Samarskii-Dirichlet Conditions

Allaberen Ashyralyev1, 2 and Fatma Songul Ozesenli Tetikoglu1

1 Department of Mathematics, Fatih University, 34500 Istanbul, Turkey2 Department of Mathematics, ITTU, 74400 Ashgabat, Turkmenistan

Correspondence should be addressed to Fatma Songul Ozesenli Tetikoglu, [email protected]

Received 8 April 2012; Accepted 6 May 2012

Academic Editor: Ravshan Ashurov

Copyright q 2012 A. Ashyralyev and F. S. Ozesenli Tetikoglu. This is an open access articledistributed under the Creative Commons Attribution License, which permits unrestricted use,distribution, and reproduction in any medium, provided the original work is properly cited.

A numerical method is proposed for solving nonlocal boundary value problem for themultidimensional elliptic partial differential equation with the Bitsadze-Samarskii-Dirichletcondition. The first and second-orders of accuracy stable difference schemes for the approximatesolution of this nonlocal boundary value problem are presented. The stability estimates, coercivity,and almost coercivity inequalities for solution of these schemes are established. The theoreticalstatements for the solutions of these nonlocal elliptic problems are supported by results ofnumerical examples.

1. Introduction

Many problems in fluid mechanics, dynamics, elasticity, and other areas of engineering,physics, and biological systems lead to partial differential equations of elliptic type. The roleplayed by coercive inequalities in the study of local boundary-value problems for elliptic andparabolic differential equations is well known (see, e.g., [1, 2]).

In the present paper, we consider the Bitsadze-Samarskii type nonlocal boundaryvalue problem

−d2u(t)dt2

+Au(t) = f(t), (0 < t < 1),

u′(0) = ϕ,

u′(1) = βu′(λ) + ψ,∣∣β∣∣ ≤ 1, 0 ≤ λ < 1

(1.1)

Page 2: FDM for Elliptic Equations with Bitsadze-Samarskii-Dirichlet …downloads.hindawi.com/journals/aaa/2012/454831.pdf · 2019. 7. 31. · Allaberen Ashyralyev1,2 and Fatma Songul Ozesenli

2 Abstract and Applied Analysis

for elliptic differential equations in a Hilbert space H with self-adjoint positive definiteoperator A. It is known (see, e.g., [3–11]) that various nonlocal boundary value problems forelliptic equations can be reduced to the boundary value problem (1.1). The simply nonlocalboundary value problem was presented and investigated for the first time by Bitsadzeand Samarskii [12]. Further, methods of solutions of Bitsadze-Samarskii nonlocal boundaryvalue problems for elliptic differential equations have been studied extensively by manyresearchers (see [13–21] and the references given therein).

A function u(t) is called a solution of problem (1.1) if the following conditions aresatisfied.

(i) u(t) is twice continuously differentiable on the segment [0, 1]. Derivatives at theendpoints of the segment are understood as the appropriate unilaterial derivatives.

(ii) The element u(t) belongs to D(A) for all t ∈ [0, 1], and the function Au(t) iscontinuous on [0, 1].

(iii) u(t) satisfies the equation and nonlocal boundary condition in (1.1).

Let Ω be the open unit cube in Rn(x = (x1, . . . , xn) : 0 < xk < 1, 1 ≤ k ≤ n) withboundary S, Ω = Ω ∪ S. In present paper, we are interested in studying the stable differenceschemes for the numerical solution of the following nonlocal boundary value problem for themultidimensional elliptic equation

−utt −n∑

r=1

(ar(x)uxr )xr + δu = f(t, x), 0 < t < 1,

x = (x1, . . . , xn) ∈ Ω,

ut(0, x) = ϕ(x),

ut(1, x) = βut(λ, x) + ψ(x), x ∈ Ω,∣∣β∣∣ ≤ 1, 0 ≤ λ < 1,

u(t, x) = 0, 0 ≤ t ≤ 1, x ∈ S, S = ∂Ω.

(1.2)

Here ψ(x), ϕ(x) (x ∈ Ω), and f(t, x) (t ∈ (0, 1), x ∈ Ω) are given smooth functions, δ is alarge positive constant and ar(x) ≥ a > 0.

In the present paper, the first and second-orders of accuracy difference schemes arepresented for the approximate solution of problem (1.2). The stability and coercive stabilityestimates for the solution of these difference schemes are obtained. A numerical method isproposed for solving nonlocal boundary value problem for the multidimensional ellipticpartial differential equation with the Bitsadze-Samarskii-Dirichlet condition. A procedure ofmodified Gauss elimination method is used for solving these difference schemes in the caseof two-dimensional elliptic partial differential equations.

Page 3: FDM for Elliptic Equations with Bitsadze-Samarskii-Dirichlet …downloads.hindawi.com/journals/aaa/2012/454831.pdf · 2019. 7. 31. · Allaberen Ashyralyev1,2 and Fatma Songul Ozesenli

Abstract and Applied Analysis 3

2. Difference Schemes: Well-Posedness

The discretization of problem (1.2) is carried out in two steps. In the first step let us definethe grid sets as follows:

Ωh = {x : x = xm = (h1m1, . . . , hnmn), m = (m1, . . . , mn),

0 ≤ mr ≤Nr, hrNr = L, r = 1, . . . , n}

Ωh = Ωh ∩Ω, Sh = Ωh ∩ S.

(2.1)

We introduce the Hilbert space L2h = L2(Ωh) of the grid functions ϕh(x) = {ϕ(h1m1, . . . ,

hnmn)} defined on Ωh, equipped with the norm

∥∥∥ϕh∥∥∥L2(Ωh)

=

⎝∑

x∈Ωh

∣∣∣ϕh(x)

∣∣∣

2h1 · · ·hn

1/2

(2.2)

and the Hilbert spaceW22 (Ωh) defined on Ωh, equipped with the norm

∥∥∥ϕh∥∥∥W2

2 (Ωh)=

⎝∑

x∈Ωh

∣∣∣ϕh(x)

∣∣∣

2h1 · · ·hn

1/2

+

⎝∑

x∈Ωh

n∑

r=1

∣∣∣ϕhxr ,mr

∣∣∣

2h1 · · ·hn

1/2

+

⎝∑

x∈Ωh

n∑

r=1

∣∣∣ϕhxrxr ,mr

∣∣∣

2h1 · · ·hn

1/2

.

(2.3)

Finally, we introduce the Banach spaces C([0, 1]τ , L2h) and Cα([0, 1]τ , L2h) of grid abstractfunction {ϕh

k(x)}N−1

1 defined on [0, 1]τ with values L2h, equipped with the following norms:

∥∥∥∥

{

ϕhk

}N−1

1

∥∥∥∥C([0,1]τ ,L2h)

= max1≤k≤N−1

∥∥∥ϕhk

∥∥∥L2h,

∥∥∥∥

{

ϕhk

}N−1

1

∥∥∥∥Cα([0,1]τ ,L2h)

= max1≤k≤N−1

∥∥∥ϕhk

∥∥∥L2h

+ sup1≤k<k+r≤N−1

∥∥ϕk+r − ϕk

∥∥L2h

(rτ)α.

(2.4)

To the differential operator A generated by the problem (1.2) we assign the differenceoperator Ax

h by the formula

Axhu

h = −n∑

r=1

(

ar(x)uhxr)

xr ,mr

+ δuhxr (2.5)

acting in the space of grid functions uh(x), satisfying the condition uh(x) = 0 for all x ∈ Sh.It is known that Ax

his a self-adjoint positive definite operator in L2(Ωh). With the help of

Page 4: FDM for Elliptic Equations with Bitsadze-Samarskii-Dirichlet …downloads.hindawi.com/journals/aaa/2012/454831.pdf · 2019. 7. 31. · Allaberen Ashyralyev1,2 and Fatma Songul Ozesenli

4 Abstract and Applied Analysis

Axh, we arrive at the nonlocal boundary value problem for an infinite system of the following

ordinary differential equations:

−d2uh(t, x)dt2

+Axhu

h(t, x) = fh(t, x), 0 < t < 1, x ∈ Ωh,

uht (0, x) = ϕh(x), uht (1, x) = βu

ht (λ, x) + ψ

h(x), x ∈ Ωh.

(2.6)

In the second step, we replaced problem (2.6) by the first-order of accuracy difference schemeas follows:

−uhk+1(x) − 2uhk(x) + u

hk−1(x)

τ2+Ax

huhk(x) = f

hk (x),

fhk (x) = fh(tk, x), tk = kτ, 1 ≤ k ≤N − 1, Nτ = 1, x ∈ Ωh,

uh1(x) − uh0(x)τ

= ϕh(x), x ∈ Ωh,

uhN(x) − uhN−1(x)τ

= βuh[λ/τ]+1(x) − uh[λ/τ](x)

τ+ ψh(x), x ∈ Ωh

(2.7)

and the second order of accuracy difference scheme as follows:

−uhk+1(x) − 2uh

k(x) + uhk−1(x)

τ2+Ax

huhk(x) = f

hk (x),

fhk (x) = fh(tk, x), tk = kτ, 1 ≤ k ≤N − 1, Nτ = 1, x ∈ Ωh,

−3uh0(x) + 4uh1(x) − uh2(x)2τ

= ϕh(x), x ∈ Ωh,

uhN−2(x) − 4uhN−1(x) + 3uhN(x)2τ

= β

uh[λ/τ]−1(x) − 4uh[λ/τ](x) + 3uh[λ/τ]+1(x)

+uh[λ/τ]+1(x) − 2uh[λ/τ](x) + u

h[λ/τ]−1(x)

τ

τ−[λ

τ

])⎤

+ ψh(x), x ∈ Ωh.

(2.8)

Now, we will study the well-posedness of (2.7) and (2.8). We have the following theorem onstability of (2.7) and (2.8).

Page 5: FDM for Elliptic Equations with Bitsadze-Samarskii-Dirichlet …downloads.hindawi.com/journals/aaa/2012/454831.pdf · 2019. 7. 31. · Allaberen Ashyralyev1,2 and Fatma Songul Ozesenli

Abstract and Applied Analysis 5

Theorem 2.1. Let τ and |h| be sufficiently small positive numbers. Then the solutions of differenceschemes (2.7) and (2.8) satisfy the following stability estimate:

max1≤k≤N

∥∥∥uhk

∥∥∥L2h

≤M1

[∥∥∥ϕh∥∥∥L2h

+∥∥∥ψh∥∥∥L2h

+ max1≤k≤N−1

∥∥∥fhk

∥∥∥L2h

]

, (2.9)

whereM1 does not depend on τ, h, ψh(x), ϕh(x) and fhk(x), 1 ≤ k ≤N − 1.

Proof. The proof of (2.9) is based on the following formula:

uhk(x) =(

I − R2N)−1{(

Rk − R2N−k)

uh0(x) +(

RN−k − RN+k)

uhN(x)

−(

RN−k − RN+k)(

2I + τBxh)−1(

Bxh)−1N−1∑

i=1

(

RN−1−i − RN−1+i)

fhi (x)τ

}

+(

2I + τBxh)−1(

Bxh)−1N−1∑

i=1

(

R|k−i|−1 − Rk+i−1)

fhi (x)τ for k = 1, . . . ,N − 1,

(2.10)

where

uh0(x) = Pτ(

I + τBxh)(

2I + τBxh)−1(

Bxh)−1

×[

(I + R)RN−2N−1∑

i=1

(

RN−i − RN+i)

fhi (x)τ

+ (I + R)[

I + R2N−2 − β(

RN−[λ/τ]−1 + RN+[λ/τ])]

×N−1∑

i=1

Ri−1fhi (x)τ − β(

RN + RN−1)[λ/τ]−1∑

i=1

R[λ/τ]−ifhi (x)τ

+ β(

RN−2 + RN−1) N−1∑

i=[λ/τ]+1

Ri−[λ/τ]fhi (x)τ

+β(

RN + RN−1)N−1∑

i=1

R[λ/τ]+ifhi (x)τ − β(

RN−1 + RN)

fh[λ/τ](x)τ

]

− Pτ(I − R)−1[

I + R2N−1 − β(

RN−[λ/τ]−1 + RN+[λ/τ])]

ϕh(x)τ

+ Pτ(I − R)−1(

RN−1 + RN)

ψh(x)τ,

Page 6: FDM for Elliptic Equations with Bitsadze-Samarskii-Dirichlet …downloads.hindawi.com/journals/aaa/2012/454831.pdf · 2019. 7. 31. · Allaberen Ashyralyev1,2 and Fatma Songul Ozesenli

6 Abstract and Applied Analysis

uhN(x) = Pτ(

I + τBxh)(

2I + τBxh)−1(

Bxh)−1

×[[

R−1(I + R) − β(

RN−[λ/τ]−1 + RN+[λ/τ]−1)]N−1∑

i=1

(

RN−i − RN+i)

fhi (x)τ

− β(

I + R2N−1)[λ/τ]−1∑

i=1

R[λ/τ]−ifhi (x)τ + β(

I + R2N−1)

R−1N−1∑

i=[λ/τ]+1

Ri−[λ/τ]fhi (x)τ

+ β(

I + R2N−1)N−1∑

i=1

R[λ/τ]+ifhi (x)τ − β(

I + R2N−1)

fh[λ/τ](x)τ

+(I + R)[

RN + RN−1 − β(

R[λ/τ] + R2N−[λ/τ]−1)]N−1∑

i=1

Ri−1fhi (x)τ

]

− Pτ(I − R)−1[

RN + R2N−1 − β(

R[λ/τ] + R2N−[λ/τ]−1)]

ϕh(x)τ

+ Pτ(I − R)−1(

I + R2N−1)

ψh(x)τ,

Pτ =[

I − R2N−2 − β(

RN−[λ/τ]−1 + RN+[λ/τ]−1)]−1

,

(2.11)

for (2.7), and

uh0(x) = Dτ

(

I + τBxh)(

2I + τBxh)−1(

Bxh)−1

×{

(I + R)(

4R − I − R2)

(I − 3R)RN−4(

I − R2N)N−2∑

i=1

(

RN−i − RN+i)

fhi (x)τ

− (I + R)(

4R − I − R2)(

I − R2N)

×[

3I − R − R2N−2(I − 3R)

− β[

RN−[λ/τ]−1(

I − 3R + 2(λ

τ−[λ

τ

])

(I − R))

−RN+[λ/τ]−1(

3I − R + 2(λ

τ−[λ

τ

])

(I − R))]]

×N−1∑

i=2

Ri−2fhi (x)τ − β(I + R)RN−2(

4R − I − R2)(

I − R2N)

×[(

I − 3R + 2(λ

τ−[λ

τ

])

(I − R))[λ/τ]−1∑

i=1

R[λ/τ]−i−1fhi (x)τ

+(

3I − R + 2(λ

τ−[λ

τ

])

(I − R)) N−1∑

i=[λ/τ]+2

Ri−[λ/τ]−1fhi (x)τ

−(

I − 3R + 2(λ

τ−[λ

τ

])

(I − R))N−1∑

i=1

R[λ/τ]+i−1fhi (x)τ

]

Page 7: FDM for Elliptic Equations with Bitsadze-Samarskii-Dirichlet …downloads.hindawi.com/journals/aaa/2012/454831.pdf · 2019. 7. 31. · Allaberen Ashyralyev1,2 and Fatma Songul Ozesenli

Abstract and Applied Analysis 7

− β(

I − R2N)

(I + R)RN−2(

4R − R2 − I)(

4 + 4(λ

τ−[λ

τ

]))

×(

fh[λ/τ]+1(x)τ − fh[λ/τ](x)τ)

− (I + R)(4I − R)(

I − R2N)

×[

3I − R − R2N−2(I − 3R)

− β(

RN−[λ/τ]−1(

3I − R + 2(λ

τ−[λ

τ

])

(I − R))

−RN+[λ/τ]−1(

I − 3R + 2(λ

τ−[λ

τ

])

(I − R)))]

× fh1 (x)τ − (I + R)RN−1(

4R − R2 − I)(

I − R2N)(

4I + R2N−3(I − 3R))

×fhN−1(x)τ

}

−Dτ

(

I − R2N)

(I − R)−1(I + R)RN−2(

4R − I − R2)

2τψh(x)

+Dτ

(

I − R2N)

(I − R)−1

×[

3I − R − R2N−2(I − 3R)

− β[

RN−[λ/τ]−1(

3I − R + 2(λ

τ−[λ

τ

])

(I − R))

−RN+[λ/τ]−1(

I − 3R + 2(λ

τ−[λ

τ

])

(I − R))]]

2τϕh(x),

(2.12)

uhN(x) = Dτ

(

I + τBxh)(

2I + τBxh)−1(

Bxh)−1

×{(

I − R2N)[

(I + R)(

4R − I − R2)

R−2(R − 3I)

+ β[

(R − 3I)(

3I − R + 2(λ

τ−[λ

τ

])

(I − R))

RN−[λ/τ]−1

−(3R − I)(

I − 3R + 2(λ

τ−[λ

τ

])

(I − R))

RN+[λ/τ]−1]]

×N−2∑

i=1

(

RN−i − RN+i)

fhi (x)τ + (I + R)(

I − R2N)(

4R − I − R2)

×[

(I + R)RN−2(

4R − I − R2)

− β[

R[λ/τ]−1(

I − 3R + 2(λ

τ−[λ

τ

])

(I − R))

−R2N−[λ/τ]−1(

3I − R + 2(λ

τ−[λ

τ

])

(I − R))]]N−1∑

i=2

Ri−2fhi (x)τ

Page 8: FDM for Elliptic Equations with Bitsadze-Samarskii-Dirichlet …downloads.hindawi.com/journals/aaa/2012/454831.pdf · 2019. 7. 31. · Allaberen Ashyralyev1,2 and Fatma Songul Ozesenli

8 Abstract and Applied Analysis

+ β(

I − R2N)(

R − 3I + R2N−2(I − 3R))

×[(

I − 3R + 2(λ

τ−[λ

τ

])

(I − R))[λ/τ]−1∑

i=1

R[λ/τ]−i−1fhi (x)τ

+(

3I − R + 2(λ

τ−[λ

τ

])

(I − R)) N−1∑

i=[λ/τ]+2

Ri−[λ/τ]−1fhi (x)τ

−(

I − 3R + 2(λ

τ−[λ

τ

])

(I − R))N−1∑

i=1

R[λ/τ]+i−1fhi (x)τ

]

+ β(

R − 3I + R2N−2(3I − R))(

I − R2N)

×(

4 + 4(λ

τ−[λ

τ

])

(I − R))(

fh[λ/τ]+1(x)τ − fh[λ/τ](x)τ)

+ (I + R)(

I − R2N)

×[

(I + R)RN−2(

I − 4R + R2)

− β[

R[λ/τ]−1(

I − 3R + 2(λ

τ−[λ

τ

])

(I − R))

−R2N−[λ/τ]−1(

3I − R + 2(λ

τ−[λ

τ

])

(I − R))]]

fh1 (x)τ

+ R(

I − R2N−1)[

R − 4I + R2N−4(

I + R2 − 3R)(

3I − R − R2(4I − R))

− β[

RN−[λ/τ]−1(

3I − R + 2(λ

τ−[λ

τ

])

(I − R))

×(

3R − I + R2N(3I − R))

− RN+[λ/τ]−1(

I − 3R + 2(λ

τ−[λ

τ

])

(I − R))

×(

3I − R + R2N(I − 3R))]]

fhN−1(x)τ}

+Dτ

(

I − R2N)

(I − R)−1(

R − 3I + R2N(I − 3R))

2τϕh(x)

−Dτ

(

I − R2N)

(I − R)−1

×[

RN−2(I + R)(

R2 − 4R + I)

− β[

R[λ/τ]−1(

I − 3R + 2(λ

τ−[λ

τ

])

(I − R))

−R2N−[λ/τ]−1(

3I − R + 2(λ

τ−[λ

τ

])

(I − R))]]

2τψh(x),

Page 9: FDM for Elliptic Equations with Bitsadze-Samarskii-Dirichlet …downloads.hindawi.com/journals/aaa/2012/454831.pdf · 2019. 7. 31. · Allaberen Ashyralyev1,2 and Fatma Songul Ozesenli

Abstract and Applied Analysis 9

Dτ =(

I − R2N)−1

×{[

−(3I − R)2 + (I − 3R)2]

− β[

−RN+[λ/τ]−3(I − 3R)(

I − 3R + 2(λ

τ−[λ

τ

])

(I − R))

−RN−[λ/τ]−1(3I − R)(

3I − R + 2(λ

τ−[λ

τ

])

(I − R))]}−1

,

R =(

I + τBxh)−1

,

Bxh =12

(

τAxh +√

4Axh + τ

2(

Axh

)2)

(2.13)

for (2.8), and the symmetry properties of the difference operator Axh defined by the formula

(2.5).

Difference schemes (2.7) and (2.8) are ill-posed in C([0, 1]τ , L2h). We have thefollowing theorem on almost coercive stability.

Theorem 2.2. Let τ and |h| be sufficiently small positive numbers. Then the solutions of differenceschemes (2.7) and (2.8) satisfy the following almost coercive stability estimate:

max1≤k≤N−1

∥∥∥∥∥

uhk+1 − 2uh

k+ uh

k−1τ2

∥∥∥∥∥L2h

+ max1≤k≤N−1

∥∥∥uhk

∥∥∥W2

2h

≤M2

[∥∥∥ϕh∥∥∥W2

2h

+∥∥∥ψh∥∥∥W2

2h

+ ln1

τ + |h| max1≤k≤N−1

∥∥∥fhk

∥∥∥L2h

]

,

(2.14)

whereM2 does not depend on τ, h, ψh(x), ϕh(x), and fhk (x), 1 ≤ k ≤N − 1.

Proof. The proof of (2.14) is based on the formulas (2.11), (2.12), (2.13), the symmetryproperties of the difference operator Ax

hdefined by the formula (2.5) and on the following

theorem on well-posedness of the elliptic difference problem.

Theorem 2.3. For the solutions of the elliptic difference problem

Axhu

h(x) = wh(x), x ∈ Ωh,

uh(x) = 0, x ∈ Sh(2.15)

the following coercivity inequality holds (see [21]):

n∑

r=1

∥∥∥∥

(

uh)

xrxr , mr

∥∥∥∥L2h

≤M∥∥∥wh

∥∥∥L2h, (2.16)

where M does not depend on h and wh(x).

Page 10: FDM for Elliptic Equations with Bitsadze-Samarskii-Dirichlet …downloads.hindawi.com/journals/aaa/2012/454831.pdf · 2019. 7. 31. · Allaberen Ashyralyev1,2 and Fatma Songul Ozesenli

10 Abstract and Applied Analysis

Theorem 2.4. Let ϕh(x) = ψh(x) = 0. Then the difference problems (2.7) and (2.8) are well-posed inHolder spaces Cα([0, 1]τ , L2h) and the following coercivity inequality holds:

max1≤k≤N−1

∥∥∥∥∥∥

{

uhk+1 − 2uhk + uhk−1

τ2

}N−1

1

∥∥∥∥∥∥Cα([0,1]τ , L2h)

+∥∥∥∥

{

uhk

}N−1

1

∥∥∥∥Cα([0,1]τ , W

22h)

≤ M3

α(1 − α) max1≤k≤N−1

∥∥∥∥

{

fhk

}N−1

1

∥∥∥∥Cα([0,1]τ ,L2h)

.

(2.17)

HereM3 does not depend on τ, h, and fhk (x), 1 ≤ k ≤N − 1.

Proof. The proof of (2.17) is based on the formula

Axhu

h0(x) − fh1 (x) = Pτ

(

I + τBxh)(

2I + τBxh)−1(I + R)

×[

RN−1N−1∑

i=1

τBxhRN−i(

fhi − fhN−1)

− RN−1N−1∑

i=1

τBxhRN+i(

fhi (x) − fh1 (x))

−βRN[λ/τ]−1∑

i=1τBx

hR[λ/τ]−i

(

fhi (x) − fh[λ/τ](x))

+[

I + R2N−2 − β(

RN−[λ/τ]−1 + RN+[λ/τ])]

×N−1∑

i=1

τBxhRi(

fhi (x) − fh1 (x))

+ βRNN−1∑

i=[λ/τ]+1

τBxhRi−[λ/τ]

(

fhi (x) − fh[λ/τ](x))

+ βRNN−1∑

i=1

τBxhR[λ/τ]+i

(

fhi (x) − fh1 (x))

+ RN−1(

I − RN−1)

fhN−1(x)

+ β[

RN+[λ/τ]−1 − R2N−[λ/τ]−1 − τBxhRN]

fh[λ/τ](x)

+

[

R2N−2 − R2N−1 + R2N−2 − R3N−3 + R3N−2 − RN−1

+ β(

R2N−[λ/τ]−2 + R2N+[λ/τ]−1

+R2N+[λ/τ] − RN+[λ/τ]−1)]

fh1 (x)

]

Page 11: FDM for Elliptic Equations with Bitsadze-Samarskii-Dirichlet …downloads.hindawi.com/journals/aaa/2012/454831.pdf · 2019. 7. 31. · Allaberen Ashyralyev1,2 and Fatma Songul Ozesenli

Abstract and Applied Analysis 11

− Pτ(I − R)−1τ[

I + R2N−1 − β(

RN−[λ/τ]−1 + RN+[λ/τ])]

Axhϕ

h

+ Pτ(I − R)−1τ(

RN−1 + RN)

Axhψ

h,

Ahxu

hN(x) − fhN−1(x) = Pτ

(

I + τBxh)(

2I + τBxh)−1

×{[

R(I + R) − β(

RN−[λ/τ]+1 + RN+[λ/τ]+1)]

×N−1∑

i=1

τBxhRN−i(

fhi (x) − fhN−1(x))

−[

R(I + R) − β(

RN−[λ/τ]+1 + RN+[λ/τ]+1)]

×N−1∑

i=1

τBxhRN+i(

fhi (x) − fh1 (x))

− βR2(

I + R2N−1)[λ/τ]−1∑

i=1

τBxhR[λ/τ]−i

(

fhi (x) − fh[λ/τ](x))

+ βR(

I + R2N−1) N−1∑

i=[λ/τ]+1

τBxhRi−[λ/τ]

(

fhi (x) − fh[λ/τ](x))

+ βR2(

I + R2N−1)N−1∑

i=1

τBxhR[λ/τ]+i

(

fhi (x) − fh1 (x))

− β(

I + R2N−1)

×[

R(

I − R[λ/τ]−1)

−(

I − RN−[λ/τ]−1)

− τBxhR]

× fh[λ/τ](x)

+[

(I + R)(

R2N−2 − RN − I + R)

− β(

RN−[λ/τ]+1

+ RN+[λ/τ]+1 − R2N−[λ/τ]

− R2N+[λ/τ] − RN−[λ/τ]−1

+RN+[λ/τ]−1 − RN−[λ/τ] + RN+[λ/τ])]

× fhN−1(x) +[

(I + R)(

RN − R2N−1)

+ β(

RN+[λ/τ] + RN+[λ/τ]+1 − RN+[λ/τ]+2

+ R2N+[λ/τ]+1 + R2N+[λ/τ]+1 − R3N+[λ/τ]

− R3N+[λ/τ]+1 + R[λ/τ]+1 − R2N−[λ/τ]

+R3N−[λ/τ]−1)]

fh1 (x)

}

Page 12: FDM for Elliptic Equations with Bitsadze-Samarskii-Dirichlet …downloads.hindawi.com/journals/aaa/2012/454831.pdf · 2019. 7. 31. · Allaberen Ashyralyev1,2 and Fatma Songul Ozesenli

12 Abstract and Applied Analysis

+ Pτ(I − R)−1Rτ(

I + R2N−1)

Ahxψ

− Pτ(I − R)−1Rτ[

RN−1 + RN − β(

R[λ/τ] + R2N−[λ/τ]−1)]

Ahxϕ

(2.18)

for (2.7) and

Axhu

h0(x) − fh1 (x) = Dτ

(

I + τBxh)(

2I + τBxh)−1

×{

(I + R)(

4R − I − R2)

(I − 3R)RN−3(

I − R2N)

×[N−2∑

i=1

BxhτRN−i(

fhi (x)−fhN−1(x))

−N−2∑

i=1

BxhτRN+i(

fhi (x)−fh1 (x))]

− (I + R)(

4R − I − R2)(

I − R2N)

×[

3I − R − R2N−2(I − 3R)

− β[

RN−[λ/τ]−1(

3I − R + 2(λ

τ−[λ

τ

])

(I − R))

−RN+[λ/τ]−1(

I − 3R + 2(λ

τ−[λ

τ

])

(I − R))]]

×N−1∑

i=2

BxhτRi−1(

fhi (x) − fh1 (x))

− β(I + R)RN−2(

4R − I − R2)(

I − R2N)

×[(

I − 3R + 2(λ

τ−[λ

τ

])

(I − R))

×[λ/τ]−1∑

i=1

BxhτR[λ/τ]−i

(

fhi (x) − fh[λ/τ](x))

+(

3I − R + 2(λ

τ−[λ

τ

])

(I − R))

×N−1∑

i=[λ/τ]+2

BxhτRi−[λ/τ]

(

fhi (x) − fh[λ/τ](x))

Page 13: FDM for Elliptic Equations with Bitsadze-Samarskii-Dirichlet …downloads.hindawi.com/journals/aaa/2012/454831.pdf · 2019. 7. 31. · Allaberen Ashyralyev1,2 and Fatma Songul Ozesenli

Abstract and Applied Analysis 13

−(

I − 3R + 2(λ

τ−[λ

τ

])

(I − R))

×N−1∑

i=1

BxhτR[λ/τ]+i

(

fhi (x) − fh1 (x))]

− β(

I − R2N)

(I + R)RN−1(

4R − R2 − I)

×(

4 + 4(λ

τ−[λ

τ

]))

τBxhfh[λ/τ]+1(x)

+ β(

I − R2N)

(I + R)RN−2(

4R − R2 − I)

×[

2R(

R + 2(λ

τ−[λ

τ

]))

+ R[λ/τ]−1(

I − 3R + 2(λ

τ−[λ

τ

])

(I − R))

+ RN−[λ/τ]−2

×(

3I − R + 2(λ

τ−[λ

τ

])

(I − R))]

fh[λ/τ](x)

×[

(I + R)(

I − R2N)

×[

(I − 3R)(

3R − I − R2N−5(I − R)

×(

R2 − R2N(I + R)(

R2 − 4R + I)))

− (3I − R)RN−1(

R2 − 4R + I)

− β(

4R − I − R2)

×((

3I − R + 2(λ

τ−[λ

τ

])

(I − R))

RN−[λ/τ]−3

−(

I − 3R + 2(λ

τ−[λ

τ

])

(I − R))

×RN+[λ/τ]−3)]]

fh1 (x)

+ (I + R)(

4R − I − R2)(

I − R2N)

RN−2

×(

R − 3I − RN−2(I − 3R)(

I + RN(I − R)))

fhN−1(x)

}

−Dτ

(

I − R2N)

(I − R)−1(I + R)RN−2(

4R − I − R2)

2τAxhψ

h(x)

+Dτ

(

I − R2N)

(I − R)−1

Page 14: FDM for Elliptic Equations with Bitsadze-Samarskii-Dirichlet …downloads.hindawi.com/journals/aaa/2012/454831.pdf · 2019. 7. 31. · Allaberen Ashyralyev1,2 and Fatma Songul Ozesenli

14 Abstract and Applied Analysis

×[

3I − R − R2N−2(I − 3R)

− β[

RN−[λ/τ](

3I − R + 2(λ

τ−[λ

τ

])

(I − R))

−RN+[λ/τ]−1(

I − 3R + 2(λ

τ−[λ

τ

])

(I − R))]]

2τAxhϕ

h(x),

AxhRu

hN(x)− fhN−1(x)

= Dτ

(

I + τBxh)(

2I + τBxh)−1

×{(

I − R2N)

×[

(I + R)(

4R − I − R2)

(R − 3I)

+ β[

(R − 3I)(

3I − R + 2(λ

τ−[λ

τ

])

(I − R))

× RN−[λ/τ]+1 − (3R − I)

×(

I − 3R + 2(λ

τ−[λ

τ

])

(I − R))

RN+[λ/τ]+1]]

×(

N−2∑

i=1

BxhτRN−i(

fhi (x) − fhN−1(x))

−N−2∑

i=1

BxhτRN+i(

fhi (x) − fh1 (x)))

+ (I + R)(

I − R2N)(

4R − I − R2)

×[

(I + R)RN−2(

−4R + I + R2)

− β[

R[λ/τ]−1(

I − 3R + 2(λ

τ−[λ

τ

])

(I − R))

−R2N−[λ/τ]−1(

3I − R + 2(λ

τ−[λ

τ

])

(I − R))]]

×N−1∑

i=2

BxhτRi(

fhi (x) − fh1 (x))

+ βR(

R − 3I + R2N−2(I − 3R))(

I − R2N)

×[(

I − 3R + 2(λ

τ−[λ

τ

])

(I − R))

×[λ/τ]−1∑

i=1

BxhτR[λ/τ]−i

(

fhi (x) − fh[λ/τ](x))

Page 15: FDM for Elliptic Equations with Bitsadze-Samarskii-Dirichlet …downloads.hindawi.com/journals/aaa/2012/454831.pdf · 2019. 7. 31. · Allaberen Ashyralyev1,2 and Fatma Songul Ozesenli

Abstract and Applied Analysis 15

+(

3I − R + 2(λ

τ−[λ

τ

])

(I − R))

×N−1∑

i=[λ/τ]+2

BxhτR[λ/τ]+i

(

fhi (x) − fh1 (x))

+(

I − 3R + 2(λ

τ−[λ

τ

])

(I − R))

×N−1∑

i=1

BxhτR[λ/τ]+i

(

fhi (x) − fh1 (x))]

+ βR2(

R − 3I + R2N−2(I − 3R))(

I − R2N)(

4 + 4(λ

τ−[λ

τ

]))

× fh[λ/τ]−1(x) − βR(

I − R2N)

×[(

I − R + RN−[λ/τ])(

3I − R + 2(λ

τ−[λ

τ

])

(I − R))

+R[λ/τ]−1(

I − 3R + 2(λ

τ−[λ

τ

])

(I − R))]

× fh[λ/τ](x) +(

I − R2N)

×[

(I + R)(

4R − R2 − I)

RN+1

× (R − 3I)(

I − RN−2)

+ β[(

3I − R + 2(λ

τ−[λ

τ

])

(I − R))

× R2N−[λ/τ](

R2(3I − R) + RN−2(

R3 − 4R2 + I))

−(

I − 3R + 2(λ

τ−[λ

τ

])

(I − R))

R[λ/τ]

×(

R2(3I − R) + (I − 3R)RN−3(

R + RN(I − R)))]]

× fh1 (x) +(

I − R2N)

×[

(I − 3R)(

4R − R2 − I)(

3I − R + R2N−2)

− β[(

3I − R + 2(λ

τ−[λ

τ

])

(I − R))

RN−[λ/τ]−1(3I − R)

×(

R + I + RN(

I − R + RN−2(I − R) + R3N−2(2I − R)))

−(

I − 3R + 2(λ

τ−[λ

τ

])

(I − R))

RN+[λ/τ]−1(3R − I)

Page 16: FDM for Elliptic Equations with Bitsadze-Samarskii-Dirichlet …downloads.hindawi.com/journals/aaa/2012/454831.pdf · 2019. 7. 31. · Allaberen Ashyralyev1,2 and Fatma Songul Ozesenli

16 Abstract and Applied Analysis

×(

I − R − R2N−3

×(

1 + R − RN(

3I − R2)

+ R2N(

R3 − 4R2 + I)))]]

×fhN−1(x)}

+Dτ

(

I − R2N)

(I − R)−1R(

R − 3I + R2N−2(I − 3R))

2τAxhϕ

h(x)

−Dτ

(

I − R2N)

(I − R)−1R

×[

RN−2(I + R)(

R2 − 4R + I)

− β[

R[λ/τ]−1(

I − 3R + 2(λ

τ−[λ

τ

])

(I − R))

−R2N−[λ/τ]−1(

3I − R + 2(λ

τ−[λ

τ

])

(I − R))]]

2τAxhψ

h(x)

(2.19)

for (2.8), the symmetry properties of the difference operator Axh defined by the formula (2.5)

and on Theorem 2.3 on well-posedness of the elliptic difference problem.

3. Numerical Analysis

We have not been able to obtain a sharp estimate for the constants figuring in the stabilityinequality. Therefore, we will give the following results of numerical experiments of theBitsadze-Samarskii-Dirichlet problem:

−∂2u(t, x)∂t2

− ∂2u(t, x)∂x2

+ u = f(t, x), 0 < t < 1, 0 < x < 1,

f(t, x) = exp(−πt) sin(πx), 0 < t < 1, 0 < x < 1,

ut(0, x) = −π sin(πx), 0 ≤ x ≤ 1,

ut(1, x) = ut(12, x

)

+ π sin(πx)(

exp(

−π2

)

− exp(−π))

, 0 ≤ x ≤ 1,

u(t, 0) = u(t, 1) = 0, 0 ≤ t ≤ 1

(3.1)

for the two-dimensional elliptic equation.

Page 17: FDM for Elliptic Equations with Bitsadze-Samarskii-Dirichlet …downloads.hindawi.com/journals/aaa/2012/454831.pdf · 2019. 7. 31. · Allaberen Ashyralyev1,2 and Fatma Songul Ozesenli

Abstract and Applied Analysis 17

The exact solution of this problem is

u(t, x) = exp(−πt) sin(πx). (3.2)

For the approximate solution of problem (3.1), we consider the set [0, 1]τ × [0, 1]h of a familyof grid points depending on small parameters τ and h as follows:

[0, 1]τ × [0, 1]h = {(tk, xn) : tk = kτ, 0 ≤ k ≤N, Nτ = 1,

xn = nh, 0 ≤ n ≤M, Mh = 1}.(3.3)

Applying (2.7), we present the following first-order of accuracy difference scheme forthe approximate solution of problem (3.1):

−unk+1 − 2unk + u

nk−1

τ2− un+1

k− 2un

k+ un−1

k

h2+ unk = exp(−πtk) sin(πxn), 1 ≤ k ≤N − 1,

1 ≤ n ≤M − 1,

un1 − un0τ

= −π sin(πxn), 0 ≤ n ≤M,

unN − unN−1τ

= βunN/2 − unN/2−1

τ+ π sin(πxn)

×(

exp(

−π2

)

− exp(−π))

, 0 ≤ n ≤M,

u0k = uMk = 0, 0 ≤ k ≤N.

(3.4)

We have (N + 1) × (M + 1) system of linear equations in (3.4) and we will write themin the following matrix form:

Aun+1 + Bun + Cun−1 = Dϕn, 1 ≤ n ≤M − 1,

u0 = uM = 0.(3.5)

Page 18: FDM for Elliptic Equations with Bitsadze-Samarskii-Dirichlet …downloads.hindawi.com/journals/aaa/2012/454831.pdf · 2019. 7. 31. · Allaberen Ashyralyev1,2 and Fatma Songul Ozesenli

18 Abstract and Applied Analysis

Here,

A =

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 · 0 0 · 0 0 00 a 0 · 0 0 · 0 0 00 0 a · 0 0 · 0 0 0· · · · · · · · · ·0 0 0 · 0 0 · a 0 00 0 0 · 0 0 · 0 a 00 0 0 · 0 0 · 0 0 0

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(N+1)×(N+1)

,

B =

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 0 · 0 0 · 0 0 0c b c · 0 0 · 0 0 00 c b · 0 0 · 0 0 0· · · · · · · · · ·0 0 0 · 0 0 · b c 00 0 0 · 0 0 · c b c0 0 0 · 1 −1 · 0 −1 1

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(N+1)×(N+1)

,

C = A, D = [I](N+1)×(N+1), us =

⎢⎢⎢⎢⎢⎣

u0su1s·

uN−1s

uNs

⎥⎥⎥⎥⎥⎦

(N+1)×1

,

(3.6)

where s = n − 1, n, n + 1 and

ϕn =

⎢⎢⎢⎢⎢⎣

ϕ0n

ϕ1n

.ϕN−1n

ϕNn

⎥⎥⎥⎥⎥⎦

(N+1)×1

,

a =1h2, b = − 2

τ2− 2h2

− 1, c =1τ2,

ϕkn =

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−τπ sin(πxn), k = 0,

− exp(−πtk) sin(πxn), 1 ≤ k ≤N − 1,

τπ sin(πxn)(

exp(

−π2

)

− exp(−π))

, k =N.

(3.7)

We seek a solution of the matrix equation in following form:

un = αn+1un+1 + βn+1, n =M − 1, . . . , 1,

uM = 0,(3.8)

Page 19: FDM for Elliptic Equations with Bitsadze-Samarskii-Dirichlet …downloads.hindawi.com/journals/aaa/2012/454831.pdf · 2019. 7. 31. · Allaberen Ashyralyev1,2 and Fatma Songul Ozesenli

Abstract and Applied Analysis 19

where αn(n = 1, . . . ,M) are (N + 1) × (N + 1) square matrices and βn(n = 1, . . . ,M) are(N + 1) × 1 column matrices defined by (see, [17]) as follows:

αn+1 = − (B + Cαn)−1A,

βn+1 = (B + Cαn)−1(

Dϕn − Cβn)

, n = 1, . . . ,M − 1,(3.9)

where

α1 = [0](N+1)×(N+1), β1 = [0](N+1)×1. (3.10)

Now, applying (2.8) for N even number, we can present the following second-order ofaccuracy difference scheme:

−unk+1 − 2un

k+ un

k−1τ2

− un+1k − 2unk + un−1k

h2+ unk = − exp(−πtk) sin(πxn), 1 ≤ k ≤N − 1,

1 ≤ h ≤M − 1,

−3un0 + 4un1 − un22τ

= −π sin(πxn), 0 ≤ n ≤M,

unN−2(x) − 4unN−1(x) + 3unN(x)2τ

=unN/2−2 − 4un

N/2−1 + 3unN/2

+ π sin(πxn)(

exp(

−π2

)

− exp(−π))

, 0 ≤ n ≤M,

u0k = uMk = 0, 0 ≤ k ≤N(3.11)

for the approximate solution of problem (3.1).So, again we have (N + 1) × (M + 1) system of linear equations in (3.11) and we will

write them in the following matrix form:

Aun+1 + Bun + Cun−1 = Dϕn, 1 ≤ n ≤M − 1,

u0 = uM = 0,(3.12)

Page 20: FDM for Elliptic Equations with Bitsadze-Samarskii-Dirichlet …downloads.hindawi.com/journals/aaa/2012/454831.pdf · 2019. 7. 31. · Allaberen Ashyralyev1,2 and Fatma Songul Ozesenli

20 Abstract and Applied Analysis

where

A =

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 · 0 0 0 · 0 0 00 a 0 · 0 0 0 · 0 0 00 0 a · 0 0 0 · 0 0 0· · · · · · · · · · ·0 0 0 · 0 0 0 · a 0 00 0 0 · 0 0 0 · 0 a 00 0 0 · 0 0 0 · 0 0 0

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(N+1)×(N+1)

,

B =

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−3 4 −1 · 0 0 0 · 0 0 0b c b · 0 0 0 · 0 0 00 b c · 0 0 0 · 0 0 0· · · · · · · · · · ·0 0 0 · 0 0 0 · c b 00 0 0 · 0 0 0 · b c b0 0 0 · −1 4 −3 · 1 −4 3

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(N+1)×(N+1)

,

C = A, D = [I](N+1)×(N+1),

us =

⎢⎢⎢⎢⎢⎣

u0su1s·

uN−1s

uNs

⎥⎥⎥⎥⎥⎦

(N+1)×1

,

(3.13)

where s = n − 1, n, n + 1 and

ϕkn =

⎢⎢⎢⎢⎢⎣

ϕ0n

ϕ1n

·ϕN−1n

ϕNn

⎥⎥⎥⎥⎥⎦

(N+1)×1

. (3.14)

Here,

a =1h2, b =

1τ2, c = − 2

h2− 2τ2

− 1, (3.15)

ϕkn =

⎪⎨

⎪⎩

−2τπ sin(πxn), k = 0,− exp(−πtk) sin(πxn), 1 ≤ k ≤N − 1,

2τπ sin(πxn)(

exp(

−π2

)

− exp(−π))

, k =N.(3.16)

So, we have the second-order difference equation with respect to n with matrix coefficients.To solve this difference equation, we use the same algorithm (3.8) and (3.9).

Now, we will give the results of the numerical experiments.

Page 21: FDM for Elliptic Equations with Bitsadze-Samarskii-Dirichlet …downloads.hindawi.com/journals/aaa/2012/454831.pdf · 2019. 7. 31. · Allaberen Ashyralyev1,2 and Fatma Songul Ozesenli

Abstract and Applied Analysis 21

Table 1: Comparison of the errors of difference schemes.

Difference schemes N =M = 20 N =M = 40 N =M = 60First-order difference scheme (2.7) 0.05384197882300 0.02631633782987 0.01740639813932Second-order difference scheme (2.8) 0.00631619894867 0.00164455475890 7.4144589892985e -004

The errors in numerical solutions are computed by

ENM = max1≤k≤N−1

(M−1∑

n=1

∣∣∣u(tk, xn) − ukn

∣∣∣

2h

)1/2

(3.17)

for different values of M and N, where u(tk, xn) represents the exact solution and uknrepresents the numerical solution at (tk, xn). The results are shown in Table 1 forN =M = 20,N =M = 40, andN =M = 60.

Thus, second-order of accuracy difference scheme is more accurate compared with thefirst-order of accuracy difference scheme.

4. Conclusion

The first and second-orders of accuracy difference schemes for approximate solutions ofthe Bitsadze-Samarskii-Dirichlet type nonlocal boundary value problem for the multidimen-sional elliptic partial differential equation are presented. Theorems on the stability, almostcoercive stability, and coercive stability estimates for the solution of these difference schemesare established. Numerical experiments are given.

References

[1] O. A. Ladyzhenskaya and N. N. Ural’tseva, Linear and Quasilinear Equations of Elliptic Type, Nauka,Moscow, Russia, 1973.

[2] M. L. Vishik, A. D. Myshkis, and O. A. Oleinik, “Partial differential equations,” in Mathematics inUSSR in the Last 40 Years, 1917–1957, vol. 1, pp. 563–599, Fizmatgiz, Moscow, Russia, 1959.

[3] S. G. Krein, Linear Differential Equations in Banach Space, Nauka, Moscow, Russia, 1966.[4] V. L. Gorbachuk and M. L. Gorbachuk, Boundary Value Problems for Differential-Operator Equations,

Naukova Dumka, Kiev, Russia, 1984.[5] G. Berikelashvili, “On a nonlocal boundary-value problem for two-dimensional elliptic equation,”

Computational Methods in Applied Mathematics, vol. 3, no. 1, pp. 35–44, 2003.[6] F. Criado-Aldeanueva, F. Criado, N. Odishelidze, and J. M. Sanchez, “On a control problem governed

by a linear partial differential equation with a smooth functional,” Optimal Control Applications &Methods, vol. 31, no. 6, pp. 497–503, 2010.

[7] A. Ashyralyev, “Nonlocal boundary-value problems for elliptic equations: well-posedness in Bochnerspaces,” in Proceedings of the ICMS International Conference on Mathematical Science, vol. 1309 of AIPConference Proceedings, pp. 66–84, Bolu, Turkey, November 2010.

[8] A. Ashyralyev, “On well-posedness of the nonlocal boundary value problems for elliptic equations,”Numerical Functional Analysis and Optimization, vol. 24, no. 1-2, pp. 1–15, 2003.

[9] I. A. Gurbanov and A. A. Dosiev, “On the numerical solution of nonlocal boundary problems forquasilinear elliptic equations,” in Approximate Methods for Operator Equations, pp. 64–74, Baku StateUniversity, Baku, Azerbaijan, 1984.

[10] A. A. Samarskii and E. S. Nikolaev, Numerical Methods for Grid Equations, 2 Iterative Methods,Birkhauser, Basel, Switzerland, 1989.

Page 22: FDM for Elliptic Equations with Bitsadze-Samarskii-Dirichlet …downloads.hindawi.com/journals/aaa/2012/454831.pdf · 2019. 7. 31. · Allaberen Ashyralyev1,2 and Fatma Songul Ozesenli

22 Abstract and Applied Analysis

[11] A. Ashyralyev, C. Cuevas, and S. Piskarev, “On well-posedness of difference schemes for abstractelliptic problems in Lp([0, 1], E) spaces,” Numerical Functional Analysis and Optimization, vol. 29, no.1-2, pp. 43–65, 2008.

[12] A. V. Bitsadze and A. A. Samarskii, “On some simplest generalizations of linear elliptic problems,”Doklady Akademii Nauk SSSR, vol. 185, pp. 739–740, 1969.

[13] A. Ashyralyev and E. Ozturk, “Numerical solutions of Bitsadze-Samarskii problem for ellipticequations,” in Further Progress in Analysis: Proceedings of the 6th International ISAAC Congress Ankara,Turkey 13–18 August 2007, pp. 698–707, World Scientific, 2009.

[14] A. P. Soldatov, “A problem of Bitsadze-Samarskii type for second-order elliptic systems on the plane,”Russian in Doklady Akademii Nauk, vol. 410, no. 5, pp. 607–611, 2006.

[15] D. G. Gordeziani, “On a method of resolution of Bitsadze-Samarskii boundary value problem,”Abstracts of Reports of Institute of Applied Mathematics, vol. 2, pp. 38–40, 1970.

[16] D. V. Kapanadze, “On the Bitsadze-Samarskii nonlocal boundary value problem,” DifferentialEquations, vol. 23, no. 3, pp. 543–545, 1987.

[17] A. Ashyralyev, “A note on the Bitsadze-Samarskii type nonlocal boundary value problem in a Banachspace,” Journal of Mathematical Analysis and Applications, vol. 344, no. 1, pp. 557–573, 2008.

[18] R. P. Agarwal and V. B. Shakhmurov, “Multipoint problems for degenerate abstract differentialequations,” Acta Mathematica Hungarica, vol. 123, no. 1-2, pp. 65–89, 2009.

[19] V. Shakhmurov and R. Shahmurov, “Maximal B-regular integro-differential equation,” Chinese Annalsof Mathematics B, vol. 30, no. 1, pp. 39–50, 2009.

[20] D. Orlovsky and S. Piskarev, “On approximation of inverse problems for abstract elliptic problems,”Journal of Inverse and Ill-Posed Problems, vol. 17, no. 8, pp. 765–782, 2009.

[21] P. E. Sobolevskii,Difference Methods for the Approximate Solution of Differential Equations, Voronezh StateUniversity, Voronezh, Russia, 1975.

Page 23: FDM for Elliptic Equations with Bitsadze-Samarskii-Dirichlet …downloads.hindawi.com/journals/aaa/2012/454831.pdf · 2019. 7. 31. · Allaberen Ashyralyev1,2 and Fatma Songul Ozesenli

Submit your manuscripts athttp://www.hindawi.com

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttp://www.hindawi.com

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

CombinatoricsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

The Scientific World JournalHindawi Publishing Corporation http://www.hindawi.com Volume 2014

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com

Volume 2014 Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Stochastic AnalysisInternational Journal of