feb 19, 2008 1john anderson - cee/ge 479/679 earthquake engineering ge / cee - 479/679 topic 9....

54
Feb 19, 2008 1 John Anderson - CEE/GE 479/679 Earthquake Engineering GE / CEE - 479/679 Topic 9. Seismometry, Magnitude Scales, and Seismicity John G. Anderson Professor of Geophysics

Upload: abraham-henderson

Post on 04-Jan-2016

218 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Feb 19, 2008 1John Anderson - CEE/GE 479/679 Earthquake Engineering GE / CEE - 479/679 Topic 9. Seismometry, Magnitude Scales, and Seismicity John G. Anderson

Feb 19, 2008 1 John Anderson - CEE/GE 479/679

Earthquake EngineeringGE / CEE - 479/679

Topic 9. Seismometry, Magnitude Scales, and Seismicity

John G. Anderson

Professor of Geophysics

Page 2: Feb 19, 2008 1John Anderson - CEE/GE 479/679 Earthquake Engineering GE / CEE - 479/679 Topic 9. Seismometry, Magnitude Scales, and Seismicity John G. Anderson

Feb 19, 2008 2 John Anderson - CEE/GE 479/679

Key Points

• Seismometers are single-degree-of-freedom oscillators.• Different instruments for different applications• Different magnitude scales go with different instruments

– ML – Wood-Anderson, local– mb – short-period, teleseismic P-waves– MS – long-period, teleseismic surface waves– Mcoda – local, when calibration is a problem

• Magnitude scales are calibrated to be similar, but are not identical– MW is now accepted as best– All other scales saturate

Page 3: Feb 19, 2008 1John Anderson - CEE/GE 479/679 Earthquake Engineering GE / CEE - 479/679 Topic 9. Seismometry, Magnitude Scales, and Seismicity John G. Anderson

Feb 19, 2008 3 John Anderson - CEE/GE 479/679

Wood-Anderson Seismograph

• Important because:– Principles of operation are widely used.– Basis for the magnitude scales of earthquakes

that are still used today.– Provide data for early southern California

earthquake catalog that is still used today.

Page 4: Feb 19, 2008 1John Anderson - CEE/GE 479/679 Earthquake Engineering GE / CEE - 479/679 Topic 9. Seismometry, Magnitude Scales, and Seismicity John G. Anderson

Feb 19, 2008 4 John Anderson - CEE/GE 479/679

Optical magnification of the motion of the mass:Record shows d(t)=M x(t)

Richter (1958): M=2800Recent reanalysis: M=2080

Page 5: Feb 19, 2008 1John Anderson - CEE/GE 479/679 Earthquake Engineering GE / CEE - 479/679 Topic 9. Seismometry, Magnitude Scales, and Seismicity John G. Anderson

Feb 19, 2008 5 John Anderson - CEE/GE 479/679

Sample seismogram from a WAOriginal

vnta9201

Page 6: Feb 19, 2008 1John Anderson - CEE/GE 479/679 Earthquake Engineering GE / CEE - 479/679 Topic 9. Seismometry, Magnitude Scales, and Seismicity John G. Anderson

Feb 19, 2008 6 John Anderson - CEE/GE 479/679

Magnitude ML

• C. F. Richter was the first person to define the magnitude of an earthquake.

• The magnitude was defined from measurements taken using a Wood-Anderson seismogram.

• All subsequent magnitude scales are defined using the same principle.

Page 7: Feb 19, 2008 1John Anderson - CEE/GE 479/679 Earthquake Engineering GE / CEE - 479/679 Topic 9. Seismometry, Magnitude Scales, and Seismicity John G. Anderson

Feb 19, 2008 7 John Anderson - CEE/GE 479/679

Magnitude ML

• The magnitude was defined from measurements taken using a Wood-Anderson seismogram.

• For these examples, I use the DuHamel Integral to calculate a synthetic Wood-Anderson seismogram from digital strong motion records.

Page 8: Feb 19, 2008 1John Anderson - CEE/GE 479/679 Earthquake Engineering GE / CEE - 479/679 Topic 9. Seismometry, Magnitude Scales, and Seismicity John G. Anderson

Feb 19, 2008 8 John Anderson - CEE/GE 479/679

• ML = Local Magnitude

• Defined by Richter in 1940’s

⎥⎦

⎤⎢⎣

⎡=

earthquake reference of Amplitude

earthquake thisof AmplitudelogLM

Both amplitudes are measured peak amplitudes in mm from a standard Wood-Anderson seismogram.The amplitude of the reference earthquake is taken at the same distance.The reference earthquake: ML=3.0, A= 1.0 mm at R= 100 km.

( ) ( )RAARA

AM L 0

0

logloglog −=⎥⎦

⎤⎢⎣

⎡=

Page 9: Feb 19, 2008 1John Anderson - CEE/GE 479/679 Earthquake Engineering GE / CEE - 479/679 Topic 9. Seismometry, Magnitude Scales, and Seismicity John G. Anderson

Feb 19, 2008 9 John Anderson - CEE/GE 479/679

To find magnitude,need to find distance.This can be done from a single record.

vnta9201

Time (seconds)

Page 10: Feb 19, 2008 1John Anderson - CEE/GE 479/679 Earthquake Engineering GE / CEE - 479/679 Topic 9. Seismometry, Magnitude Scales, and Seismicity John G. Anderson

Feb 19, 2008 10 John Anderson - CEE/GE 479/679

How to estimate the distance?Use the relative speed of the P- and the S-waves.

This shows the simple math behind the process.

This is the origin of the rule of thumb used by seismologists for local earthquakes: multiply the s-p time (in sec) by 8 km/s, to get the approximate distance from the station to the epicenter.

Page 11: Feb 19, 2008 1John Anderson - CEE/GE 479/679 Earthquake Engineering GE / CEE - 479/679 Topic 9. Seismometry, Magnitude Scales, and Seismicity John G. Anderson

Feb 19, 2008 11 John Anderson - CEE/GE 479/679

Sample distance calculation

vnta9201

P-wave - t~1.0 s

Page 12: Feb 19, 2008 1John Anderson - CEE/GE 479/679 Earthquake Engineering GE / CEE - 479/679 Topic 9. Seismometry, Magnitude Scales, and Seismicity John G. Anderson

Feb 19, 2008 12 John Anderson - CEE/GE 479/679

Sample magnitude calculation

vnta9201

P-wave t~1.0 s

S-wave - t~6.0 s

Page 13: Feb 19, 2008 1John Anderson - CEE/GE 479/679 Earthquake Engineering GE / CEE - 479/679 Topic 9. Seismometry, Magnitude Scales, and Seismicity John G. Anderson

Feb 19, 2008 13 John Anderson - CEE/GE 479/679

Sample magnitude calculation

vnta9201

P-wave tp~1.0 s

S-wave - ts~6.0 s ts-tp = (6-1) s = 5 sR~(ts-tp) * 8 km/s ~ 40 km

Page 14: Feb 19, 2008 1John Anderson - CEE/GE 479/679 Earthquake Engineering GE / CEE - 479/679 Topic 9. Seismometry, Magnitude Scales, and Seismicity John G. Anderson

Feb 19, 2008 14 John Anderson - CEE/GE 479/679

Page 15: Feb 19, 2008 1John Anderson - CEE/GE 479/679 Earthquake Engineering GE / CEE - 479/679 Topic 9. Seismometry, Magnitude Scales, and Seismicity John G. Anderson

Feb 19, 2008 15 John Anderson - CEE/GE 479/679

• ML = Local Magnitude

• Defined by Richter in 1940’s

⎥⎦

⎤⎢⎣

⎡=

earthquake reference of Amplitude

earthquake thisof AmplitudelogLM

Both amplitudes are measured peak amplitudes in mm from a standard Wood-Anderson seismogram.The amplitude of the reference earthquake is taken at the same distance.The reference earthquake: ML=3.0, A= 1.0 mm at R= 100 km.

( ) ( )RAARA

AM L 0

0

logloglog −=⎥⎦

⎤⎢⎣

⎡=

Page 16: Feb 19, 2008 1John Anderson - CEE/GE 479/679 Earthquake Engineering GE / CEE - 479/679 Topic 9. Seismometry, Magnitude Scales, and Seismicity John G. Anderson

Feb 19, 2008 16 John Anderson - CEE/GE 479/679

This table, from the textbook Elementary Seismology by Richter (1958), gives the distance correction for the local magnitude.

This shows that you need the amplitude and the distance to the earthquake to determine the magnitude.

Page 17: Feb 19, 2008 1John Anderson - CEE/GE 479/679 Earthquake Engineering GE / CEE - 479/679 Topic 9. Seismometry, Magnitude Scales, and Seismicity John G. Anderson

Feb 19, 2008 17 John Anderson - CEE/GE 479/679

Page 18: Feb 19, 2008 1John Anderson - CEE/GE 479/679 Earthquake Engineering GE / CEE - 479/679 Topic 9. Seismometry, Magnitude Scales, and Seismicity John G. Anderson

Feb 19, 2008 18 John Anderson - CEE/GE 479/679

Sample seismogram from a WAOriginal

vnta9201

Page 19: Feb 19, 2008 1John Anderson - CEE/GE 479/679 Earthquake Engineering GE / CEE - 479/679 Topic 9. Seismometry, Magnitude Scales, and Seismicity John G. Anderson

Feb 19, 2008 19 John Anderson - CEE/GE 479/679

Sample magnitude calculation

vnta9201

R~40 km

Peak response = 828 mm

ML=log A - log A0

log A0(40 km) = -2.4ML=log(828)+2.4ML=2.9+2.4 = 5.3

Page 20: Feb 19, 2008 1John Anderson - CEE/GE 479/679 Earthquake Engineering GE / CEE - 479/679 Topic 9. Seismometry, Magnitude Scales, and Seismicity John G. Anderson

Feb 19, 2008 20 John Anderson - CEE/GE 479/679

Page 21: Feb 19, 2008 1John Anderson - CEE/GE 479/679 Earthquake Engineering GE / CEE - 479/679 Topic 9. Seismometry, Magnitude Scales, and Seismicity John G. Anderson

Feb 19, 2008 21 John Anderson - CEE/GE 479/679

Page 22: Feb 19, 2008 1John Anderson - CEE/GE 479/679 Earthquake Engineering GE / CEE - 479/679 Topic 9. Seismometry, Magnitude Scales, and Seismicity John G. Anderson

Feb 19, 2008 22 John Anderson - CEE/GE 479/679

Magnitude: General Comment

• Most magnitude scales, like ML, are tied to a certain kind of seismic instrument.

• Important issue: convenience of determining the magnitude from the seismograms.

Page 23: Feb 19, 2008 1John Anderson - CEE/GE 479/679 Earthquake Engineering GE / CEE - 479/679 Topic 9. Seismometry, Magnitude Scales, and Seismicity John G. Anderson

Feb 19, 2008 23 John Anderson - CEE/GE 479/679

SMA-1 Strong Motion Accelerograph

• Important because:– Strong motion data is the basis for all

quantitative earthquake resistant design.– Most of the early strong motion data is

recorded on instruments of this type or with a similar design.

– Principles of operation similar to Wood Anderson

Page 24: Feb 19, 2008 1John Anderson - CEE/GE 479/679 Earthquake Engineering GE / CEE - 479/679 Topic 9. Seismometry, Magnitude Scales, and Seismicity John G. Anderson

Feb 19, 2008 24 John Anderson - CEE/GE 479/679

Page 25: Feb 19, 2008 1John Anderson - CEE/GE 479/679 Earthquake Engineering GE / CEE - 479/679 Topic 9. Seismometry, Magnitude Scales, and Seismicity John G. Anderson

Feb 19, 2008 25 John Anderson - CEE/GE 479/679

Page 26: Feb 19, 2008 1John Anderson - CEE/GE 479/679 Earthquake Engineering GE / CEE - 479/679 Topic 9. Seismometry, Magnitude Scales, and Seismicity John G. Anderson

Feb 19, 2008 26 John Anderson - CEE/GE 479/679

Digital Accelerograph

Page 27: Feb 19, 2008 1John Anderson - CEE/GE 479/679 Earthquake Engineering GE / CEE - 479/679 Topic 9. Seismometry, Magnitude Scales, and Seismicity John G. Anderson

Feb 19, 2008 27 John Anderson - CEE/GE 479/679

Page 28: Feb 19, 2008 1John Anderson - CEE/GE 479/679 Earthquake Engineering GE / CEE - 479/679 Topic 9. Seismometry, Magnitude Scales, and Seismicity John G. Anderson

Feb 19, 2008 28 John Anderson - CEE/GE 479/679

Is there a magnitude scale associated with the strong motion

accelerograph? • Traditionally, NO. You cannot determine the

magnitude of an earthquake by reading the peak acceleration and knowing the distance.

• YES, in the sense that you can calculate the synthetic Wood-Anderson response easily from a digital accelerogram. ML is thus the scale most conveniently used with the accelerograph. (Above examples are done this way.)

Page 29: Feb 19, 2008 1John Anderson - CEE/GE 479/679 Earthquake Engineering GE / CEE - 479/679 Topic 9. Seismometry, Magnitude Scales, and Seismicity John G. Anderson

Feb 19, 2008 29 John Anderson - CEE/GE 479/679

More Sensitive Seismometers

• Uses– Teleseismic earthquake observations– Global picture of earthquake activity– Basis for Ms and mb magnitude scales– Observe microearthquakes on a regional basis

Page 30: Feb 19, 2008 1John Anderson - CEE/GE 479/679 Earthquake Engineering GE / CEE - 479/679 Topic 9. Seismometry, Magnitude Scales, and Seismicity John G. Anderson

Feb 19, 2008 30 John Anderson - CEE/GE 479/679

Some Definitions (not standard)

• Teleseismic - “distant seismic” - >30o

– Some might use a smaller distance, as little as 15o or 20o.

• Regional - 500 km (5o) to 30o

• Local - Closer than 500 km. – Some might say closer than 100 km.

Page 31: Feb 19, 2008 1John Anderson - CEE/GE 479/679 Earthquake Engineering GE / CEE - 479/679 Topic 9. Seismometry, Magnitude Scales, and Seismicity John G. Anderson

Feb 19, 2008 31 John Anderson - CEE/GE 479/679

Page 32: Feb 19, 2008 1John Anderson - CEE/GE 479/679 Earthquake Engineering GE / CEE - 479/679 Topic 9. Seismometry, Magnitude Scales, and Seismicity John G. Anderson

Feb 19, 2008 32 John Anderson - CEE/GE 479/679

Page 33: Feb 19, 2008 1John Anderson - CEE/GE 479/679 Earthquake Engineering GE / CEE - 479/679 Topic 9. Seismometry, Magnitude Scales, and Seismicity John G. Anderson

Feb 19, 2008 33 John Anderson - CEE/GE 479/679

Page 34: Feb 19, 2008 1John Anderson - CEE/GE 479/679 Earthquake Engineering GE / CEE - 479/679 Topic 9. Seismometry, Magnitude Scales, and Seismicity John G. Anderson

Feb 19, 2008 34 John Anderson - CEE/GE 479/679

Short Period Long Period

Page 35: Feb 19, 2008 1John Anderson - CEE/GE 479/679 Earthquake Engineering GE / CEE - 479/679 Topic 9. Seismometry, Magnitude Scales, and Seismicity John G. Anderson

Feb 19, 2008 35 John Anderson - CEE/GE 479/679

Page 36: Feb 19, 2008 1John Anderson - CEE/GE 479/679 Earthquake Engineering GE / CEE - 479/679 Topic 9. Seismometry, Magnitude Scales, and Seismicity John G. Anderson

Feb 19, 2008 36 John Anderson - CEE/GE 479/679

Page 37: Feb 19, 2008 1John Anderson - CEE/GE 479/679 Earthquake Engineering GE / CEE - 479/679 Topic 9. Seismometry, Magnitude Scales, and Seismicity John G. Anderson

Feb 19, 2008 37 John Anderson - CEE/GE 479/679

Rayleigh Wave

Page 38: Feb 19, 2008 1John Anderson - CEE/GE 479/679 Earthquake Engineering GE / CEE - 479/679 Topic 9. Seismometry, Magnitude Scales, and Seismicity John G. Anderson

Feb 19, 2008 38 John Anderson - CEE/GE 479/679

At large distances, seismologists use travel time tables or curves, such as these. The scale goes all the way from zero distance to half way around the world on this chart (200 intervals). The time goes from zero to 50 minutes, in 5 minute intervals.

Because the Earth is layered, there are more waves than just the P- and S- waves on this chart.

Page 39: Feb 19, 2008 1John Anderson - CEE/GE 479/679 Earthquake Engineering GE / CEE - 479/679 Topic 9. Seismometry, Magnitude Scales, and Seismicity John G. Anderson

Feb 19, 2008 39 John Anderson - CEE/GE 479/679

Page 40: Feb 19, 2008 1John Anderson - CEE/GE 479/679 Earthquake Engineering GE / CEE - 479/679 Topic 9. Seismometry, Magnitude Scales, and Seismicity John G. Anderson

Feb 19, 2008 40 John Anderson - CEE/GE 479/679

Role of the global networks

• Large-scale picture of the global seismicity.

Page 41: Feb 19, 2008 1John Anderson - CEE/GE 479/679 Earthquake Engineering GE / CEE - 479/679 Topic 9. Seismometry, Magnitude Scales, and Seismicity John G. Anderson

Feb 19, 2008 41 John Anderson - CEE/GE 479/679

Page 42: Feb 19, 2008 1John Anderson - CEE/GE 479/679 Earthquake Engineering GE / CEE - 479/679 Topic 9. Seismometry, Magnitude Scales, and Seismicity John G. Anderson

Feb 19, 2008 42 John Anderson - CEE/GE 479/679

Regional Networks

Page 43: Feb 19, 2008 1John Anderson - CEE/GE 479/679 Earthquake Engineering GE / CEE - 479/679 Topic 9. Seismometry, Magnitude Scales, and Seismicity John G. Anderson

Feb 19, 2008 43 John Anderson - CEE/GE 479/679

Page 44: Feb 19, 2008 1John Anderson - CEE/GE 479/679 Earthquake Engineering GE / CEE - 479/679 Topic 9. Seismometry, Magnitude Scales, and Seismicity John G. Anderson

Feb 19, 2008 44 John Anderson - CEE/GE 479/679

6

Page 45: Feb 19, 2008 1John Anderson - CEE/GE 479/679 Earthquake Engineering GE / CEE - 479/679 Topic 9. Seismometry, Magnitude Scales, and Seismicity John G. Anderson

Feb 19, 2008 45 John Anderson - CEE/GE 479/679

Microwave network operated by the Seismological Laboratory to transmit seismic data to Reno.

Page 46: Feb 19, 2008 1John Anderson - CEE/GE 479/679 Earthquake Engineering GE / CEE - 479/679 Topic 9. Seismometry, Magnitude Scales, and Seismicity John G. Anderson

Feb 19, 2008 46 John Anderson - CEE/GE 479/679

Page 47: Feb 19, 2008 1John Anderson - CEE/GE 479/679 Earthquake Engineering GE / CEE - 479/679 Topic 9. Seismometry, Magnitude Scales, and Seismicity John G. Anderson

Feb 19, 2008 47 John Anderson - CEE/GE 479/679

Page 48: Feb 19, 2008 1John Anderson - CEE/GE 479/679 Earthquake Engineering GE / CEE - 479/679 Topic 9. Seismometry, Magnitude Scales, and Seismicity John G. Anderson

Feb 19, 2008 48 John Anderson - CEE/GE 479/679

Page 49: Feb 19, 2008 1John Anderson - CEE/GE 479/679 Earthquake Engineering GE / CEE - 479/679 Topic 9. Seismometry, Magnitude Scales, and Seismicity John G. Anderson

Feb 19, 2008 49 John Anderson - CEE/GE 479/679

Page 50: Feb 19, 2008 1John Anderson - CEE/GE 479/679 Earthquake Engineering GE / CEE - 479/679 Topic 9. Seismometry, Magnitude Scales, and Seismicity John G. Anderson

Feb 19, 2008 50 John Anderson - CEE/GE 479/679

Coda Duration Magnitude

• Used by local networks because amplitude is unreliable, and also often clipped.

• Each network develops its own scale.

• UNR equations:

mC = −1.2 + 2.65log DS + 0.0013R

Page 51: Feb 19, 2008 1John Anderson - CEE/GE 479/679 Earthquake Engineering GE / CEE - 479/679 Topic 9. Seismometry, Magnitude Scales, and Seismicity John G. Anderson

Feb 19, 2008 51 John Anderson - CEE/GE 479/679

Seismic Moment

• Definition of Seismic Moment

• M0=μAD

– μ is the shear modulus of the rock– A is the area of the fault on which slip takes

place– D is the average slip on the fault

Page 52: Feb 19, 2008 1John Anderson - CEE/GE 479/679 Earthquake Engineering GE / CEE - 479/679 Topic 9. Seismometry, Magnitude Scales, and Seismicity John G. Anderson

Feb 19, 2008 52 John Anderson - CEE/GE 479/679

Moment Magnitude

• MW=(2/3) (log M0-16.05) (exact)

• MW=(2/3) log M0-10.73 (as applied)

• This is the preferred magnitude scale in the seismological community.

Page 53: Feb 19, 2008 1John Anderson - CEE/GE 479/679 Earthquake Engineering GE / CEE - 479/679 Topic 9. Seismometry, Magnitude Scales, and Seismicity John G. Anderson

Feb 19, 2008 53 John Anderson - CEE/GE 479/679

Relate ML with MW

• Note, moment of zero magnitude earthquake is M0(0)=1016.05 dyne-cm

• Compare with

( )

( )⎟⎟⎠

⎞⎜⎜⎝

⎛=

−=

0log

3

2

05.16log3

2

0

0

0

M

M

MMW

( )⎥⎦⎤

⎢⎣

⎡=

RA

AM L

0

log

Page 54: Feb 19, 2008 1John Anderson - CEE/GE 479/679 Earthquake Engineering GE / CEE - 479/679 Topic 9. Seismometry, Magnitude Scales, and Seismicity John G. Anderson

Feb 19, 2008 54 John Anderson - CEE/GE 479/679