feed forward neural network based ionospheric model for...

20
Feed forward neural network based ionospheric model for the East African region A. Tebabal 1 , S.M. Radicella 2 , B. Damtie 1 , Y. Migoya-Orue’ 2 , M. Nigussie 1 , B. Nava 2 Beacon Satellite Symposium 2019, University of Mazury 19–23 August 2019, Olsztyn, Poland 1 Bahir Dar University, Bahir Dar, Ethiopia, 2 Abdus Salam International Center for Theoretical Physics, Trieste, Italy.

Upload: others

Post on 11-Nov-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Feed forward neural network based ionospheric model for ...bss2019.uwm.edu.pl/sites/default/files/uploads/6._beacon-ambelu.pdf · A. Tebabal, S.M. Radicella, B. Damtie, Y. Migoya-Orue

Feed forward neural network based ionospheric

model for the East African region

A. Tebabal1, S.M. Radicella2, B. Damtie1, Y. Migoya-Orue’2, M.Nigussie1, B. Nava2

Beacon Satellite Symposium 2019, University of Mazury

19–23 August 2019, Olsztyn, Poland

1Bahir Dar University, Bahir Dar, Ethiopia, 2Abdus Salam International Center for Theoretical Physics, Trieste, Italy.

Page 2: Feed forward neural network based ionospheric model for ...bss2019.uwm.edu.pl/sites/default/files/uploads/6._beacon-ambelu.pdf · A. Tebabal, S.M. Radicella, B. Damtie, Y. Migoya-Orue

Outline 2

1 IntroductionThe Earth’s ionosphere

2 Data Source and Model ApproachesNeural Networks (NN)

3 ResultsThe Working Principle of Our Model

4 Summary

Introduction Data Source and Model Approaches Results Summary

Page 3: Feed forward neural network based ionospheric model for ...bss2019.uwm.edu.pl/sites/default/files/uploads/6._beacon-ambelu.pdf · A. Tebabal, S.M. Radicella, B. Damtie, Y. Migoya-Orue

The Earth’s Ionosphere 3

I The ionosphere is the ionized part of the Earth’s upper atmosphere.

The composition of theatmosphere changes withheight, the ion production ratealso changes.

This leads to the formation ofthree main ionized peaks: D, E,and F regions.

Earth’s ionosphere is a highlyvariable in space and time.

source:https://scied.ucar.edu/ionosphere.

Introduction Data Source and Model Approaches Results Summary

Page 4: Feed forward neural network based ionospheric model for ...bss2019.uwm.edu.pl/sites/default/files/uploads/6._beacon-ambelu.pdf · A. Tebabal, S.M. Radicella, B. Damtie, Y. Migoya-Orue

Cont. . . 4

Variability in the solar irradiance leads tovariability in the Earth’s atmosphere.

1 UV variationsmodify

ozone and the middleatmosphere structure.

2 Heating of the upper atmosphere (EUV;30-120 nm) satellite drag

3 Formation of the ionosphere (XUV-EUV,1-120 nm) satellite communications

IEUV is the primary driver of ionospheric variability butgeomagnetic activity and lower atmosphere meteorology alsocontribute.

Introduction Data Source and Model Approaches Results Summary

Page 5: Feed forward neural network based ionospheric model for ...bss2019.uwm.edu.pl/sites/default/files/uploads/6._beacon-ambelu.pdf · A. Tebabal, S.M. Radicella, B. Damtie, Y. Migoya-Orue

Cont. . . 5

Understanding the variations of the ionosphereis crucial to mitigate ionospheric effects and thedrivers behind these variations.

Ionospheric measurements are limited by theirincomplete spatial and temporal coverage.Therefore, ionospheric models are employed.

Developing a data driven model, to investigatethe ionospheric variability, is the goal of thisstudy.

Introduction Data Source and Model Approaches Results Summary

Page 6: Feed forward neural network based ionospheric model for ...bss2019.uwm.edu.pl/sites/default/files/uploads/6._beacon-ambelu.pdf · A. Tebabal, S.M. Radicella, B. Damtie, Y. Migoya-Orue

Data Source 6

32 34 36 38 40 42 44 46 48Geographic longitude (degrees)

2

4

6

8

10

12

14

16G

eogr

aphi

c la

titud

e (d

egre

es)

Bdmt

Armi

Aboo

Asos

Debk

Ginr

Nege

Adis

Nazr

Serb

Robe

Shis

Metu

√Hourly Total Electron Content (TEC) data from GPS stations

marked with blue circles used for training and red stars for testing.

Introduction Data Source and Model Approaches Results Summary

Page 7: Feed forward neural network based ionospheric model for ...bss2019.uwm.edu.pl/sites/default/files/uploads/6._beacon-ambelu.pdf · A. Tebabal, S.M. Radicella, B. Damtie, Y. Migoya-Orue

Model Approaches 7

Neural Networks

are models that attempt to mimic some of thebasic information processing methods found inthe brain [Samarasinghem, 2007].

Benefits of Neural Networks

its computing power,its ability to learn and generalization,

generalization means producing reasonable outputs for inputsnot encountered during the training(learning).

have useful properties such as nonlinearity,adaptivity and fault tolerance.

Introduction Data Source and Model Approaches Results Summary

Page 8: Feed forward neural network based ionospheric model for ...bss2019.uwm.edu.pl/sites/default/files/uploads/6._beacon-ambelu.pdf · A. Tebabal, S.M. Radicella, B. Damtie, Y. Migoya-Orue

Model Approaches 8

I We employed a feed-forward neural network (i.e. fully connectedlayers)

Σ

z1

y1

Σ

zk

yk... ...

...

x1

Input layer Output layer

Σ

Hidden layer

h1

a1 w(2)11

x2 Σ

h2

xi Σ

hj

ajw

(2)kj

bias w(1)j0

bias

w(2)k0

w(1)11

w(1)ji

A schematic diagram of feed-forward neural network composed ofthree layers.

Introduction Data Source and Model Approaches Results Summary

Page 9: Feed forward neural network based ionospheric model for ...bss2019.uwm.edu.pl/sites/default/files/uploads/6._beacon-ambelu.pdf · A. Tebabal, S.M. Radicella, B. Damtie, Y. Migoya-Orue

Model Approaches 9

The basic algorithm for NN

yk = ϕ

j

w(2)kj ϕ

(∑

i

w(1)ji xi + w

(1)jo

)

j

+ w(2)ko

k

(1)

Phases of application of NN modeling technique

Training data

Model parameters estimation

Testing data

Model validation

Introduction Data Source and Model Approaches Results Summary

Page 10: Feed forward neural network based ionospheric model for ...bss2019.uwm.edu.pl/sites/default/files/uploads/6._beacon-ambelu.pdf · A. Tebabal, S.M. Radicella, B. Damtie, Y. Migoya-Orue

The Working Principle of Our Model (Tebabal et al, 2019) 10

Model Input Parameters

.

∑∑

∑TEC

BiasBias

Bias

Inputlayer

Hiddenlayer

Hiddenlayer

Outputlayer

DOY

HR

F10.7

ap

Gp

Introduction Data Source and Model Approaches Results Summary

Page 11: Feed forward neural network based ionospheric model for ...bss2019.uwm.edu.pl/sites/default/files/uploads/6._beacon-ambelu.pdf · A. Tebabal, S.M. Radicella, B. Damtie, Y. Migoya-Orue

Model validation and comparison 11

One hour ahead prediction

TEC data from 2012 to 2014 used to develop the NNmodel parameters (weights and biases).Observations in the year 2015 used for validation/testingof the model.

model prediction RMS error ranges from 5.44 – 6.45 TECU.correlation coefficients between model prediction andGPS–TEC ranges from 0.925 to 0.96.

GPS-TEC observations from 2012 to 2015 used forfurther validation

model was able to explain more than 93% of the variability ofGPS–TEC.RMS error ranges from 3.9 – 6 TECU.

Introduction Data Source and Model Approaches Results Summary

Page 12: Feed forward neural network based ionospheric model for ...bss2019.uwm.edu.pl/sites/default/files/uploads/6._beacon-ambelu.pdf · A. Tebabal, S.M. Radicella, B. Damtie, Y. Migoya-Orue

Model validation and comparison 12

One day ahead prediction

The response of ionosphere for solar and geomagnetic activityranges 1–2 days (e.g., Kutiev et al. 2012).

Model inputs are F10.7 and ap index values of the previous day

Table: One-day ahead forecasting over for different GPS stations inthe year 2015.

GPS station R RMS (TECU) STD (TECU)1 Adis 0.945 6.166 6.1092 Aboo 0.942 5.989 5.9803 Armi 0.955 5.270 5.2654 Asos 0.955 5.653 5.4765 Ginr 0.947 5.670 5.6696 Nege 0.949 5.557 5.5557 Debk 0.938 6.504 6.4068 Bdmt 0.948 5.879 5.8549 Shis 0.962 5.485 5.345

Introduction Data Source and Model Approaches Results Summary

Page 13: Feed forward neural network based ionospheric model for ...bss2019.uwm.edu.pl/sites/default/files/uploads/6._beacon-ambelu.pdf · A. Tebabal, S.M. Radicella, B. Damtie, Y. Migoya-Orue

Diurnal Variation analysis 13

0

40

80 DOY 75

a) DOY 68 DOY 76 DOY 66 DOY 67

Q1

Q2

Q3

Q4

Q5

Robe 2014

0

20

40

60

TE

C/T

EC

U DOY 152

b)

DOY 163 DOY 178 DOY 166 DOY 173

GPS TEC NN TEC NeQuick 2 TEC

0

40

80 DOY 257c)

DOY 258 DOY 251 DOY 260 DOY 263

0 8 16 0 8 16 0 8 16 0 8 16 0 8 16Time,hrs (UT)

0

40

80 DOY 345d)

DOY 352 DOY 351 DOY 350 DOY 361

Quiet days

a) March

b) June

c) September

d) December

Introduction Data Source and Model Approaches Results Summary

Page 14: Feed forward neural network based ionospheric model for ...bss2019.uwm.edu.pl/sites/default/files/uploads/6._beacon-ambelu.pdf · A. Tebabal, S.M. Radicella, B. Damtie, Y. Migoya-Orue

Quiet days RMS error 14

March June September December

0

5

10

15R

MS

/TE

CUNN TEC NeQuick 2 TEC

Introduction Data Source and Model Approaches Results Summary

Page 15: Feed forward neural network based ionospheric model for ...bss2019.uwm.edu.pl/sites/default/files/uploads/6._beacon-ambelu.pdf · A. Tebabal, S.M. Radicella, B. Damtie, Y. Migoya-Orue

Disturbed conditions 15

IPerformance of the NN model to disturbed conditions

Four intense geomagnetic storms (with peak Dst< -110nT) during 2012-2015 selected.

These storm events occurred on:

315 July 2012 with Dst index value of -139 nT,

319 February 2014 with Dst index value of -124nT,

301 June 2013 with Dst index value of -119nT, and

317 march 2015 with Dst index value of -223nT.

Introduction Data Source and Model Approaches Results Summary

Page 16: Feed forward neural network based ionospheric model for ...bss2019.uwm.edu.pl/sites/default/files/uploads/6._beacon-ambelu.pdf · A. Tebabal, S.M. Radicella, B. Damtie, Y. Migoya-Orue

Disturbed conditions 16

Metu: July 2012

-150

-100

-50

0

50

Dst

(nT

)

DOY 195 DOY 196 DOY 197 DOY 198 DOY 199

0

70

140

ap in

dex

Jul-13 Jul-14 Jul-15 Jul-16 Jul-17Date

0

40

80

TE

C/T

EC

U

GPS TEC NN TEC

Serb: June 2013

-140

-100

-60

-20

20

Dst

(nT

)

DOY 150 DOY 151 DOY 152 DOY 153 DOY 154

0

40

80

120

ap in

dex

May-30 May-31 Jun-01 Jun-02 Jun-03Date

0

20

40

60

TE

C/T

EC

U

GPS TEC NN TEC

Robe: February 2014

-140

-80

-20

40

Dst

(nT

)

DOY 48 DOY 49 DOY 50 DOY 51 DOY 52

0

50

100

ap in

dex

Feb-17 Feb-18 Feb-19 Feb-20 Feb-21Date

0

40

80

TE

C/T

EC

U

GPS TEC NN TEC

Nazr: March 2015

-250

-150

-50

50

150

Dst

(nT

)

DOY 74 DOY 75 DOY 76 DOY 77 DOY 78

0

100

200

ap in

dex

Mar-15 Mar-16 Mar-17 Mar-18 Mar-19Date

0

40

80

TE

C/T

EC

U

GPS TEC NN TEC

Dst and ap index with predicted and GPS TEC for five days period, centered at the time when Dst reaches

minimum.

Introduction Data Source and Model Approaches Results Summary

Page 17: Feed forward neural network based ionospheric model for ...bss2019.uwm.edu.pl/sites/default/files/uploads/6._beacon-ambelu.pdf · A. Tebabal, S.M. Radicella, B. Damtie, Y. Migoya-Orue

Disturbed conditions 17

RMS Error between GPS-TEC and predicted values

Station Year Month DOYNNRMS error

Metu 2012 July

195 4.3198196 5.4912197 3.8134198 8.1569199 4.4319

Serb 2013 June

150 3.1788151 3.3501152 5.1312153 2.4064154 3.5089

Robe 2014 February

48 7.200249 3.641150 9.111151 7.477452 –

Narz 2015 March

74 2.886275 1.787676 12.095377 6.088678 5.4806

Introduction Data Source and Model Approaches Results Summary

Page 18: Feed forward neural network based ionospheric model for ...bss2019.uwm.edu.pl/sites/default/files/uploads/6._beacon-ambelu.pdf · A. Tebabal, S.M. Radicella, B. Damtie, Y. Migoya-Orue

Summary 18

We present an NN model for the East African regionionosphere.

The model inputs are geographic locations, DOY, HR, F10.7,and ap index and produce time dependent TEC.

Our NN models result indicate

the overall RMS error between GPS TEC and the modelsprediction lies in the range of 3 to 6.05 TECU.one-hour and one-day ahead prediction are in good agreementwith the observed GPS-TEC values.

Low latitude ionosphere is highly variable at different timescales.

Knowledge of the ionospheric response to other disturbancesources and corresponding observations required to increasethe performance of the model.

Introduction Data Source and Model Approaches Results Summary

Page 19: Feed forward neural network based ionospheric model for ...bss2019.uwm.edu.pl/sites/default/files/uploads/6._beacon-ambelu.pdf · A. Tebabal, S.M. Radicella, B. Damtie, Y. Migoya-Orue

Acknowledgments 19

I gratefully acknowledgeOrganizers of 20th International Beacon Satellite Symposium

Introduction Data Source and Model Approaches Results Summary

Page 20: Feed forward neural network based ionospheric model for ...bss2019.uwm.edu.pl/sites/default/files/uploads/6._beacon-ambelu.pdf · A. Tebabal, S.M. Radicella, B. Damtie, Y. Migoya-Orue

Thank you for your attention!!

1Bahir Dar University, Bahir Dar, Ethiopia, 2Abdus Salam International Center for Theoretical Physics, Trieste, Italy.