fem solid mechanics

Upload: theflamebearer

Post on 02-Jun-2018

255 views

Category:

Documents


1 download

TRANSCRIPT

  • 8/11/2019 FEM Solid Mechanics

    1/48

  • 8/11/2019 FEM Solid Mechanics

    2/48

    2www.simytec.com

    FEM in Solid Mechanics

    Part I

    Eduardo Dvorkin

  • 8/11/2019 FEM Solid Mechanics

    3/48

    3www.simytec.com

    Contents

    Part 1

    Linear and nonlinear problems in solid mechanics Fundamental equations:

    Kinematics The stress tensor

    Equilibrium Constitutive relations

    The principle of virtual work

    Part 2

    FEM in solid mechanics Elasto-plasticity Structural elements Nonlinear problems- Collapse Dynamic problems

  • 8/11/2019 FEM Solid Mechanics

    4/48

    4www.simytec.com

    Linear and nonlinear problemsMaterial nonlinearities

    PlasticityViscoplasticity, creepFracturing materials

    Geometrical nonlinearities

    Contact problemsEquilibrium in deformed configurationFinite strains

  • 8/11/2019 FEM Solid Mechanics

    5/48

    5www.simytec.com

    Linear and nonlinear problemsGeometrical nonlinearities:Equilibrium in deformed configuration

    P

    P

  • 8/11/2019 FEM Solid Mechanics

    6/48

    6www.simytec.com

    No linealidad Geomtrica

    Fuerza

    aplicada

    Desplazamiento vertical

    MATERIAL ELASTIC NAME = 1,

    E = 21000 NU = 0.3

    EGROUP TRUSS NAME = 1,

    DISPLACEMENTS = LARGE,

    MATERIAL = 1,

    INT = 2,

    area = 10.Desplazamiento vertical

    Tensi

    na

    xial

    P

    20

    10

  • 8/11/2019 FEM Solid Mechanics

    7/48

    7www.simytec.com

    Linear and nonlinear problemsMaterial + Geometrical nonlinearities + Contact: Collapse

    Buckle arrestors

  • 8/11/2019 FEM Solid Mechanics

    8/48

    8www.simytec.com

    Linear and nonlinear problemsMaterial + Geometrical nonlinearities + Contact: Collapse

    Contact forces

  • 8/11/2019 FEM Solid Mechanics

    9/48

    9www.simytec.com

    Linear and nonlinear problems

    Material + Geometrical nonlinearities + Contact

  • 8/11/2019 FEM Solid Mechanics

    10/48

    10www.simytec.com

    Linear and nonlinear problemsMaterial + Geometrical nonlinearities + Contact

    OCTG connections

    Structural Analysis

    Detail of

    the seal area

    0

    500

    1,000

    1,500

    2,000

    2,500

    3,000

    0123456

    Distance along seal area [mm]

    Sealcontactpressure[MPa]

    MU (Cone)

    100% Pc (Cone)

    197% Pc (Cone)

    0

    500

    1,000

    1,500

    2,000

    2,500

    3,000

    0123456

    Distance along seal area [mm]

    Sealcontactpressure[Mpa]

    MU (Sphere)

    100% Pc (Sphere)

    197% Pc (Sphere)

  • 8/11/2019 FEM Solid Mechanics

    11/48

    11www.simytec.com

    Linear and nonlinear problemsMaterial + Geometrical nonlinearities + ContactFinite elasto plastic strains

    OCTG connections: Failure analysis

    disp = 10.60 mm

    disp = 16.60 mm

    disp = 20.06 mm

    disp = 31.91 mm

    disp = 46.72 mm

    disp = 5.77

    mm

    disp = 4.10 mm

    Make Up

    disp = 52.65 mm

    Equivalent

    PlasticStrain

    6.72%4.29%2.73

    %1.11

    %0.71%

    0.45%

    1.74

    %

    10.5%

  • 8/11/2019 FEM Solid Mechanics

    12/48

    12www.simytec.com

    Cartesian Coordinate System

    x (z1)

    y (z2)

    z (z3)

    k

    k: point or material particle

    Continuos body

  • 8/11/2019 FEM Solid Mechanics

    13/48

    13www.simytec.com

    Kinematics of the Continuous Media

    Lagrangian description

    Eulerian description

  • 8/11/2019 FEM Solid Mechanics

    14/48

    14www.simytec.com

    Pop Quiz # 2

    Eulerian formulation

    t

    v

    t

    va

    Is a the acceleration?

    NO

  • 8/11/2019 FEM Solid Mechanics

    15/48

    15www.simytec.com

    Kinematics of the Continuous Media

    ),,(

    ),,(

    ),,(

    22

    22

    22

    22

    22

    22

    ),,(

    ),,(

    ),,(

    zyxw

    zyxv

    zyxu

    zyxw

    zyxv

    zyxu

    zzzyzx

    yzyyyx

    xzxyxx

    zzzyzx

    yzyyyx

    xzxyxx

  • 8/11/2019 FEM Solid Mechanics

    16/48

    16www.simytec.com

    Kinematics of the Continuous MediaThe second transformation is only possible if thecompatibility equations are fulfilled

    0

    0

    0

    02

    02

    02

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    zyxxyx

    zyxyxz

    zyxxzy

    xzzx

    zyyz

    yxxy

    xyzxyzzz

    xyzxyzyy

    xyzxyzxx

    zxxxzz

    yzzzyy

    xyyyxx

  • 8/11/2019 FEM Solid Mechanics

    17/48

    17www.simytec.com

    The Cauchy Stress Tensor

  • 8/11/2019 FEM Solid Mechanics

    18/48

    18www.simytec.com

    The Cauchy Stress Tensor

  • 8/11/2019 FEM Solid Mechanics

    19/48

    19www.simytec.com

    The Cauchy Stress TensorDefinition:

    (i=1,2,3)

    (Above we use the summation convention)

    P

    t

    n

  • 8/11/2019 FEM Solid Mechanics

    20/48

    20www.simytec.com

    Pop Quiz # 3Water tank

    H

    A

  • 8/11/2019 FEM Solid Mechanics

    21/48

    21www.simytec.com

    The Cauchy Stress Tensor

  • 8/11/2019 FEM Solid Mechanics

    22/48

    22www.simytec.com

    The Cauchy Stress Tensor

    Equilibrium in the deformed configuration

  • 8/11/2019 FEM Solid Mechanics

    23/48

    23www.simytec.com

    The Cauchy Stress TensorEquilibrium in the deformed configuration

    b is the force per unit massIn dynamic analyses include in f the inertia forces.

  • 8/11/2019 FEM Solid Mechanics

    24/48

    24www.simytec.com

    The Cauchy Stress Tensor

    Torques equilibrium

    (symmetry)

  • 8/11/2019 FEM Solid Mechanics

    25/48

    25www.simytec.com

    The Cauchy Stress Tensor and Physic

    In nonlinear problems there are a numberof stress measures that are used during calculations:

    Kirchhoff stress tensor

    Second Piola-Kirchhoff stress tensorBiot stress tensoretc.

    They are only mathematical tools.

    The final results with significance for usshould be expressed in terms ofthe Cauchy stress tensor.

  • 8/11/2019 FEM Solid Mechanics

    26/48

    26www.simytec.com

    Constitutive Relations

    Phenomenological constitutive relations

    http://www.mts.com/en/Material/Dynamic/index.asp
  • 8/11/2019 FEM Solid Mechanics

    27/48

    27www.simytec.com

    Constitutive Relations

    P

    Elastic material

  • 8/11/2019 FEM Solid Mechanics

    28/48

    28www.simytec.com

    Constitutive RelationsHOOKEs LAWLinear elastic and isotropic materials

  • 8/11/2019 FEM Solid Mechanics

    29/48

    29www.simytec.com

    Constitutive Relations

    Elasto-plastic materials

    Ingredients:

    Yield surface: in the 3D stress space describes the locus of the pointswhere the plastic behavior is initiated.

    Flow rule: describes the evolution of the plastic deformations.

    Hardening law: describes the evolution of the yield surface duringthe plastic deformation process.

  • 8/11/2019 FEM Solid Mechanics

    30/48

    30www.simytec.com

    Constitutive Relations

    Elasto-plastic materials

    : deviatoric stress tensor

  • 8/11/2019 FEM Solid Mechanics

    31/48

    31www.simytec.com

    Constitutive Relations

    Elasto-plastic materialsVon Mises yield function (metals)

  • 8/11/2019 FEM Solid Mechanics

    32/48

    32www.simytec.com

    Constitutive Relations

    Elasto-plastic materialsVon Mises yield function (metals)

  • 8/11/2019 FEM Solid Mechanics

    33/48

    33www.simytec.com

    Constitutive Relations

    Elasto-plastic materials: The flow rule

    fgmetalsplasticityassociatedFor

    g

    ij

    ijP

    ijP

    ijE

    ij

    )(

    g: plastic potential

  • 8/11/2019 FEM Solid Mechanics

    34/48

    34www.simytec.com

    Constitutive Relations

    Elasto-plastic materials: The flow rule

    fgmetalsplasticityassociatedFor

    g

    ij

    ijP

    ijP

    ijE

    ij

    )(

    g: plastic potential

  • 8/11/2019 FEM Solid Mechanics

    35/48

    35www.simytec.com

    Constitutive Relations

    Elasto-plastic materials: The flow rule

    For metals (von Mises + associated plasticity)

    0P

    zz

    P

    yy

    P

    xx

    The plastic flow is incompressible

  • 8/11/2019 FEM Solid Mechanics

    36/48

    36www.simytec.com

    Constitutive Relations

    Elasto-plastic materials:Hardening

    t

    t+ t

    Plastic loading

    ISOTROPIC HARDENING

  • 8/11/2019 FEM Solid Mechanics

    37/48

    37www.simytec.com

    Constitutive Relations

    Elasto-plastic materials:Hardening

    The isotropic hardening does not modelthe Bauschinger effect (Cyclic loading / unloading)

  • 8/11/2019 FEM Solid Mechanics

    38/48

    38www.simytec.com

    Constitutive Relations

    Elasto-plastic materials:Hardening

    t

    t+ tKINEMATIC HARDENING

  • 8/11/2019 FEM Solid Mechanics

    39/48

    39www.simytec.com

    Constitutive Relations

    Viscoplasticity

    In plasticity:

    We need viscoplasticity to model the experimental fact:

  • 8/11/2019 FEM Solid Mechanics

    40/48

    40www.simytec.com

    The principle of virtual work

    A 1D problem

    fB R

    Adxdx

    d)(

    A: transversal areaE: Youngs modulus

    A

    dxf Bx

    x=0 x=L

    fB

    : load per unit lengthR : concentrated load

    u(x) : unknown

  • 8/11/2019 FEM Solid Mechanics

    41/48

    41www.simytec.com

    The principle of virtual work

    A 1D problem

    R

    dx

    duEA

    u

    Lx

    0)0( Essential (rigid) boundary condition

    Natural boundary condition

  • 8/11/2019 FEM Solid Mechanics

    42/48

    42www.simytec.com

    The principle of virtual work

    A 1D problemEquilibrium:

    0Bf

    dx

    dA

    Constitutive equation:

    E

    Kinematic relation:

    dx

    du

  • 8/11/2019 FEM Solid Mechanics

    43/48

    43www.simytec.com

    The principle of virtual work

    A 1D problem

    02

    2B

    f

    dx

    udAE

    At every point inside the bar we must fulfill:

    u(x) is an arbitrary function

    u(0)=0 (condition)

    Hence, 00

    2

    2

    dxufdx

    udAE

    L

    B

  • 8/11/2019 FEM Solid Mechanics

    44/48

    44www.simytec.com

    The principle of virtual work

    A 1D problem

    Integrating by parts,

    Lx

    L L

    BuRdxufdxA

    0 0

    Virtual work of internal forces = Virtual work of external forces

  • 8/11/2019 FEM Solid Mechanics

    45/48

    45www.simytec.com

    The principle of virtual work

    Please notice that the PVW represents

    Equilibriumand NOT

    Energy Conservation

  • 8/11/2019 FEM Solid Mechanics

    46/48

    46www.simytec.com

    The principle of virtual work

    General 3D case

    b: Loads per unit volumet: Loads per unit surface

    Please notice that the integral is calculated atthe deformed (unknown) configuration

  • 8/11/2019 FEM Solid Mechanics

    47/48

    47www.simytec.com

    The principle of virtual work

    No material restriction (applies to any material)

    No kinematics restriction (large or small strains)

    No loads restriction (conservative or non-conservative)

  • 8/11/2019 FEM Solid Mechanics

    48/48