femtoscopy in star vs world systematics

31
Z. Ch. for STAR - WWND 2009, Big Sky, MT, Feb. 1-8 , 2009 1 Femtoscopy in STAR Femtoscopy in STAR vs world systematics vs world systematics Zbigniew Chajęcki, OSU for the Collaboration

Upload: efrat

Post on 23-Jan-2016

44 views

Category:

Documents


0 download

DESCRIPTION

Femtoscopy in STAR vs world systematics. Zbigniew Chaj ę cki, OSU for the Collaboration. Outline. HBT in Heavy-Ion Collisions at RHIC Multiplicity as universal scaling R(m T ) - direct probe of flow scenario Femtoscopy in p+p [reminder] - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Femtoscopy in STAR  vs world systematics

Z. Ch. for STAR - WWND 2009, Big Sky, MT, Feb. 1-8, 2009 1

Femtoscopy in STAR Femtoscopy in STAR vs world systematicsvs world systematics

Zbigniew Chajęcki, OSU

for the Collaboration

Page 2: Femtoscopy in STAR  vs world systematics

Z. Ch. for STAR - WWND 2009, Big Sky, MT, Feb. 1-8, 2009 2

OutlineOutline

HBT in Heavy-Ion Collisions at RHIC

Multiplicity as universal scaling

R(mT) - direct probe of flow scenario

Femtoscopy in p+p [reminder]

mT scaling of HBT radii (AA/pp) [reminder]

Energy and Momentum Conservation Induced Correlations in p+p

STAR results from p+p (all fits)

world systematics : Rinv(N,mT), Ro,s,l(mT)

How different is pp from AA at the end?

Page 3: Femtoscopy in STAR  vs world systematics

Z. Ch. for STAR - WWND 2009, Big Sky, MT, Feb. 1-8, 2009 3

Heavy ions at RHICHeavy ions at RHIC

Multidimensional analysis at RHIC

R(√SNN, mT, b, Npart, A, B, PID)

... but is there a scaling variable?

Page 4: Femtoscopy in STAR  vs world systematics

Z. Ch. for STAR - WWND 2009, Big Sky, MT, Feb. 1-8, 2009 4

Multiplicity scaling of HBT radii at Multiplicity scaling of HBT radii at RHICRHIC

Radii scale with multiplicity

Lisa, Pratt, Soltz, Wiedemann, Ann.Rev.Nucl.Part.Sci. 55 (2005) 357-402

Page 5: Femtoscopy in STAR  vs world systematics

Z. Ch. for STAR - WWND 2009, Big Sky, MT, Feb. 1-8, 2009 5

Flow is the most important bulk feature at RHIC mT-dependence of femtoscopy probes flow

the most directly quantitative agreement w/p-only observables

mmTT dependence of pion HBT dependence of pion HBT radiiradii

Page 6: Femtoscopy in STAR  vs world systematics

Z. Ch. for STAR - WWND 2009, Big Sky, MT, Feb. 1-8, 2009 6

Femtoscopy - direct evidence of Femtoscopy - direct evidence of flowflow

Spectra

v2

HBT

Flow-dominated “Blast-wave”toy models capture main characteristicse.g. PRC70 044907 (2004)

KR

(fm

)

mT (GeV/c)

STAR PRL 91 262301 (2003)

space-momentum substructure mapped in detail

6

Page 7: Femtoscopy in STAR  vs world systematics

Z. Ch. for STAR - WWND 2009, Big Sky, MT, Feb. 1-8, 2009 7

Id-pion correlations in p+pId-pion correlations in p+p

STAR preliminary

mT [GeV/c2] mT [GeV/c2]

p+p and A+A measured in thesame experiment

great opportunity to compare physics

what causes pT-dependence in p+p?

same cause as in A+A?

mT = kT2 + mπ

2

Page 8: Femtoscopy in STAR  vs world systematics

Z. Ch. for STAR - WWND 2009, Big Sky, MT, Feb. 1-8, 2009 8

Femtoscopy in pp vs heavy Femtoscopy in pp vs heavy ionsions

pp, dAu, CuCu - STAR preliminary

Ratio of (AuAu, CuCu, dAu) HBT radii by ppHBT radii scale with pp

Scary coincidence or something deeper?

Page 9: Femtoscopy in STAR  vs world systematics

Z. Ch. for STAR - WWND 2009, Big Sky, MT, Feb. 1-8, 2009 9

Z.Ch., Gutierrez, Lisa, Lopez-Noriega, [nucl-ex/0505009]

Pratt, Danielewicz [nucl-th/0501003]

Non-femto correlations / SH Non-femto correlations / SH representationrepresentation

d+Au: peripheral collisions

STAR preliminary

∑→→ ΔΔ

=binsall

iiiiimlml QCYQA

.

,cos

, ),cos|,(|),(4

|)(| φθφθπ

φθ

STAR preliminary

Page 10: Femtoscopy in STAR  vs world systematics

Z. Ch. for STAR - WWND 2009, Big Sky, MT, Feb. 1-8, 2009 10

Decomposition of CF onto Spherical Decomposition of CF onto Spherical HarmonicsHarmonics

Au+Au: central collisions

C(Qout)

C(Qside)

C(Qlong)

∑→→ ΔΔ

=binsall

iiiiimlml QCYQA

.

,cos

, ),cos|,(|),(4

|)(| φθφθπ

φθ

Z.Ch., Gutierrez, Lisa, Lopez-Noriega, [nucl-ex/0505009]

Pratt, Danielewicz [nucl-th/0501003]

Qx<0.03 GeV/c

Page 11: Femtoscopy in STAR  vs world systematics

Z. Ch. for STAR - WWND 2009, Big Sky, MT, Feb. 1-8, 2009 11

Non-femtoscopic correlations in Non-femtoscopic correlations in STARSTAR

Baseline problem is increasing

with decreasing multiplicity

STAR preliminary

N-dep. of non-femtoscopic correlations in p+p

STAR preliminary

Page 12: Femtoscopy in STAR  vs world systematics

Z. Ch. for STAR - WWND 2009, Big Sky, MT, Feb. 1-8, 2009 12

EMCICs in other experimentsEMCICs in other experiments

CLEO PRD32 (1985) 2294

NA22, Z. Phys. C71 (1996) 405

Qx<0.04 GeV/cOPAL, Eur. Phys. J. C52 (2007) 787-803

Qx<0.2 GeV/cNA23, Z. Phys. C43 (1989) 341

E766, PRD 49 (1994) 4373M

ultip

licity

incr

ease

s

Page 13: Femtoscopy in STAR  vs world systematics

Z. Ch. for STAR - WWND 2009, Big Sky, MT, Feb. 1-8, 2009 13

C(qo,qs,ql ) = C femto(qo,qs,ql ) ⋅F(qo,qs,ql )

F(qo,qs,ql ) = 1+ δo qo + δs qs + δl ql

F(qo,qs,ql ) = 1+ δoqo + δsqs + δlql

• MC simulations

• ‘ad-hoc’ parameterizations

• OPAL, NA22, …

Common approaches to „remove” Common approaches to „remove” non-femtoscopic correlationsnon-femtoscopic correlations

• An alternative explanation:Energy and Momentum Conservation Induced Correlations, Z.Ch. and Mike Lisa [PRC 78 (2008) 064903, ArXiv:0803.022]

• “zeta-beta” fit by STAR [parameterization of non-femtoscopic correlations in Alm’s]

C( p1, p2 ) ≅ C femto p1, p2( ) 1−1

N2

r p T ,1 ⋅

r p T,2

pT2

+pz,1 ⋅ pz,2

pz2

+E1 − E( ) ⋅ E2 − E( )

E 2 − E2

⎜ ⎜ ⎜

⎟ ⎟ ⎟

⎢ ⎢ ⎢

⎥ ⎥ ⎥

|Q|

|Q|

|Q|

Page 14: Femtoscopy in STAR  vs world systematics

Z. Ch. for STAR - WWND 2009, Big Sky, MT, Feb. 1-8, 2009 14

k-particle distributions w/ phase-space k-particle distributions w/ phase-space constraintsconstraints

˜ f ( pi) = 2E i f ( pi) = 2E i

dN

d3 pi

single-particle distributionw/o P.S. restriction

˜ f c(p1,...,pk ) ≡ ˜ f (pi)i=1

k

∏ ⎛ ⎝ ⎜ ⎞

⎠ ⎟⋅

d3pi

2E i

˜ f (pi)i= k +1

N

∏ ⎛

⎝ ⎜

⎠ ⎟∫ δ 4 pi

i=1

N

∑ − P ⎛

⎝ ⎜

⎠ ⎟

d3pi

2E i

˜ f (pi)i=1

N

∏ ⎛

⎝ ⎜

⎠ ⎟∫ δ 4 pi

i=1

N

∑ − P ⎛

⎝ ⎜

⎠ ⎟

= ˜ f (pi)i=1

k

∏ ⎛ ⎝ ⎜ ⎞

⎠ ⎟⋅

d4piδ(pi2 − mi

2)˜ f (pi)i= k +1

N

∏ ⎛ ⎝ ⎜ ⎞

⎠ ⎟∫ δ 4 pi

i=1

N

∑ − P ⎛

⎝ ⎜

⎠ ⎟

d4piδ(pi2 − mi

2)˜ f (pi)i=1

N

∏ ⎛ ⎝ ⎜ ⎞

⎠ ⎟∫ δ 4 pi

i=1

N

∑ − P ⎛

⎝ ⎜

⎠ ⎟

k-particle distribution (k<N) with P.S. restriction

observed

P - total 4-momentum

Page 15: Femtoscopy in STAR  vs world systematics

Z. Ch. for STAR - WWND 2009, Big Sky, MT, Feb. 1-8, 2009 15

k-particle distributionk-particle distribution

˜ f c(p1,...,pk ) = ˜ f (pi)i=1

k

∏ ⎛ ⎝ ⎜ ⎞

⎠ ⎟ N

N − k

⎝ ⎜

⎠ ⎟2

exp −

pi,μ − pμ( )i=1

k

∑ ⎛

⎝ ⎜

⎠ ⎟

2

2(N − k)σ μ2

μ = 0

3

⎜ ⎜ ⎜ ⎜ ⎜

⎟ ⎟ ⎟ ⎟ ⎟

where

σ μ2 = pμ

2 − pμ

2

pμ = 0 for μ =1,2,3

k-particle distribution in N-particle system

pμ2 ≡ d3p ⋅pμ

2 ⋅ ˜ f p( )unmeasuredparent distrib

{∫ ≠ d3p ⋅pμ2 ⋅ ˜ f c p( )

measured{∫N.B.

relevant later

–Danielewicz et al, PRC38 120 (1988)–Borghini, Dinh, & Ollitraut PRC62 034902 (2000)–Borghini Eur. Phys. J. C30:381-385, (2003)–Chajecki & Lisa, PRC78 (2008) 064903 arXiv:0803.0022

* “large”: N > ~10

Page 16: Femtoscopy in STAR  vs world systematics

Z. Ch. for STAR - WWND 2009, Big Sky, MT, Feb. 1-8, 2009 16

The Complete Experimentalist’s The Complete Experimentalist’s RecipeRecipe

C( p1, p2 ) = Norm ⋅ 1+ λ ⋅ Kcoul (Qinv ) 1+ exp −Rout2 Qout

2 − Rside2 Qside

2 − Rlong2 Qlong

2( )( ) −1[ ]{ } ×

1− M1

r p 1,T ⋅

r p 2,T{ } − M2 p1,Z ⋅ p2,Z{ } − M3 E1 ⋅E2{ } + M4 E1 + E2{ } −

M4( )2

M3

⎢ ⎢

⎥ ⎥

or any other parameterization of CF

9 fit parameters

- 4 femtoscopic

- normalization

- 4 EMCICs

Fit this ….

M1 =1

N pT2

M2 =1

N pz2

M3 =1

N E 2 − E2 ⎛

⎝ ⎜

⎞ ⎠ ⎟

M4 =E

N E 2 − E2 ⎛

⎝ ⎜

⎞ ⎠ ⎟

Page 17: Femtoscopy in STAR  vs world systematics

Z. Ch. for STAR - WWND 2009, Big Sky, MT, Feb. 1-8, 2009 17

EMCIC fit to STAR p+p dataEMCIC fit to STAR p+p data

STAR preliminary

kT = [0.15,0.25] GeV/c kT = [0.25,0.35] GeV/c

kT = [0.35,0.45] GeV/c kT = [0.45,0.60] GeV/c

Page 18: Femtoscopy in STAR  vs world systematics

Z. Ch. for STAR - WWND 2009, Big Sky, MT, Feb. 1-8, 2009 18

Fit results: EMCIC parametersFit results: EMCIC parametersS

TA

R p

relim

inar

y

M1 =1

N pT2

= 0.43

M2 =1

N pz2

= 0.22

M3 =1

N E 2 − E2 ⎛

⎝ ⎜

⎞ ⎠ ⎟= 1.51

M4 =E

N E 2 − E2 ⎛

⎝ ⎜

⎞ ⎠ ⎟= 1.02

⎬ ⎪ ⎪

⎭ ⎪ ⎪

⇒ E = 0.68 GeV

E 2 > pT2 + pz

2

⇒ N > 13.6

Five physical variables - four fit parameters

Can we verify whether kinematic variables showing up in fit parameters have physical values?

⇒ N >M3

M4

⎝ ⎜

⎠ ⎟

21

M1

+1

M2

−1

M3

⎝ ⎜

⎠ ⎟

C( p1, p2 ) = Norm ⋅ 1+ λ ⋅ Kcoul (Qinv ) 1+ exp −Rout2 Qout

2 − Rside2 Qside

2 − Rlong2 Qlong

2( )( ) −1[ ]{ } ×

1− M1

r p 1,T ⋅

r p 2,T{ } − M2 p1,Z ⋅ p2,Z{ } − M3 E1 ⋅E2{ } + M4 E1 + E2{ } −

M4( )2

M3

⎢ ⎢

⎥ ⎥

Page 19: Femtoscopy in STAR  vs world systematics

Z. Ch. for STAR - WWND 2009, Big Sky, MT, Feb. 1-8, 2009 19

Various fits to STAR p+p dataVarious fits to STAR p+p data

STAR preliminary

STAR preliminary

Page 20: Femtoscopy in STAR  vs world systematics

Z. Ch. for STAR - WWND 2009, Big Sky, MT, Feb. 1-8, 2009 20

mmTT scaling of HBT radii scaling of HBT radii

Various fits give different radii but mT scaling of HBT radii still holds

STAR preliminary

Page 21: Femtoscopy in STAR  vs world systematics

Z. Ch. for STAR - WWND 2009, Big Sky, MT, Feb. 1-8, 2009 21

Multiplicity dependence in p+pMultiplicity dependence in p+p

200 GeV

Rin

v [

fm]

STAR preliminary

Page 22: Femtoscopy in STAR  vs world systematics

Z. Ch. for STAR - WWND 2009, Big Sky, MT, Feb. 1-8, 2009 22

p+p vs heavy ions - R(N,mp+p vs heavy ions - R(N,mTT))STAR preliminary

Similar mT and multiplicity dependence of HBT radii in p+p and heavy ions in STAR

Is STAR p+p unique? Let’s look at world’s results on HBT in elementary particle collisions …

Page 23: Femtoscopy in STAR  vs world systematics

Z. Ch. for STAR - WWND 2009, Big Sky, MT, Feb. 1-8, 2009 23 Z.Ch. arXiv:0901.4078 [nucl-ex]

Femtoscopy in small systemsFemtoscopy in small systemsSystem √s [GeV] Facility Experiment

p-p 1.9 LEAR CPLEAR

1.9 CERN ABBCCLVW

7.2 AGS E766

17 SPS NA49 -prelim

26 SPS NA23

27.4 SPS NA27

31-62 ISR AFS

44,62 ISR ABCDHW

200 SPS NA5

200 RHIC STAR-prelim

p-p 53 ISR AFS

200 SPS NA5

200-900 SPS UA1

1800 Tevatron E735

- 126 ISR AFS

h-p 5.6 CERN ABBCCLVW

21.7 SPS EHS/NA22

System √s[GeV] Facility Experiment

e+e- 3-7,29 SLAC Mark-II

10 CESR CLEO

29 SLAC TPC

29-37 PETRA TASSO

58 TRISTAN AMY

91 LEP OPAL

91 LEP L3

91 LEP DELPHI

91 LEP ALEPH

e-p 300 HERA ZEUS

300 HERA H1

-p 23 CERN EMC-NA9

-N 30 Tevatron E665

-N >10 BBNC

R ≈ 0.5 - 1.5 fm

Page 24: Femtoscopy in STAR  vs world systematics

Z. Ch. for STAR - WWND 2009, Big Sky, MT, Feb. 1-8, 2009 24

My first impression My first impression

C = 1+ λ exp −Rinv2 Qinv

2( )

C = 1+ λ exp −RG2 QG

2 + Q02τ 2

( )

C = 1+ λ2J1 qT RB( )

qT RB

⎣ ⎢ ⎢

⎦ ⎥ ⎥

2

1+ qocτ( )−1

C = 1+ λ exp −Rinv2 Qinv

2( )[ ] 1+ δ ⋅Qinv( )

C = 1+ λ exp −Rinv2 Qinv

2( )[ ] 1+ δ ⋅Qinv

2( )

C = 1+ λ exp −RG2 QG

2( )

C = 1+ λ2J1 qT RB( )

qT RB

⎝ ⎜ ⎜

⎠ ⎟ ⎟

2 ⎡

⎢ ⎢ ⎢

⎥ ⎥ ⎥1+ δB ⋅qT( )

C = 1+ λ exp −Re Qinv( )

C = 1+ λ1 exp −R12Q2

( ) + λ2 exp −R22Q2

( )

C = 1+ λ exp −Rinv2 Qinv

2( )[ ] 1+ ε ⋅Qinv + δ ⋅Qinv

2( )

C = 1+ λ2J1 qT RB( )

qT RB

⎣ ⎢ ⎢

⎦ ⎥ ⎥

2

1+ qocτ( )2 ⎛

⎝ ⎜

⎞ ⎠ ⎟−1

C = 1+ λ exp −Rinv2 Qinv

2( )[ ] 1+ δ ⋅Qinv

2( )

−1

C = 1+ λ2J1 qT RB( )

qT RB

⎣ ⎢ ⎢

⎦ ⎥ ⎥

2

1+ qLcτ( )−1

Can we do a direct comparison between experiments?

Page 25: Femtoscopy in STAR  vs world systematics

Z. Ch. for STAR - WWND 2009, Big Sky, MT, Feb. 1-8, 2009 25

Parameterizations of 1D CF used in Parameterizations of 1D CF used in comparision b/w experimentscomparision b/w experiments

C = 1+ λ exp −Rinv2 Qinv

2( )

C = 1+ λ exp −RG2 QG

2 + Q02τ 2

( )

C = 1+ λ2J1 qT RB( )

qT RB

⎣ ⎢ ⎢

⎦ ⎥ ⎥

2

1+ qocτ( )−1

⎪ ⎪ ⎪

⎪ ⎪ ⎪

RB≈2·RG

Page 26: Femtoscopy in STAR  vs world systematics

Z. Ch. for STAR - WWND 2009, Big Sky, MT, Feb. 1-8, 2009 26

R(N

) -

worl

d

R(N

) -

worl

d

syste

mati

cs

syste

mati

cs

s > 40GeV

R(N,<mT>)

- no point to compare the magnitude of the HBT radii between experiments since almost each experiment has different <pT>; e.g. <pT>(E735) > <pT>(STAR) -look for trends, instead!

STAR preliminary

Page 27: Femtoscopy in STAR  vs world systematics

Z. Ch. for STAR - WWND 2009, Big Sky, MT, Feb. 1-8, 2009 27

1D R(p1D R(pTT))

*

**

pT = 2 / 3 ⋅r p

STAR preliminary

Page 28: Femtoscopy in STAR  vs world systematics

Z. Ch. for STAR - WWND 2009, Big Sky, MT, Feb. 1-8, 2009 28

3D R(m3D R(mTT))

*RT ≈ RO ≈ RS

Leptonic results included!

STAR preliminary

Page 29: Femtoscopy in STAR  vs world systematics

Z. Ch. for STAR - WWND 2009, Big Sky, MT, Feb. 1-8, 2009 29

• EMCICs seen in small systems• Femtoscopy similar in p+p as in Au+Au @ STAR

• “World results” show both pT and N dependence!

•Same physics in p+p as in Au+Au and the only difference due to phase-space effects?possibilities:

1.HBT signals are insensitive to underlying physics (flow etc)

2.they are sensitive & the very different physics of A+A and p+p look coincidentally identical

3.they are sensitive, and driving physics is the same

SummarySummary

Page 30: Femtoscopy in STAR  vs world systematics

Z. Ch. for STAR - WWND 2009, Big Sky, MT, Feb. 1-8, 2009 30

RRinvinv(N,√s) - world systematics(N,√s) - world systematics7.21 GeV 21.7 GeV 27.4 GeV

1800 GeV31-62 GeVSTAR preliminary

200 GeV

Page 31: Femtoscopy in STAR  vs world systematics

Z. Ch. for STAR - WWND 2009, Big Sky, MT, Feb. 1-8, 2009 31

RRGG/R/RBB(N, √s) - world systematics(N, √s) - world systematics21.7 GeV

1800 GeV200-900 GeV200 GeV

53-126 GeV

STAR preliminary

UA1