fenomenos nucleares de 2010

32
Fenómenos nucleares

Upload: nicolas-carrillo

Post on 21-Jun-2015

12.216 views

Category:

Technology


2 download

TRANSCRIPT

Page 1: Fenomenos nucleares de 2010

Fenómenos nucleares

Page 2: Fenomenos nucleares de 2010

Existen tres tipos de radiación:(ionizantes)

• Alfa: es la emisión de una partícula compuesta por un núcleo de helio. Las partículas α son lentas y tienen bajo poder de penetración.

Page 3: Fenomenos nucleares de 2010

Emisión beta

Son las transformaciones dentro del núcleo, tienen un poder de penetración medio (6 mm ) y viajan a 1/10 de la

velocidad de la luz.

Page 4: Fenomenos nucleares de 2010

• Beta -: el núcleo se transforma de neutrón a protón por la liberación de un electrón

Page 5: Fenomenos nucleares de 2010

• Beta +: se transforma de protón a neutrón liberando un positrón (un electrón con carga +) solo en forma artificial

Page 6: Fenomenos nucleares de 2010

Emisiones gamma

. Gamma: se libera una onda electromagnética al cambiar un

electrón de nivel. Los rayos γ viajan a la velocidad de la luz,

son energía pura y son extremadamente peligrosos. Estos

pueden ser detenidos por murallas de concreto (82 cms

aprox.) o paredes de plomo de un gran grosor (47 cms aprox.)

Page 7: Fenomenos nucleares de 2010

Se dice que una radiación es ionizante cuando posee la energía

necesaria para arrancar uno o varios electrones a los átomos o a las

moléculas del medio irradiado. Es el caso de las radiaciones y y

también de las radiaciones electromagnéticas como son los rayos , los

rayos X y determinados rayos ultravioletas. No son en cambio ionizantes

en la práctica la luz visible, la infrarroja, las microondas ni las ondas

radio.

Page 8: Fenomenos nucleares de 2010

Serie radiactiva

• Los núcleos radiactivos pueden sufrir varias desintegraciones en sucesivas etapas, hasta lograr un núcleo estable.

• Los procesos de desintegración nuclear son exergónicos.

Page 9: Fenomenos nucleares de 2010

Vida media de los elementos radiactivos

• Velocidad en que ocurren las desintegraciones nucleares.

• Los núcleos radiactivos se desintegran en forma exponencial.

• Vida media de un elemento es el tiempo que necesita la mitad de los átomos de una determinada muestra en sufrir una desintegración nuclear.

Isotope Vida media Desintegración

Uranio-2384.500 millones de años

Alfa

Carbono-14 5.570 años Beta

Cobalto-60 5,3 años Gamma

Radón-222 4 días Beta

Page 10: Fenomenos nucleares de 2010

Energía nuclearLa energía nuclear es el tipo de energía mas poderosa

conocido hasta ahora por el hombre. Esta energía se puede

obtener por FUSIÓN O FISIÓN nuclear. Todo comenzó con

Einstein cuando descubrió su fórmula E=mC² y según esta

fórmula cuando se pierde masa, ésta se transforma en energía.

La primera aplicación de práctica fue la bomba atómica, en la

cual se liberó cerca de 12 kilotones ( 12 ton. De TNT).

Actualmente existen cerca de 450 reactores nucleares que

generan el 16% de la energía mundial. La energía nuclear,

genera un tercio de la energía eléctrica que se produce en la

Unión Europea, evitando así, la emisión de 700 millones de

toneladas de CO2 por año a la atmósfera.

Page 11: Fenomenos nucleares de 2010

Todos sabemos que todos los núcleos atómicos (a

excepción del H11) tienen protones y neutrones.

Cuando la cantidad de estas partículas es alta el núcleo

se vuelve inestable y emite partículas o radiación

espontáneamente, conocido como fenómeno de radiación.

La radiación también puede ser artificialmente por el

bombardeo de neutrones u otras partículas produciendo

cambios en el núcleo, conocido como transmutación nuclear.

Page 12: Fenomenos nucleares de 2010

Fisión nuclearEs cuando un núcleo pesado (P.A. >200) se divide

para formar núcleos mas pequeños, mas estables y de masa intermedia liberando además uno o mas

neutrones. Este proceso libera una gran cantidad de energía. La

primera reacción estudiada fue la del Uranio-235 bombardeado con neutrones lentos:

Page 13: Fenomenos nucleares de 2010

Es el utilizado actualmente en las centrales nucleares. Cuando un átomo pesado (como por ejemplo el Uranio o el Plutonio) se divide o rompe en dos átomos más ligeros, la suma de las masas de estos últimos átomos obtenidos, más la de los neutrones desprendidos es menor que la masa del átomo original, luego se verifica la fórmula de Albert Einstein E=MC2, con lo que se desprende Energía.

Para romper un átomo, se emplea un neutrón (ya que es neutro eléctricamente, y no es desviado de su trayectoria), que se lanza contra el átomo a romper, por ejemplo, Uranio. Al chocar el neu-trón, el átomo de Uranio-235 se convierte en Uranio-236 durante un brevísimo espacio de tiempo, pues tiene un neutrónmás que es el que ha chocado con él, siendo este último átomo sumamente inestable, dividiéndose en dos átomos diferentes y más ligeros que el Uranio-236 (por ejemplo Kriptón y Bario; o Xenón y Estroncio), desprendiendo 2 ó 3 neutrones (los neutrones desprendi-dos, dependen de los átomos obtenidos, nosotros tomamos como ejemplo 3 neutrones, pero puede que solo se desprendan 2. En caso de obtener Bario y Kriptón, se desprenden 3 neutrones; mientras que si se obtiene Xenón y estroncio, solo se liberan 2 neutrones), y liberando energía. Estos 3 neutrones, vuelven a chocar con otros 3 átomos de Uranio-235, liberando en total 9 neutrones, energía y otros dos átomos más ligeros, y así sucesivamente, generando de esta forma una reacción en cadena.

FISION NUCLEAR

Page 14: Fenomenos nucleares de 2010

En las centrales nucleares, el proceso que se controla es el final, ya que en ellas, se genera energía de forma lenta, pues de lo contrario el reactor se convertiría en una bomba atómica, debido a que la mayor parte de la energía se libera al final, como hemos expuesto anteriormen-te. El proceso básico es el siguiente: Las barras de Uranio enriquecido al 4% con Uranio-235 se introducen en el reactor, y comienza un proceso de fisión.En el proceso, se desprende energía en forma de calor. Este calor, calienta unas tuberías de agua, y esta se convierte en vapor, que pasa por unas turbinas, haciéndolas girar. Estas a su vez, giran un generador eléctrico de una determinada potencia, generando así electricidad, al igual que con una dínamo de bicicleta, solo que estas turbinas y el generador, son muy grandes.Lógicamente, no se aprovecha toda la energía obtenida en la fisión, y se pierde parte de ella en calor, resistencia de los conductores, vaporización del agua, etc. Los neutrones son controlados para que no explote el reactor mediante unas barras de control (generalmente, de Carburo de Boro), que al introducirse, absorben neutrones, y se disminuye el número de fisiones, con lo cual, dependiendo de cuántas barras de control se introduzcan, se generará más o menos energía.Normalmente, se introducen las barras de tal forma, que solo se produzca un neutrón por reacción de fisión, controlando de esta forma el proceso de fisión. Si todas las barras de control son introducidas, se absorben todos los neutrones, con lo cual se pararía el reactor. El reactor se refrigera, para que no se caliente demasiado, y funda las protecciones, convirtiéndose en una bomba atómica, incluso cuando este esté parado, ya que la radiación hace que el reactor permanezca caliente.

Page 15: Fenomenos nucleares de 2010

CENTRALES NUCLEARES

Page 16: Fenomenos nucleares de 2010
Page 17: Fenomenos nucleares de 2010

Fusión nuclear

La fusión nuclear es la combinación de pequeños

núcleos para formar otros mayores. Este

combinan para formar uno mas estable, se liberará una

gran cantidad de energía apreciable. La reacción de

fusión se produce a una temperatura muy alta y por

esta razón se dice que la fusión es una reacción

termonuclear. Tales reacciones se producen en las

estrellas y ademas puede ser utilizada en la bomba H

(bomba de hidrógeno)

Page 18: Fenomenos nucleares de 2010

FUSION NUCLEARFUSION NUCLEAR

La fusión nuclear, está actualmente en líneas de investigación, debido a que todavía hoy no es un proceso viable, ya que se invierte más energía en el proceso para que se produzca la fusión, que la energía obtenida mediante este método. La fusión, es un proceso natural en estrellas, produciéndose reacciones nucleares por fusión debido a la elevadísima temperatura de estas estrellas, que están compues-tas principalmente por Hidrógeno y Helio. El hidrógeno, en condiciones normales de temperatura, se repele entre sí cuando intentas unirlo (fusionarlo) a otro átomo de hidrógeno, debido a su repulsión electrostática. Para vencer esta repulsión electros-tática, el átomo de hidrógeno debe chocar violentamente contra otro átomo de hidró-geno, fusionándose, y dando lugar a Helio, que no es fusionable. La diferencia de masa entre el átomo obtenido y el original es mayor que en la fisión, liberándose así una gran cantidad de energía (muchísimo mayores que en la fisión). Estos choques violentos, se consiguen con una elevada temperatura, que excita los átomos de hidrógeno, y se mueven muy rápidamente, chocando unos contra otros.

Page 19: Fenomenos nucleares de 2010
Page 20: Fenomenos nucleares de 2010

RADIACION NATURAL

Siempre ha existido, ya que procede de las materias existentes en todo el universo, y puede ser radiación visible (como por ejemplo la luz), o invisible (por ejemplo los rayos ultravioleta). Esta radiación, procede de las radiaciones cósmicas del espacio exterior (Sol y estrellas), pues ellos son gigantescos  reactores nucleares, aunque lejanos; también proceden estas radiaciones de los elementos naturales radiactivos (uranio, torio, radio) que existen de forma natural en el aire, agua,alimentos, o el propio cuerpo humano (potasio, carbono-14). Esta radiación natural, es del orden del 88% de la radiación total recibida por el ser humano, clasificándose de la siguiente manera:     -Radiación cósmica                              :    15 % - Radiación de alimentos, bebidas, etc.,.:    17 % - Radiación de elementos naturales        :    56 %

Page 21: Fenomenos nucleares de 2010

RADIACION ARTIFICIAL

Provienen de fuentes creadas por el hombre. Los televisores o los aparatos utilizados para hacer radiografías médicas son las fuentes más comunes de las que recibimos radiación artificial. La generada en las centrales nucleares, pertenece a este grupo. El incremento de radiación que recibe una persona en un año como consecuencia del funcionamiento normal de una central nuclear, es de 1 milirem al año (1 REM = radiación de rayos gamma existente en el aire por centímetro cúbico de aire), cantidad que es 100 veces más pequeño que la radiación naturalque recibimos en España. La radiación artificial total recibida por el ser humano es del orden del 12% de todas las radiaciones recibidas. Se clasifica de la siguiente manera:     - Televisores y aparatos domésticos:     0.2 %  - Centrales nucleares                      :      0.1 %  - Radiografías médicas                   :    11.7 %

Page 22: Fenomenos nucleares de 2010

BOMBA ATOMICA

Prueba nuclear 61 Kilotones. Lugar desconocido. 4 de Junio de 1.953

Una de las primeras explosiones nucleares.

Page 23: Fenomenos nucleares de 2010

HISTORIA DE LA BOMBA ATOMICA

A. Diseño (el proyecto Manhattan)B. DetonaciónB1. HiroshimaB2. Nagasaki

El mecanismo de la bomba: (U-235 ; U-238 y Plutonio)A. AltímetroB. Detonación de presión de aireC. Cabeza(s) detonante(s): Catalizador para producir una explosión mayor.D. Carga(s) explosiva(s): La mayor cantidad de uranio en el menor espacio.E. Emisor de neutrones: Es el U-238, no fisionable, devuelve los neutrones.F. Uranio y PlutonioG. Protector de plomoH. Fuselaje

Page 24: Fenomenos nucleares de 2010

HIROSHIMA Y NAGASAKI

Little boy, primera bomba atómi-ca que se construyó, lanzada sobre hiroshima el 6 de agostode 1945 a las 8.16 AM

Fat man, segunda bomba atómi-ca que cayó en Nagasaki.

Page 25: Fenomenos nucleares de 2010

Explosión en Nagasaki

Destrucción en Nagasaki

Page 26: Fenomenos nucleares de 2010

Hiroshima (6 de agosto 8.16 AM)

Page 27: Fenomenos nucleares de 2010

Edificio de la compañía de gas en Hiroshima

Page 28: Fenomenos nucleares de 2010

Qué usos se le puede dar? ¿Como?

Datación:La naturaleza ofrece varios centenares de isótopos

radioactivos que tienen varias aplicaciones en la ciencia y enla medicina. Estos poseen un periodo de semidesintegración o

tiempo de vida media, el cuál es el tiempo que tarda unamuestra radiactiva en reducirse a la mitad, pero es

independiente de la cantidad de muestra radiactiva. Estoocurre debido a su gran inestabilidad nuclear por el exceso de

uno o mas neutrones. Ejemplos: polonio 214 (0,164segundos), oxígeno 15 (2 minutos), yodo 131 (8 días), cobalto

60 (5,3 años), carbono 14 (5730 años), plutonio 239 (24110años), uranio 238 (4.500 millones de años)... Al tener

periodos desde fracciones de segundos hasta varios miles demillones de años nos permiten llevar una cuenta más exacta

del tiempo.

Page 29: Fenomenos nucleares de 2010

Datación carbono 14• La masa de C-14 de cualquier fósil disminuye a un ritmo exponencial,

que es conocido. Se sabe que a los 5.730 años de la muerte de un ser vivo la cantidad de C-14 en sus restos fósiles se ha reducido a la mitad y que a los 57.300 años es de tan sólo el 0,01 % del que tenía cuando estaba vivo.

• La cantidad y el porcentaje de C-14 se calcula midiendo las emisiones de partículas ß de la muestra. El método sólo es viable para fósiles no muy viejos, menores de unos 60.000 años, ya que para edades superiores las emisiones de partículas ß son ya demasiado poco intensas y difíciles de medir, por lo que los errores pueden ser muy grandes.

• Formación : 147N 14 6 C + 1 1H

• Desintegración : 14 6 C 11 7 N + 0 –1 e

Page 30: Fenomenos nucleares de 2010

Arte

• El tratamiento mediante rayos gamma permite eliminar los hongos, larvas, insectos o bacterias alojados en el interior de los objetos a fin de protegerlos de la degradación. Esta técnica se utiliza en el tratamiento de conservación y de restauración de objetos de arte, de etnología, de arqueología.

Page 31: Fenomenos nucleares de 2010

Medicina

Los isótopos radioactivos se utilizan en la medicina nuclear, principalmente en la imágenes médicas, para estudiar el modo de

acción de los medicamentos, entender el funcionamiento del cerebro, detectar una anomalía cardíaca, descubrir las metástasis cancerosas,

etc.

Radioterapia en la medicina:

Las radiaciones ionizantes pueden destruir preferentemente las células tumorales y constituyen una terapéutica eficaz contra el cáncer, la

radioterapia, que fué una de las primeras aplicaciones del descubrimiento de la radioactividad

Page 32: Fenomenos nucleares de 2010

Las diferentes formas de radioterapia:  -    La curioterapia utiliza pequeñas fuentes radioactivas

(hilos de platino- iridio, granos de cesio) colocados cerca del tumor.

 -    La tele radioterapia consiste en concentrar en los tumores la radiación emitida por una fuente exterior.

- La inmunorradioterapia utiliza vectores radio marcados cuyos isótopos reconocen específicamente los tumores a los que se fijan para destruirlos.