ferromagnetic semiconductors for spintronics kevin edmonds, kaiyou wang, richard campion, devin...

20
Ferromagnetic semiconductors for spintronics Kevin Edmonds, Kaiyou Wang, Richard Campion, Devin Giddings, Nicola Farley, Tom Foxon, Bryan Gallagher, Tomas Jungwirth School of Physics & Astronomy, University of Nottingham Mike Sawicki, Tomasz Dietl IFPAN, Warsaw, Poland Tarnjit Johal, Gerrit van der Laan Daresbury Laboratory

Upload: joel-lane

Post on 01-Jan-2016

218 views

Category:

Documents


1 download

TRANSCRIPT

Ferromagnetic semiconductors for spintronics

Kevin Edmonds, Kaiyou Wang, Richard Campion, Devin Giddings, Nicola Farley, Tom Foxon, Bryan Gallagher, Tomas JungwirthSchool of Physics & Astronomy, University of Nottingham

Mike Sawicki, Tomasz DietlIFPAN, Warsaw, Poland

Tarnjit Johal, Gerrit van der LaanDaresbury Laboratory

ElectronCharge

Photon Polarisation

ElectronSpin

Semiconductor Spintronics

Semiconductor spintronics

Benefits: Fast, small, low dissipation devices

Quantum computation?

New physics

(Ga,Mn)As

H. Ohno et al. (1996): ferromagnetism in GaAs thin films doped ~5% with Mn

Magnetic Polarisation

Magnetic Field Strength

Growth by low temperature MBE to beat equilibrium solubility limit

Carrier-mediated ferromagnetism

Substitutional Mn is an acceptor and a J=5/2 magnetic moment.

Ferromagnetism driven by antiferromagnetic exchange coupling

Jp-d S.sbetween Mn moments and spin-polarised GaAs valence electrons

Carrier density determines the key magnetic properties of (Ga,Mn)As (e.g. TC, HC,...)

Mn: [Ar] 3d5 4s2

Ga: [Ar] 3d10 4s2 4p1

Mn

Carrier-mediated ferromagnetism

Spin-FETH. Ohno et al., Nature (2000)

Vgate

InMnAs

Photogenerated magnetism Koshihara PRL (1997)

InMnAs

GaSb

B (mT)

ħ

Curie temperatures

0 2 4 6 80

100

200 Zener mean-fieldprediction(parameter- free)

Curie temp.

(K)

Mn concentration (%)0 2 4 6 8

0

5

10

15

as-grown

annealed

Carrier density

(x10

20

/cc)

Mn concentration (%)

Max. TC=172K (so far...)

Wang et al., JAP ‘04

Interstitial Mn: a magnetism killer

Yu et al., PRB ’02: ~10-20% of total Mn concentration is incorporated as interstitials

Increased TC on annealing corresponds to removal of these defects.

Mn

As

Negative effects on magnetic order:

compensating donor – reduces hole density

antiferromagnetic coupling between interstitial and substitutional Mn predicted Blinowski PRB ‘03

1 10 1001.6

2.0

2.4

2.8

3.2

0.00 0.02 0.040

20

40

60

t / L2 (hours / nm2) d(1/ρ)/dt (mΩ-1 cm

-1 hours

-1)

Resistivity (m

Ω cm)

Time (hours)

L=100 nm L=50 nm L=25 nm L=10 nm

AsGaMnON

dΦ / dE

( )Kinetic energy eV

1D diffusion process

Diffusion to free surface

- activation energy 0.7eV

Edmonds, Bogusławski et al., PRL 92, 037201 (2004)

T=190oC

Magnetic moment and antiferromagnetic coupling

XMCD asymmetry 55%

Magnetic moment 4.5

B

640 650 660

0

10

20

summedXAS

(Ga,Mn)As as-grown(Ga,Mn)As annealed

summedXAS

XMLDXMCD

absorption (a.u.)

Photon energy (eV)640 650 660

0

10

20

XMCD

Photon energy (eV)

XMCD asymmetry 30%

Magnetic moment 2.3

B

X-ray absorption measurements, ALS line 4.0.2 and ESRF line ID8:

640 650

X-ray energy (eV)

0 1 2 3 4 50

1

2

3

4

5

S+l (B/ )Mn

( )B T

B=2T

B=5T

annealed

as-grown

B5/2(6K)

B5/2(28K)

Ferromagnetic moment vs. field in unannealed film at 6K:

AF coupling described by

Teff = T + TAF = (6+22)K

Ferromagnetic semiconductor heterostructures

Protocols for growth of semiconductor heterostructures are well-established

Addition of spin gives a new degree of freedom

e.g. tunnelling structure

(Ga,Mn)AsAlAs(Ga,Mn)As

Tanaka et al. (2001) 70% TMR

Chiba et al. (2003) 400%

Rüster et al. (2004) >100,000% !!

-0.1 0.0 0.1

R (ΜΩ)

( )Field T

Tunnelling Anisotropic Magnetoresistance

(Ga,Mn)As

Au AlOx

Gould et al., PRL (2004)

TMR-like signal with in control sample with only one ferromagnetic contact

Tunnelling probability depends on magnetisation direction of single layer (two step reversal process)

[110]

[100] [100]

0 5 10

0

4

8

exper. AMR⊥ . exper AMR// theory AMR⊥ theory AMR//

(-%)AMR

(%)Mn

I M

Anisotropic magnetoresistance

Magnetoresistance on rotating M away from ‘x’ direction

- strong function of Mn concentration, well described by mean-field model

Jungwirth et al. APL ‘03-0.5 0.0 0.5

315

320

R (Ω)

( )B T

10K 4.2K 1.5K

V [mV]

I [nA]

TAMR in Nanoconstrictions

5nm (Ga,Mn)As film with 30nm wide constrictions

Giant anisotropic magnetoresistance ~100% in tunnelling regime

Giddings et al., cond-mat/0409209

Prospects for room temperature ferromagnetism

GaAs

InAs

GaSb

Ge

300K!

T. Dietl, Science ’00; JVSTB ‘03

GaSb GaAs GaP GaN

CB

VB

Mn 3d

Predicted TC in (III,Mn)V semiconductors,

if Mn is a shallow acceptor

-50 -40 -30 -20 -10 0-5

-4

-3

-2

-1

0

1Ga

1-xMn

xN x=0.3%

M (emu/cm

3)

H (kOe)

T = 400 K T = 10 K T = 8 K T = 6 K T = 4 K

Ga1-xMnxN

Small RT ferromagnetic signal superimposed on larger paramagnetic part(Sonoda ’01; Reed ’01; Thaler ’02; Biquard ’03 etc.)

Several MnxNy magnetic phases

existZajac et al. ‘03

Most are n-type results are

inconsistent with carrier-mediated ferromagnetism

Dietl Science ‘00

Phase segregation?

Cubic (Ga,Mn)N: a key to p-type conductivity

Wurtzite (Ga,Mn)N is usually n-type; Mn ionisation energy ~1.4eV(Graf et al APL (2002))

But in zincblende (Ga,Mn)N/GaAs we observe robust p-type behaviour

0.000 0.005 0.010 0.015 0.020 0.025

1E16

1E17

1E18

0 2 4

40

50

60

70

0.2%

2.5%

4.2%

ΔEa ( )meV

(%)Mn concentration

pHall

(cm

-3)

1/ (T K-1)

ΔEa~50meV

Evidence for collective magnetic effects at low T:

0 1000 2000 3000 4000

-1

0

1

2

3

4

T = 5 / 15 / 50 K

.OPJ 25/03/04 12:20:16

Graph26

Moment [ emu/cm

3 ]

Magnetic Field [ Oe ]

Novikov et al. Semicond. Sci. Tech. (2004)

Conclusions

GaAs doped with ~% Mn is ferromagnetic – a model system for investigating magnetic phenomena in semiconductors - gate controlled magnetism

- tunnelling magnetoresistance- new tunnelling effects

prospects for semiconductors with room temperature ferromagnetism – but phase segregation may be an issue

Magnetic anisotropy

-0.6 -0.3 0.0 0.3 0.6

Magnetisation (a.u.)

Field (T)

Strong cubic anisotropy with <100> easy axes,

reduced to biaxial (in-plane) or uniaxial (perpendicular) due to strain.

Weaker uniaxial anisotropy between in-plane [110] and [110] orientations, origin unknown.

B

B//

Magnetic anisotropy rotation

0 5 100.0

0.5

1.0

1.5

Carrier density (nm

-3)

Mn concentration (%)

easy axis [110]

easy axis [110 ]

In-plane uniaxial easy axis rotates from

[110] to [110]

on increasing the carrier density above ~6 x 1020 cm-3 by annealing.

Sawicki et al., PRB

(submitted)