システム工学 - 中央大学endow/sys05.pdf · 第1章 線形システム 1.1...

77
システム工学 央大学 営システム

Upload: others

Post on 16-Jul-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: システム工学 - 中央大学endow/SYS05.pdf · 第1章 線形システム 1.1 線形システムの状態表示 一般に連続時間システムの状態方程式は d dt x(t)=f[x(t),u(t),t]

シ ス テ ム 工 学

中央大学理工学部

経営システム工学科

遠藤 靖

Page 2: システム工学 - 中央大学endow/SYS05.pdf · 第1章 線形システム 1.1 線形システムの状態表示 一般に連続時間システムの状態方程式は d dt x(t)=f[x(t),u(t),t]
Page 3: システム工学 - 中央大学endow/SYS05.pdf · 第1章 線形システム 1.1 線形システムの状態表示 一般に連続時間システムの状態方程式は d dt x(t)=f[x(t),u(t),t]

目 次

第 1章 線形システム 11.1 線形システムの状態表示 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2 線形化 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.3 例 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.4 同次システム . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51.5 基本行列と推移行列 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81.6 随伴システム . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111.7 非同次システム . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121.8 定常システムの状態推移行列 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131.9 対角化 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151.10 定常システムの状態推移行列の求め方 . . . . . . . . . . . . . . . . . . . . . . . . . 16

第 2章 可制御性と可観測性 19

2.1 可制御性と可観測性の定義 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192.2 可制御性と可観測性の条件 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 定常システムの可制御性と可観測性 . . . . . . . . . . . . . . . . . . . . . . 232.2.2 双対システムの可制御性と可観測性 . . . . . . . . . . . . . . . . . . . . . . 24

第 3章 システムの安定性 27

3.1 システムの安定性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273.2 安定性の条件 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.1 定常システムの安定性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303.2.2 フルビッツの判定法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 リャプノフ関数と安定性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323.3.1 リャプノフの行列方程式 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323.3.2 リャプノフ関数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333.3.3 安定性の定理 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

第 4章 最適レギュレータ 374.1 最適制御問題の例 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374.2 最適フィードバック則 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2.1 Riccatiの行列微分方程式 . . . . . . . . . . . . . . . . . . . . . . . . . . . 394.2.2 定常システムに対する最適レギュレーター . . . . . . . . . . . . . . . . . . 40

4.3 最大値原理 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3

Page 4: システム工学 - 中央大学endow/SYS05.pdf · 第1章 線形システム 1.1 線形システムの状態表示 一般に連続時間システムの状態方程式は d dt x(t)=f[x(t),u(t),t]

4

第 5章 待ち行列システム 43

5.1 バスや電車の待ち時間 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435.1.1 等間隔運行の場合 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435.1.2 サイクル運行の場合 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435.1.3 確率的な運行の場合 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445.1.4 ダンゴ運行のときの平均待ち時間 . . . . . . . . . . . . . . . . . . . . . . . 45

5.2 客の到着とサービス . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465.2.1 ポアソン到着 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465.2.2 サービス時間の分布 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.3 窓口が1個の待ち行列 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495.3.1 定常状態 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505.3.2 システムの平均値 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

第 6章 金融システム 556.1 ファイナンスの用語 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 556.2 フォワードの価格決定 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 586.3 1期間 2値オプション・モデル . . . . . . . . . . . . . . . . . . . . . . . . . . . . 596.4 3値モデル . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 626.5 無裁定の条件 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 636.6 リスク中立確率測度 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 676.7 連続時間への序章 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Page 5: システム工学 - 中央大学endow/SYS05.pdf · 第1章 線形システム 1.1 線形システムの状態表示 一般に連続時間システムの状態方程式は d dt x(t)=f[x(t),u(t),t]

第1章 線形システム

1.1 線形システムの状態表示

一般に連続時間システムの状態方程式は

ddt

x(t) = f [x(t),u(t), t] (1.1)

という形の微分方程式で表わされる.ここに x(t)は n次元ベクトルでシステムの状態といい,u(t)は r次元ベクトルで入力変数とか制御変数という.f は n次元ベクトル値関数でシステムの構造を

表現している.(1.1)は状態方程式あるいは状態微分方程式という.出力変数 y(t)はm次元ベクトルで

y(t) = g[x(t),u(t), t] (1.2)

と表わされ,出力方程式という.状態方程式 (1.1)と出力方程式 (1.2)とを合わせてシステム方程式という.

特に f , g が線形の場合,すなわちシステム方程式が

d

dtx(t) = A(t)x(t) +B(t)u(t) (1.3)

y(t) = C(t)x(t) +D(t)u(t) (1.4)

と表わされるとき,線形システムという.さらにA, B, C, D が時間に依存しないとき,すなわち.

d

dtx(t) = Ax(t) +Bu(t) (1.5)

y(t) = Cx(t) +Du(t) (1.6)

のとき,定常線形システムという.

1.2 線形化

u0(t)を (1.1)の入力とし,このときの解軌道を x0(t)とする.すなわち

d

dtx0(t) = f [x0(t),u0(t), t], (t0 ≤ t ≤ t1)

とし,u0を公称入力,x0を公称軌道と呼ぶことにする.いまシステムは公称条件に近いところで

運転されるものとする.このとき,u(t), x0 を小さい摂動として

u(t) = u0(t) + u(t) (t0 ≤ t ≤ t1) (1.7)

x(t0) = x0(t0) + x(t0) (1.8)

1

Page 6: システム工学 - 中央大学endow/SYS05.pdf · 第1章 線形システム 1.1 線形システムの状態表示 一般に連続時間システムの状態方程式は d dt x(t)=f[x(t),u(t),t]

2 endow-05

と表わす.これに対する (1.1)の解を

x(t) = x0(t) + x(t) (t0 ≤ t ≤ t1) (1.9)

とする.これらの x, uを (1.1)に代入して,一次まで Taylor展開すると

d

dtx0(t) +

d

dtx(t) = f [x0(t),u0(t), t] + Jx[x0(t),u0(t), t]x(t)

+Ju[x0(t),u0(t), t]u(t) + h(t) (t0 ≤ t ≤ t1) (1.10)

ここに Jx, Juはそれぞれ f の xと uに関するヤコビ行列である.たとえば Jx の (i, j)要素は

(Jx)i,j =∂fi

∂ξj(1.11)

である.ここに fiは f の第 i要素で,ξj は xの第 j要素である.h(t)が xや uと比べて小さいも

のとして hを無視することにより x, uは近似的に線形方程式

d

dtx(t) = A(t)x(t) +B(t)u(t) (t0 ≤ t ≤ t1) (1.12)

を満たす. ここに A(t) = Jx[x0(t),u0(t), t], B(t) = Ju[x0(t),u0(t), t]である.方程式 (1.12)は方程式 (1.1)の線形化状態方程式という.

1.3 例

例1) 倒立振子

• 台車はモーターにより f(t)という力で動く.

• 重心と軸受けとの距離を Lとする.

• 重心回りの慣性モーメントを J,台車の質量をM とする.

• 振り子にかかる力は重心にmgと軸受けに水平方向の抗力H と垂直方向の抗力 V である.

各方向の運動方程式は次のようになる.

md2

dt2[s(t) + L sinφ(t)] = H(t)

md2

dt2[L cosφ(t)] = V (t) −mg

Jd2

dt2φ(t) = LV (t) sinφ(t) − LH(t) cosφ(t)

Md2

dt2s(t) = f(t) −H(t) − F

ds(t)dt

微分を実行すると

ms(t) +mLφ(t) cosφ(t) −mLφ2(t) sinφ(t) = H(t), (1.13)

−mLφ(t) −mLφ2(t) cosφ(t) = V (t) −mg, (1.14)

Jφ(t) = LV (t) sinφ(t) − LH(t) cosφ(t), (1.15)

Ms(t) = f(t) −H(t) − F s(t). (1.16)

Page 7: システム工学 - 中央大学endow/SYS05.pdf · 第1章 線形システム 1.1 線形システムの状態表示 一般に連続時間システムの状態方程式は d dt x(t)=f[x(t),u(t),t]

endow-05 3

簡単のためにmはM に比べて小さいものとする.よって台車の動きの中で水平方向の抗力を無視

すると,

Ms(t) = f(t) − F s(t). (1.17)

(1.13)-(1.15)からH(t), V (t)を消去すると

φ(t) − g

L′ sinφ(t) +1L′ s(t) cosφ(t) = 0, (1.18)

ここに

L′ =J +mL2

mL. (1.19)

公称解として s(t) ≡ 0, φ(t) ≡ 0とする.(1.18)の sinφ, cosφ(t)をテーラー展開して線形化すると

φ(t) − g

L′φ(t) +1L′ s(t) = 0. (1.20)

状態変数 x(t) = col(x1(t), x2(t), x3(t), x4(t))を

x1(t) := s(t)

x2(t) := s(t)

x3(t) := s(t) + L′φ(t)

x4(t) := s(t) + L′φ(t)

とする.こうして (1.17)と (1.20)とにより

x1(t) = x2(t),

x2(t) =1Mf(t) − F

Mx2(t),

x3(t) = x4(t), (1.21)

x4(t) = gφ(t) =g

L′ [x3(t) − x1(t)].

これをベクトル表示すると

x(t) = Ax(t) +Bu(t), (1.22)

ここに,u(t) = f(t),

A =

0 1 0 00 F

M 0 00 0 0 1

− gL′ 0 g

L′ 0

, B =

01M

00

.

例2) 撹拌タンク

•  1の流入口から濃度 c1 の液体が流量 F1の割りでタンクに入る.

•  2の流入口から濃度 c2 の液体が流量 F2の割りでタンクに入る.

Page 8: システム工学 - 中央大学endow/SYS05.pdf · 第1章 線形システム 1.1 線形システムの状態表示 一般に連続時間システムの状態方程式は d dt x(t)=f[x(t),u(t),t]

4 endow-05

•  流出口から濃度 cの液体が流量 F の割りでタンクから出る.

タンク内の液体の量を V とすると質量平衡方程式は

d

dtV (t) = F1(t) + F2(t) − F (t), (1.23)

d

dt[c(t)V (t)] = c1F1(t) + c2F2(t) − cF (t). (1.24)

また流出量は液面の高さの平方根に比例するので, タンクの底面積を S とすると

F (t) = k

(V (t)S

) 12

(1.25)

となる.よって (1.23),(1.24)は

d

dtV (t) = F1(t) + F2(t) − k

(V (t)S

) 12

, (1.26)

d

dt[c(t)V (t)] = c1F1(t) + c2F2(t) − ck

(V (t)S

) 12

. (1.27)

ここで全ての量が一定となる定常な状態を考えよう.これらの値を

F10, F20, F0, V0, c0,

とする.このとき次の関係が成り立つ.

0 = F10 + F20 − F0, (1.28)

0 = c1F10 + c2F20 − c0F0, (1.29)

F0 = k

(V0

S

) 12

. (1.30)

定常状態から小さい摂動が生じたとする.

F1(t) = F10 + u1(t),

F2(t) = F20 + u2(t),

V (t) = V0 + x1(t),

c(t) = c0 + x2(t).

ここに u1, u2 は入力変数で,x1, x2 は状態変数である.これらの変数は十分小さいものとして

(1.26),(1.27)の線形化を行うと

x1(t) = u1(t) + u2(t) − k

2V0

(V0

S

) 12

x1(t), (1.31)

x2(t)V0 + c0x1(t) = c1u1(t) + c2u2(t) − c0k

2V0

(V0

S

) 12

x1(t)

− k

2V0

(V0

S

) 12

x2(t). (1.32)

Page 9: システム工学 - 中央大学endow/SYS05.pdf · 第1章 線形システム 1.1 線形システムの状態表示 一般に連続時間システムの状態方程式は d dt x(t)=f[x(t),u(t),t]

endow-05 5

をこれらに (1.30)代入すると

x1(t) = u1(t) + u2(t) − 12F0

V0x1(t), (1.33)

x2(t)V0 + c0x1(t) = c1u1(t) + c2u2(t) − 12c0F0

V0x1(t) − F0x2(t). (1.34)

いま

θ =V0

F0(1.35)

とおく.これをタンクのホールドアップ・タイムという.(1.34)から x1 を消去して整理すると

x(t) =

(− 1

2θ 00 − 1

θ

)x(t) +

(1 1

c1−c0V0

c2−c0V0

)u(t), (1.36)

ここに

x(t) = col(x1(t), x2(t)), u = col(u1(t), u2(t))

さらに出力変数を

y1(t) = F (t) − F0 F0

2V0x1(t) =

12θx1(t),

y2(t) = c(t) − c0 = x2(t),

と定義すると

y(t) =

(12θ 00 1

)x(t) (1.37)

を得る.ここに

y(t) = col(y1(t), y2(t)).

1.4 同次システム

状態方程式が微分方程式で表わされるシステムを微分システムという.方程式が線形であるとき

線形微分システムあるいは単に線形システムという.また,同次線形微分方程式

ddtx(t) = A(t)x(t)x(t0) = x0

(1.38)

を状態方程式とするシステムを同次線形システムという.

定理 1.1 システム (1.38)の解は唯一つ存在する.

これを証明するために次の補題が必要である.

Page 10: システム工学 - 中央大学endow/SYS05.pdf · 第1章 線形システム 1.1 線形システムの状態表示 一般に連続時間システムの状態方程式は d dt x(t)=f[x(t),u(t),t]

6 endow-05

補題 1.1 行列微分方程式

ddtX(t) = A(t)X(t)X(t0) = I

(1.39)

は唯一つの解を持つ.

証明 微分方程式 (1.39)と等価な次の積分方程式について考える.

X(t) = I +∫ t

t0

A(s)X(s)ds (1.40)

(存在性)行列の列 Xk(t)を次式により定義する:

X0(t) ≡ I

Xk+1(t) = I +∫ t

t0

A(s)Xk(s)ds k = 0, 1, 2, · · · .

(1.41)

これより

Xk+1(t) −Xk(t) =∫ t

t0

A(s)(Xk(s) −Xk−1(s))ds

が得られる.そこで

m(t1) := maxt0≤s≤t1

‖A(s)‖

とおくと,t0 ≤ t ≤ t1と k = 1, 2, 3, · · ·に対して

‖Xk+1(t) −Xk(t)‖ = ‖∫ t

t0

A(s)(Xk(s) −Xk−1(s))ds‖

≤∫ t

t0

‖A(s)‖‖Xk(s) −Xk−1(s)‖ds

≤ m(t1)∫ t

t0

‖Xk(s) −Xk−1(s)‖ds (1.42)

となる.一方

‖X1(t) −X0(t)‖ ≤∫ t

t0

‖A(s)‖ds ≤ m(t1)t

であるから,これを k = 1の場合の (1.42)の右辺に代入する.次にこれを k = 2の場合の (1.42)の右辺に代入する.このように逐次これを繰り返すと,不等式

‖Xk+1(t) −Xk(t)‖ ≤ m(t1)k+1(t− t0)k+1

(k + 1)!k = 0, 1, 2, · · · (1.43)

が得られる.kについて両辺の和を作ると∞∑

k=0

‖Xk+1(t) −Xk(t)‖ ≤∞∑

k=0

m(t1)k+1(t− t0)k+1

(k + 1)!

≤∞∑

k=0

m(t1)k(t− t0)k

k!≤ em(t1)t1 (t0 ≤ t ≤ t1)

Page 11: システム工学 - 中央大学endow/SYS05.pdf · 第1章 線形システム 1.1 線形システムの状態表示 一般に連続時間システムの状態方程式は d dt x(t)=f[x(t),u(t),t]

endow-05 7

となる.この式は級数∞∑

k=0

(Xk+1(t) −Xk(t)) = −I + limk→∞

Xk(t)

が区間 [t0, t1]において一様に収束することを意味している.すなわち,Xk(t)はある行列 X∞(t)に区間 [t0, t1]において一様に収束する.そこで (1.41)の下式の両辺の極限をとると

X∞(t) = limk→∞

Xk+1(t)

= I + limk→∞

∫ t

t0

A(s)Xk(s)ds

= I +∫ t

t0

A(s) limk→∞

Xk(s)ds

= I +∫ t

t0

A(s)X∞(s)ds

となる.これはX∞(t)が (1.40)を満たしていることを示している.すなわち,このX∞(t)は行列微分方程式 (1.40)の一つ解である.ところで,上の式で極限と積分の記号の交換は極限移行が一様収束であることから可能である.以上の議論において t1 は任意であったからすべての t ∈ (−∞,∞)に対して行列微分方程式 (1.40)の解が確定する.(一意性)X∞(t)を行列微分方程式 (1.40)のもう一つの解としよう.このとき

X(t) − Y (t) =∫ t

t0

A(s)(X(s) − Y (s))ds

となるから

‖X(t)− Y (t)‖ ≤∫ t

t0

‖A(s)‖‖X(s)− Y (s)‖ds. (1.44)

そこで

p(t1) := maxt0≤s≤t1

‖X(s) − Y (s)‖

とおくと,

‖X(t)− Y (t)‖ ≤ p(t1)∫ t

t0

‖A(s)‖ds

となる.これを (1.44)の右辺に代入して

‖X(t)− Y (t)‖ ≤ p(t1)∫ t

t0

‖A(s)‖(∫ s

t0

‖A(u)‖du)ds

が得られる.ここで,

α(s) :=∫ s

t0

‖A(u)‖du

と置くと

d

dsα(s) = ‖A(s)‖

Page 12: システム工学 - 中央大学endow/SYS05.pdf · 第1章 線形システム 1.1 線形システムの状態表示 一般に連続時間システムの状態方程式は d dt x(t)=f[x(t),u(t),t]

8 endow-05

となるから

‖X(t) − Y (t)‖ ≤ p(t1)∫ t

t0

α(s)d

ssα(s)ds

=12p(t1)

∫ t

t0

d

ds[α(s)]2ds =

12p(t1)[α(t)]2

これを再び (1.44)に代入して,順次この操作を繰り返すと,k = 1, 2, 3, · · ·に対して

‖X(t) − Y (t)‖ ≤ p(t1)[α(t1)]k

k!(t0 ≤ t ≤ t1)

を得る.右辺は任意の t ∈ [t0, t1]に対して kを大きくすればいくらでもゼロに近づくから

‖X(t) − Y (t)‖ = 0 (t0 ≤ t ≤ t1)

とならなければならない.すなわち

X(t) = Y (t) (t0 ≤ t ≤ t1)

である.ここで t1は任意であったから

X(t) = Y (t) (−∞ < t <∞).

よって行列微分方程式 (1.40)の解は一意である.定理 1.1の証明:(存在性)方程式 (1.38)の解は行列微分方程式 (1.39)の解X(t)を用いて

x(t) = X(t)x0 (1.45)

と表わされることを示そう.(1.45)を微分すると,X(t)が行列微分方程式 (1.39)を満たすことより

d

dtx(t) =

d

dtX(t)x0 = A(t)X(t)x0 = A(t)x(t)

となり,x(t) = X(t)x0が (1.38)を満たすことが分かる.また (1.45)で t = t0とおいて,X(t0) = I

を代入すると

x(t0) = X(t0)x0 = Ix0 = x0.

(一意性)方程式 (1.38)の解が一意であることは補題の証明と同じようにできる(練習問題).

1.5 基本行列と推移行列

行列方程式 (1.39)はシステム (1.38)に付随した行列微分方程式といい,その解を基本解という.一般に初期値を正則行列とするシステムに付随した行列微分方程式の解をシステムの基本行列と

いう.

定理 1.2 システム (1.38)の基本行列X(t)は正則である.

Page 13: システム工学 - 中央大学endow/SYS05.pdf · 第1章 線形システム 1.1 線形システムの状態表示 一般に連続時間システムの状態方程式は d dt x(t)=f[x(t),u(t),t]

endow-05 9

証明:ある t1 で X(t1)が正則でないとしよう.このとき X(t1)b = 0となるゼロでないベクトル

b = 0が存在する.そこで

x(t) := X(t)b

とおくと,これは方程式

d

dtx(t) = A(t)x(t)

x(t1) = 0

(1.46)

の解となる.他方,

x(t) ≡ 0

も (1.46)の解である.したがって解の一意性により

X(t)b = 0

となる.ところがX(t0)は正則であるから

X(t0)b = 0

となり,矛盾する.

定義 1.1 システムの基本行列をX(t)とするとき,

Φ(t, s) := X(t)X−1(s) (1.47)

により定義される行列 Φをシステムの (状態推移行列) (state transition matrix) という.

さて,

x(t) = Φ(t, t0)x(t0) (1.48)

は (1.38)の解である.表現を変えると

Rn x(t0) −→ Φ(t, t0)x(t0) ∈ Rn

すなわち,状態推移行列 Φ(t, t0)は時刻 t = t0 における状態 x(t0)を時刻 t = tにおける状態に推

移させる.このように状態推移行列はシステムの状態の時間的推移を完全に記述している.状態推

移行列の基本的な性質について述べておこう.

補題 1.2 システムの状態推移行列を Φ(t, s)とする.このとき次の性質が成り立つ.

(1) 推移法則

Φ(t2, t0) = Φ(t2, t1)Φ(t1, t0) (t0 ≤ t1 ≤ t2) (1.49)

(2) 逆行列

Φ(s, t) = Φ−1(t, s) (1.50)

Φ(t, t) = I (1.51)

Page 14: システム工学 - 中央大学endow/SYS05.pdf · 第1章 線形システム 1.1 線形システムの状態表示 一般に連続時間システムの状態方程式は d dt x(t)=f[x(t),u(t),t]

10 endow-05

(3) Φ(t, t0)は tの関数としてシステムの基本行列

d

dtΦ(t, t0) = A(t)Φ(t, t0) (1.52)

(4) n× n行列 T (t) はその各要素が微分可能でかつ T−1(t)が存在する.このとき変数変換

z(t) := T (t)x(t) (1.53)

によってシステム

d

dtx(t) = A(t)x(t) (1.54)

d

dtz(t) = [T (t)A(t)T−1(t) +

d

dtT (t)T−1(t)]z(t) (1.55)

と変換される.このとき状態推移行列は

Φz(t, s) = T (t)Φx(t, s)T−1(s) (1.56)

と表わされる.ここに,Φx, Φz はそれぞれ (1.54), (1.55)の状態推移行列である.

証明:(1) t0 ≤ t1 ≤ t2に対して

x(t1) = Φ(t1, t0)x(t0)

x(t2) = Φ(t2, t1)x(t1)

となる.一方

x(t2) = Φ(t2, t0)x(t0)

である.よって

[Φ(t2, t0) − Φ(t2, t1)Φ(t1, t0)]x(t0) = 0.

これは任意の x(t0) ∈ Rnに対して成り立つので

Φ(t2, t0) − Φ(t2, t1)Φ(t1, t0) = Θ.

(2) 状態推移行列の定義により

Φ(s, t)Φ(t, s) = [X(s)X−1(t)][X(t)X−1(s)]

= X(s)[X−1(t)X(t)]X−1(s)

= X(s)X−1(s)

= I.

Page 15: システム工学 - 中央大学endow/SYS05.pdf · 第1章 線形システム 1.1 線形システムの状態表示 一般に連続時間システムの状態方程式は d dt x(t)=f[x(t),u(t),t]

endow-05 11

Φ(t, t) = X(t)X−1(t)

= I

(3) 基本行列X(t)は微分方程式 (1.39)を満たすので

d

dtΦ(t, t0) =

d

dtX(t)X−1(t0)

= A(t)X(t)X−1(t0)

= A(t)Φ(t, t0).

(4) 式

x(t) = Φx(t, s)x(s)

の両辺に左から T (t)を掛け,z(t) = T (t)x(t)を考慮するとると

z(t) = T (t)x(t)

= T (t)Φx(t, s)x(s)

= T (t)Φx(t, s)T−1(s)z(s).

一方

z(t) = Φz(t, s)z(s)

であるから

[Φz(t, s) − T (t)Φx(t, s)T−1(s)]z(s) = 0.

z(s)は空間Rnの任意のベクトルとすることができるので,

Φz(t, s) − T (t)Φx(t, s)T−1(s) = Θ

1.6 随伴システム

システム

d

dtx(t) = A(t)x(t) (1.57)

に対して,同次元のベクトル λ(t)に関する線形微分システムが存在して任意に与えられた初期条件に対する (1.57)の解 x(t)と λ(t)との内積を常に一定とすることができる.この様な λ(t)に関するシステムをの随伴システムという.具体的にはシステム

d

dtλ(t) = −AT (t)λ(t) (1.58)

Page 16: システム工学 - 中央大学endow/SYS05.pdf · 第1章 線形システム 1.1 線形システムの状態表示 一般に連続時間システムの状態方程式は d dt x(t)=f[x(t),u(t),t]

12 endow-05

がそれである.実際,(1.57)の任意の解 x(t)と (1.58)の任意の解 λ(t) との内積は次に示すように一定となっている.

d

dt(λ(t),x(t)) =

(d

dtλ(t),x(t)

)+

(λ(t),

d

dtx(t)

)= (−AT (t)λ(t),x(t)) + (λ(t), A(t)x(t))

= (λ(t), (−A(t) +A(t))x(t))

= (λ(t),0) = 0.

定理 1.3 Φ(t, s)を (1.57)の状態推移行列とすると,行列 ΦT (s, t) = ΦT (t, s)−1 は随伴システム

(1.58)の状態推移行列である.

証明: I = Φ(t, s)−1Φ(t, s)の両辺を tで微分すると

0 =d

dt[Φ(t, s)−1]Φ(t, s) + Φ(t, s)−1 d

dtΦ(t, s)

= [d

dtΦ(t, s)−1 + Φ(t, s)−1A(t)]Φ(t, s)

Φ(t, s)は正則であるから両辺の左から Φ(t, s)を掛けると

d

dtΦ(t, s)−1 = −Φ(t, s)−1A(t).

よって両辺の転置をとると

d

dtΦT (t, s)−1 = −AT (t)ΦT (t, s)−1.

1.7 非同次システム

状態方程式が非同次線形微分方程式

d

dtx(t) = A(t)x(t) + f(t)

x(t0) = x0

(1.59)

で表わされるシステムを単に非同次システムという.

定理 1.4 非同次システムの解は唯一つで

x(t) = Φ(t, t0)x(t0) +∫ t

t0

Φ(t, s)f(s)ds (1.60)

と表わされる.ここで Φ(t, s)はシステムの状態推移行列である.

証明:いまX(t)を (1.39)の解すなわち基本解とする.そこで

x(t) = X(t)y(t)

Page 17: システム工学 - 中央大学endow/SYS05.pdf · 第1章 線形システム 1.1 線形システムの状態表示 一般に連続時間システムの状態方程式は d dt x(t)=f[x(t),u(t),t]

endow-05 13

とおいて,両辺を tで微分すると

d

dtx(t) =

(d

dtX(t)

)y(t) +X(t)

(d

dty(t)

)

= A(t)X(t)y(t) +X(t)(d

dty(t)

)

= A(t)x(t) +X(t)(d

dty(t)

).

これと (1.59)とを比較して

d

dty(t) = X−1(t)f(t)

を得る.この両辺を t0から tまで積分すると

y(t) = y(t0) +∫ t

t0

X−1(s)f(s)ds.

左からX(t) を掛けて,x(t0) = X(t0)y(t0)を考慮すると

x(t) = X(t)X−1(t0)x(t0) +∫ t

t0

X(t)X−1(s)f(s)ds

= Φ(t, t0)x(t0) +∫ t

t0

Φ(t, s)f(s)ds (1.61)

となる.

ここで次のことを注意しておこう.(1.60)において f(s) ≡ 0 とおくと同次方程式 (1.38)の解(1.48)に帰着する.すなわち,非同次方程式の解は同次方程式の解を含んでいると言える.

1.8 定常システムの状態推移行列

定理 1.5 定常システム

d

dtx(t) = Ax(t)

x(0) = x0

(1.62)

の状態推移行列は

Φ(t, s) = eA(t−s). (1.63)

ここに

eAt =∞∑

k=0

Aktk

k!. (1.64)

定理の証明をする前につぎの補題を示しておこう.

補題 1.3 (1) (1.64)の右辺の行列の級数が任意の有限区間において一様収束する.

Page 18: システム工学 - 中央大学endow/SYS05.pdf · 第1章 線形システム 1.1 線形システムの状態表示 一般に連続時間システムの状態方程式は d dt x(t)=f[x(t),u(t),t]

14 endow-05

(2) 微分

d

dteAt = AeAt

(3) 任意の実数 t, sに対して

eAteAs = eA(t+s)

(4) 逆行列

(eAt

)−1= e−At

証明: (1)任意の区間 [a, b]において

‖eAt‖ ≤∞∑

k=0

‖A‖k|t|kk!

≤ eαT <∞

である.ここに

α := ‖A‖, T := max|a|, |b|.

(2)上で示したように行列の級数 eAtは任意の有限区間で一様収束であるから項別微分が可能であ

る.よって

d

dteAt =

∞∑k=0

d

dt

(Aktk

k!

)=

∞∑k=0

Ak

k!d

dttk =

∞∑k=0

Aktk−1

(k − 1)!

= A

∞∑k=1

Ak−1tk−1

(k − 1)!= A

∞∑k=0

Aktk

k!= AeAt.

(3) 定義により

eAteAs =∞∑

i=0

Aiti

i!

∞∑k=0

Ajsj

j!

=(I +

11!At+

12!A2t2 + · · · + 1

i!Aiti + · · ·

)

×(I +

11!As+

12!A2s2 + · · · + 1

j!Ajsj + · · ·

).

右辺の Ak (k = 1, 2, · · ·)の係数を求めると∑

i+j=k

ti

i!sj

j!=

1k!

∑i+j=k

k!i!j!

tisj =1k!

∑i+j=k

(k

i

)tisj =

1k!

(t+ s)k

よって

eAteAs =∞∑

k=0

Ak(t+ s)k

k!= eA(t+s).

Page 19: システム工学 - 中央大学endow/SYS05.pdf · 第1章 線形システム 1.1 線形システムの状態表示 一般に連続時間システムの状態方程式は d dt x(t)=f[x(t),u(t),t]

endow-05 15

(4) (3)において s = −tとおくと

eAte−At = eA(t−t) = I

したがって逆行列の定義により (4)が得られる.定理の証明: まず,

X(t) := eAt

が基本行列であることを示そう.補題 1.3の (2)を適用して両辺を tで微分すると

d

dtX(t) = AeAt

= AX(t).

また状態推移行列の定義と補題 1.3の (4)により

Φ(t, s) = X(t)X−1(s) = eAt(eAs

)−1= eAte−As = eA(t−s)

1.9 対角化

定常システムにおいて行列 Aが特別な場合は対角化することができる.はじめに線形代数でよ

く知られたつぎの補題を挙げておこう.

補題 1.4 行列Aは n個の異なる固有値 λ1, · · · , λnを持つものとする.これらに対応する固有ベク

トルを e1, · · · , en とし,n× n行列を次のように定義する:

T := (e1, · · · , en), (1.65)

Λ := diag(λ1, · · · , λn). (1.66)

このとき T は正則で

A = TΛT−1 (1.67)

と表わされる.

この補題 1.4によりつぎの定理が成り立つ.

定理 1.6 行列 Aは補題 1.4の条件を満たすものとする.このとき

(1) eAt = TeΛtT−1,

(2) eΛt = diag(eλ1t, · · · , eλnt).

さらに次の定理も明らかであろう.

Page 20: システム工学 - 中央大学endow/SYS05.pdf · 第1章 線形システム 1.1 線形システムの状態表示 一般に連続時間システムの状態方程式は d dt x(t)=f[x(t),u(t),t]

16 endow-05

定理 1.7 定常システム (1.62)において行列Aは補題 1.4 の条件を満たすものとする.行列 T−1を

T−1 := (f1, · · · , fn)T

と定義すると (1.62)の解は

x(t) =n∑

i=1

eλiteifTi x(t0)

と表わされる.

証明: 定理 1.6の (1)により解軌道は

x(t) = TeΛtT−1x(t0)

と表わされるので右辺を展開すればよい.

1.10 定常システムの状態推移行列の求め方

定常システム (1.62)の状態推移行列は

Φ(t, s) = eA(t−s)

であるが,行列 Aが対角行列のような特別の場合を除いて eAt を計算するためには工夫が必要で

ある.行列 Aの特性多項式を P (λ)としよう.これは λの n次の多項式である.

P (λ) := |λI −A|= λn + an−1λ

n−1 + · · · + a1λ+ a0

ところで関数 eλtは λ = 0のまわりで解析的であるから,

eλt = P (λ)Q(λ) +R(λ), (1.68)

と表わされる.ここに,Qは商で Rは剰余である.P は n次の多項式であるので,Rは高々n− 1次の多項式である.すなわち,

R(λ) = c0 + c1λ+ · · · + cn−1λn−1.

ここで,(1.68)で λの代わりにAを代入して,Cayley-Hamiltonの定理:P (A) = Θ を適用すると

eAt = R(A)

= c0I + c1A+ · · · + cn−1An−1

が得られる.よって eAtを計算するためには n個の係数 c0, c1, · · · , cn−1 を求めればよい.

さて,行列 Aの固有値 λj , j = 1, 2, · · · , qの重複度を

mj , j = 1, 2, · · · , q; m1 +m2 + · · · +mq = n

Page 21: システム工学 - 中央大学endow/SYS05.pdf · 第1章 線形システム 1.1 線形システムの状態表示 一般に連続時間システムの状態方程式は d dt x(t)=f[x(t),u(t),t]

endow-05 17

としよう.このとき,特性多項式は

P (λ) = (λ− λ1)m1(λ− λ2)m2 · · · (λ− λq)mq

と表わされる.

固有値 λj , (j = 1, 2, · · · , q)について考えよう.特性多項式 P (λ)は因数 λ− λj を含むので,

P (λ)Q(λ)|λ=λj= 0

となる.よって,

eλt∣∣λ=λj

= R(λ)|λ=λj(1.69)

を得る.もしmj > 1ならば,(d/dλ)P (λ)は因数 (λ− λj)を含むので,

d

dλP (λ)Q(λ)

∣∣∣∣λ=λj

= 0

となる.よって,

d

dλeλt

∣∣∣∣λ=λj

=d

dλR(λ)

∣∣∣∣λ=λj

(1.70)

を得る.以下同様にして

dλνeλt

∣∣∣∣λ=λj

=dν

dλνR(λ)

∣∣∣∣λ=λj

ν = 0, 1, · · · ,mj − 1 (1.71)

を得る.このようにして各固有値λjに対してmj個の方程式が得られるので,全部でm1+m2+· · ·+mq = n個の方程式が得られる.これらの n個の方程式を連立して解くと n個の係数 c0, c1, · · · , cn−1

が求められる.

Page 22: システム工学 - 中央大学endow/SYS05.pdf · 第1章 線形システム 1.1 線形システムの状態表示 一般に連続時間システムの状態方程式は d dt x(t)=f[x(t),u(t),t]

18 endow-05

練習問題

問1)次式で表わされるシステムの状態推移行列を求めなさい.

x1 = −x1 − 2x2 + u1

x2 = −3x2 + 2u1

問2)次の行列を係数行列とするシステムの状態推移行列を求めなさい.

A =

(−1 −11 −3

)

問3)次の行列を係数行列とするシステムの状態推移行列を求めなさい.

A =

(−2

√2 −1

2 0

)

Page 23: システム工学 - 中央大学endow/SYS05.pdf · 第1章 線形システム 1.1 線形システムの状態表示 一般に連続時間システムの状態方程式は d dt x(t)=f[x(t),u(t),t]

第2章 可制御性と可観測性

2.1 可制御性と可観測性の定義

線形システム

d

dtx(t) = A(t)x(t) +B(t)u(t)

y(t) = C(t)x(t)

(2.1)

について考えよう.このシステムの解は (1.60)により

x(t) = Φ(t, t0)x(t0) +∫ t

t0

Φ(t, τ)B(τ)u(τ)dτ (2.2)

と表わされる.この表現を用いて線形システムの可制御性の定義をしよう.可制御性は入力変数

u(t)と状態変数X(t)とのあいだのある関係を述べたものである.

定義 2.1 可制御性

(1) 状態 x0 は時刻 t0 において x1 に到達可能である.

def= (∀x1 ∈ Rn)(∃t1(> t0), ∃u(τ) (t0 ≤ τ ≤ t1)) :

x(t1) = Φ(t1, t0)x0 +∫ t1

t0

Φ(t1, τ)B(τ)u(τ)dτ = x1

(2) 状態 x0 は時刻 t0 において到達可能である.def= 状態 x0 は時刻 t0において x1 = 0に到達可能である.

(3) システムは時刻 t0において可制御である.def= 任意の状態 x0 ∈ Rn が時刻 t0において到達可能である.

(4) システムは可制御である.def= システムは任意の時刻 t0 において可制御である.

つぎに可観測性の定義をしよう.可観測性は出力変数と状態変数とのあいだの関係を述べたもので

ある.まず出力変数は (2.2)を出力方程式に代入することにより

y(t) = C(t)Φ(t, t0)x(t0) +∫ t

t0

C(t)Φ(t, τ)B(τ)u(τ)dτ (2.3)

19

Page 24: システム工学 - 中央大学endow/SYS05.pdf · 第1章 線形システム 1.1 線形システムの状態表示 一般に連続時間システムの状態方程式は d dt x(t)=f[x(t),u(t),t]

20 endow-05

と表わされる.可制御性を考えるときは入力は既知と仮定するので,上式の右辺第2項は既知とな

る.そこで可観測性を考える場合システム (4.7)のかわりに

d

dtx(t) = A(t)x(t)

y(t) = C(t)x(t)

(2.4)

を考えればよい.

定義 2.2 可観測性

(1) システムは時刻 t0において可観測である.def= 時刻 t0から時刻 t1(> t0)までの出力の測定データ y(τ) (t0 ≤ τ ≤ t1)から,初期値 x(t0) = x0 ∈ Rn を一意的に定めることができる.

(2) システムは可観測である.def= 任意の時刻 t0においてシステムは可観測である.

2.2 可制御性と可観測性の条件

時刻 t0における状態変数 x(t0)と時刻 t(> t0)における出力の測定データ y(t)との関係は

y(t) = C(t)Φ(t, t0)x(t0) (2.5)

である.右辺の行列 C(t)Φ(t, t0)はm×n行列であるから一般に逆行列を持つとは限らない.した

がってある時刻におけるデータ y(t)だけからは状態変数 x(to)を定めることは出来ない.ところが t0 から t1 までのデータ y(t)から x(to)を導けることがある.この条件を考えて見よう.

定理 2.1 (可観測性の必要十分条件) システム (4.7)または (2.4)が時刻 t0で可観測であるため

の必要十分な条件は,ある時刻 t1(≥ t0)において

M(t0, t1) :=∫ t1

t0

ΦT (t, t0)CT (t)C(t)Φ(t, t0)dt (2.6)

が正則になることである.

証明:(十分性)時刻 t1で行列M(t0, t1)が正則であるとする.いま (2.5)の両辺に左からΦT (t, t0)CT (t)をかけて t0から t1まで積分すると∫ t1

t0

ΦT (t, t0)CT (t)y(t)dt =∫ t1

t0

ΦT (t, t0)CT (t)C(t)Φ(t, t0)dtx(t0)

= M(t0, t1)x(t0).

この両辺に左から逆行列M(t0, t1)−1をかけると

x(t0) = M(t0, t1)−1

∫ t1

t0

ΦT (t, t0)CT (t)y(t)dt

Page 25: システム工学 - 中央大学endow/SYS05.pdf · 第1章 線形システム 1.1 線形システムの状態表示 一般に連続時間システムの状態方程式は d dt x(t)=f[x(t),u(t),t]

endow-05 21

となる.よって x(t0)は出力の測定データ y(t) (t0 ≤ t ≤ t1) から定まる.(必要性) 任意の tに対して行列M(t0, t1)は正則でないと仮定しよう.このとき任意の t ≥ t0に

対して

(x, M(t0, t)x) = 0

となるゼロでないベクトル x = 0が存在する.この式を書き直すと

0 = (x, M(t0, t)x) =∫ t

t0

(x,ΦT (τ, t0)CT (τ)C(τ)Φ(τ, t0)x

)dτ

=∫ t

t0

‖C(τ)Φ(τ, t0)x‖2dτ

となる.上式の被積分関数は連続であるから

C(τ)Φ(τ, t0)x = 0 (t ≥ t0)

となる.したがって,もしも x(t0) = xならば (2.5)により y(t) = 0 (t ≥ t0)となる.他方 x(t0) = 0ならばやはり y(t) = 0 (t ≥ t0)となる.つまり出力の測定データ y(t) = 0 (t0 ≤ t ≤ t1)から状態変数 x(t0) = xと x(t0) = 0とを区別できない.つぎに可制御性の条件について考えよう.

定理 2.2 (可制御性の必要十分条件) システム (4.7) が時刻 t0で可制御であるための必要十分な

条件は,ある時刻 t1(≥ t0)において

D(t0, t1) :=∫ t1

t0

Φ(t0, t)B(t)BT (t)ΦT (t0, t)dt (2.7)

が正則になることである.

証明: (十分性)時刻 t1で行列D(t0, t1)が正則であるとする.逆行列D(t0, t1)−1を用いて制御

入力

u(t) = −BT (t)ΦT (t0, t)D(t0, t1)−1x0

を定義する.ここに x(t0) = x0である.これを (2.2)に代入すると

x(t1) = Φ(t1, t0)x0 +∫ t1

t0

Φ(t1, t0)Φ(t0, t)B(t)u(t)dt

= Φ(t1, t0)[x0 −

(∫ t1

t0

Φ(t0, t)B(t)BT (t)ΦT (t0, t)dt)D(t0, t1)−1x0

]= 0

となる.x0 ∈ Rnは任意にとれるのでシステム (4.7)は時刻 t0において可制御である.

(必要性) 任意の tに対して行列D(t0, t1)は正則でないと仮定しよう.このとき任意の t ≥ t0に

対して

(x, D(t0, t)x) = 0

Page 26: システム工学 - 中央大学endow/SYS05.pdf · 第1章 線形システム 1.1 線形システムの状態表示 一般に連続時間システムの状態方程式は d dt x(t)=f[x(t),u(t),t]

22 endow-05

となるゼロでないベクトル x = 0が存在する.この式を書き直すと

0 = (x, D(t0, t)x) =∫ t

t0

(x, B(τ)Φ(τ, t0)ΦT (τ, t0)BT (τ)x

)dτ

=∫ t

t0

‖BT (τ)ΦT (τ, t0)x‖2dτ.

上式の被積分関数は連続であるから,任意の t ≥ t0に対して

BT (τ)ΦT (τ, t0)x = 0 (t ≥ t0)

となる.一方,システム (4.7)は時刻 t0において可制御であるから,とくに初期状態 x(t0) = xも

時刻 t0 で可制御である.すなわち,ある時刻 t1と制御入力 u0(τ) (t0 ≤ τ ≤ t1)とが存在して

Φ(t1, t0)x +∫ t1

t0

Φ(t1, t)B(t)u0(t)dt = 0

となる.両辺に左から Φ(t0t1)をかけて移項すると

x = −∫ t1

t0

Φ(t0, t)B(t)u0(t)dt.

よって

‖x‖2 = (x, x)

= −(x,

∫ t1

t0

Φ(t0, t)B(t)u0(t)dt)

= −∫ t1

t0

(BT (t)ΦT (t0, t)x, u0(t)

)dt

= 0

となる.これより x = 0となり,x = 0に矛盾する.

定理 2.3 システム (4.7)が時刻 t0 において可制御ならば,システム (4.7)の任意の状態 x0 ∈ Rn

は時刻 t0において任意の状態 x1 ∈ Rn に到達可能である.

証明: 制御入力を

u(t) = −BT (t)ΦT (t0, t)D(t0, t1)−1(x0 − Φ(t0, t1)x1

)と定義して (2.2)に代入すると

x(t1) = Φ(t1, t0)x0 +∫ t1

t0

Φ(t1, t0)Φ(t0, t)B(t)u(t)dt

= Φ(t1, t0)[x0 −

(∫ t1

t0

Φ(t0, t)B(t)BT (t)ΦT (t0, t)dt)D(t0, t1)−1x0

]+Φ(t1, t0)Φ(t0, t1)x1

= Φ(t1, t0)[x0 −D(t0, t1)D(t0, t1)−1x0

]+ Φ(t1, t0)Φ(t0, t1)x1

= Φ(t1, t1)x1 = x1

となる.

行列M(t0, t1), D(t0, t1)の簡単な性質について述べておこう.

Page 27: システム工学 - 中央大学endow/SYS05.pdf · 第1章 線形システム 1.1 線形システムの状態表示 一般に連続時間システムの状態方程式は d dt x(t)=f[x(t),u(t),t]

endow-05 23

定理 2.4

(1) 行列M(t0, t1), D(t0, t1)はともに対称行列である.

(2) 行列M(t0, t1), D(t0, t1)はともに非負定値である.

証明: 練習問題とする.

2.2.1 定常システムの可制御性と可観測性

線形システム (4.7)のすべての係数行列が定数の場合システムは

d

dtx(t) = Ax(t) +Bu(t)

y(t) = Cx(t)

(2.8)

と表わされ,定常であるという.このとき可制御性と可観測性は時点 t0 に無関係である.定常な

システムの可制御性と可観測性の必要十分条件は次のように簡単になる.

定理 2.5 定常な線形システム (2.8)において

(1) システムが可制御であるための必要十分条件は

rankD = n. (2.9)

ここで,D := [B,AB, · · · , An−1].

(2) システムが可観測であるための必要十分条件は

rankM = n.

ここで,M := [CT , ATCT , · · · , (AT )n−1CT ].

証明:可制御性についてのみ証明するが,可観測性の証明も同様にできるので練習問題とする.定

常なシステムでは初期時点には依存しないので,t0 = 0としても一般性は失われない.(十分性)いま (2.9)は成立するがシステム (2.8)は可制御ではないと仮定する.このときあるゼロでないベクトル x ∈ Rn があって,すべての t ≥ 0に対して

(x, D(0, t)x) = 0

が成立する.これは

0T = xT Φ(0, t)B = xT e−AtB

を意味する.この両辺を tでつぎつぎ微分して t = 0とすると

0T = xTAkB, k = 0, 1, · · · , n− 1, (2.10)

Page 28: システム工学 - 中央大学endow/SYS05.pdf · 第1章 線形システム 1.1 線形システムの状態表示 一般に連続時間システムの状態方程式は d dt x(t)=f[x(t),u(t),t]

24 endow-05

すなわち,

0T = xT (I, A1, · · · , An−1)B = xTD

が得られる.よって

(x, DDT x) = 0

となって,DDT が正則でないこと,すなわち rankD < nとなることを示している.これは仮定

(2.9)に矛盾する.(必要性)システム (2.8)は可制御であるにもかかわらず

rankD < n

であると仮定しよう.このとき式 (2.10)をみたすあるゼロでないベクトル x ∈ Rn が存在する.行

列 Aの特性多項式 P (s)とする.すべての j = 0, 1, · · ·に対してsn+j = Qj(s)P (s) +Rj(s)

と表わされる.ここでQj(s)は商でRj(s)は剰余で n− 1次以下の多項式である.よって,Cayley-Hamiltonの定理:P (A) = Θ,により,

An+j = Qj(A)P (A) +Rj(A)

= Rj(A),

となる.すなわち,行列 An+j (j = 0, 1, · · ·)は行列 I, A,A2, · · · , An−1 の線形結合で表わされる.

したがって (2.10)より

xT eAtB = xT∞∑

k=0

Aktk

k!B = 0T (t ≥ 0)

となる.このベクトルの内積をとって区間 [0, t1]で積分すると

0 =∫ t1

0

(BT eAT tx, BT eAT tx)dt

=(x,

[∫ t1

0

eAtBBT eAT tdt

]x)

= (x, D(0, t1)x) (2.11)

となる.仮定よりシステムは可制御であるから,D(0, t1)はある t1 > 0で正則である.すなわち,D(0, t1)はある t1 > 0で正定値になる.よって (2.11)は x = 0を意味する.これは x = 0に矛盾

する.

2.2.2 双対システムの可制御性と可観測性

システム (4.7)に対して

d

dtx∗(t) = −AT (t)x∗(t) − CT (t)u∗(t)y∗(t) = BT (t)x∗(t)

(2.12)

を考えよう.(2.12)を (4.7)の双対システムという.

Page 29: システム工学 - 中央大学endow/SYS05.pdf · 第1章 線形システム 1.1 線形システムの状態表示 一般に連続時間システムの状態方程式は d dt x(t)=f[x(t),u(t),t]

endow-05 25

定理 2.6 双対システム (2.12)が時刻 t0において可制御(可観測)であるための必要十分条件はも

とのシステム (4.7)が時刻 t0において可観測(可制御)であることである.

証明 証明は,もとのシステムと随伴システムとの関係を考慮すればほとんど明らかであるので,

練習問題とする.

Page 30: システム工学 - 中央大学endow/SYS05.pdf · 第1章 線形システム 1.1 線形システムの状態表示 一般に連続時間システムの状態方程式は d dt x(t)=f[x(t),u(t),t]

26 endow-05

練習問題

問1)次のシステムの可制御性と可観測性について調べなさい.

x1 = x1 + x2 + u

x2 = x1

,

y = x1 + x2.

問2)次のシステムの可制御性と可観測性について調べなさい.

x(t) =

0 1 00 0 10 −1 −2

x(t) +

011

u(t),

y(t) =[

0 1 1]x(t).

Page 31: システム工学 - 中央大学endow/SYS05.pdf · 第1章 線形システム 1.1 線形システムの状態表示 一般に連続時間システムの状態方程式は d dt x(t)=f[x(t),u(t),t]

第3章 システムの安定性

3.1 システムの安定性

システムの安定性について考える.

定義 3.1 状態微分方程式

d

dtx(t) = f [x(t), t] (3.1)

の公称解を x0(t)とする.公称解を x0(t)が安定であるというのは任意の t0, ε > 0 に対してあるδ = δ(ε, t0) > 0が存在して

‖x(t0) − x0(t0)‖ ≤ δ ⇒ ‖x(t) − x0(t)‖ ≤ ε (t ≥ t0) (3.2)

となることである.

定義 3.2 公称解を x0(t)が漸近安定であるというのはつぎの二条件が成り立つことである:

(1) 安定である.

(2) すべての t0 に対してある ρ = ρ(t0) > 0が存在して

‖x(t0) − x0(t0)‖ ≤ ρ⇒ ‖x(t) − x0(t)‖ → 0, (t→ ∞). (3.3)

定義 3.3 公称解を x0(t)が大域的漸近安定であるというのはつぎの二条件が成り立つことである:

(1) 安定である.

(2) 任意の t0と任意の x(t0) ∈ Rn に対して

‖x(t) − x0(t)‖ → 0, (t→ ∞). (3.4)

定義 3.4 線形微分システム

d

dtx(t) = A(t)x(t) (3.5)

が(安定,漸近安定,大域的漸近安定)であるというのはゼロ解 x(t) ≡ 0 がそれぞれの意味で安

定であることである.

27

Page 32: システム工学 - 中央大学endow/SYS05.pdf · 第1章 線形システム 1.1 線形システムの状態表示 一般に連続時間システムの状態方程式は d dt x(t)=f[x(t),u(t),t]

28 endow-05

注意) 線形微分システムの公称解を x0(t)とし,別の解を x(t)とする.このとき

d

dt(x0(t) − x(t)) = A(t)(x0(t) − x(t))

となる.よって線形微分システムにおいては公称解 x0(t)の安定性を考える場合ゼロ解の安定性を考えればよい.すなわちゼロ解が安定ならばすべての公称解も安定である.さらにつぎの定理が成

り立つことも注意しておこう.

定理 3.1 線形微分システムが漸近安定であることと大域的漸近安定であることとは等価である.

定義 3.5 線形微分システムが指数的安定であるというのは正数 α, β が存在して,すべての初期

状態 x(t0) ∈ Rn に対して

‖x(t)‖ ≤ αe−β(t−t0)‖x0(t)‖ (t ≥ t0) (3.6)

となることである.

例) 撹拌タンク  (1.36)の基本行列は

eAt =

(e−

12θ t 00 e−

1θ t

)

であるから

x(t) =

(e−

12θ t 00 e−

1θ t

)x(0)

となる.よって

‖x(t)‖ =(e−

1θ tx2

1(0) + e−2θ tx2

2(0)) 1

2 ≤ e−12θ t(x2

1(0) + x22(0))

12

= e−12θ

t‖x(0)‖ → 0 (t → ∞)

したがってシステムは指数的安定である.

3.2 安定性の条件

システムが安定であるための条件について考えよう.

定理 3.2 線形システム

d

dtx(t) = A(t)x(t) (3.7)

が安定であるための必要十分な条件は,ある正数M = M(t0) が存在して全ての t ≥ t0において

‖Φ(t, t0)‖ ≤M

となることである.

Page 33: システム工学 - 中央大学endow/SYS05.pdf · 第1章 線形システム 1.1 線形システムの状態表示 一般に連続時間システムの状態方程式は d dt x(t)=f[x(t),u(t),t]

endow-05 29

言い換えると,上の条件は状態推移行列 Φが t ≥ t0 において一様有界であるということである.

Proof: (十分性)時刻 t ≥ t0におけるシステムの状態は

x(t) = Φ(t, t0)x0

と表わされるから

‖x(t)‖ ≤ ‖Φ(t, t0)‖‖x0‖ ≤M‖x0‖.

よって

‖x0‖ < ε

M⇒ ‖x(t)‖ ≤ ε (∀t ≥ t0).

(必要性)背理法で証明する.Φが t ≥ t0において一様有界でないと仮定しよう.このとき少なく

とも Φの要素 φij は t → ∞のとき任意に大きい値をとる.そこで第 j 要素のみゼロでない要素 c

をもつベクトルを x0 とする.すなわち

x0 = col(0, · · · , 0, c, 0, · · · , 0)

とすると x(t)の第 i要素は

xi(t) = φij(t)c.

したがって t → ∞とすることにより xi(t)はいくらでも大きくなる.これはシステムが不安定であることを意味する.

定理 3.3 線形システム (3.7)が漸近安定であるための必要十分条件は以下の条件が満たされることである.

(1)   ∃M > 0 : ‖Φ(t, t0)‖ ≤M (∀t ≥ t0)

(2)   limt→∞ ‖Φ(t, t0)‖ = 0 (∀t0)

Proof: (⇐) (1)よりシステムは安定である (定理 3.2).そして

‖x(t : x0, t0)‖ ≤ ‖Φ(t, t0)‖‖x0‖ → 0, (t→ ∞).

よってシステムは漸近安定である.

(⇒) 漸近安定ならば安定であるから定理 3.2より(1)が成り立つ.もし(2)が成り立たないと仮定すると,少なくともある φij は t→ ∞のときゼロに収束しない.定理 3.2と同じように x0を

とると

xi(t) = φij(t)c

は t → ∞のときゼロに収束しない.したがって x(t)は t→ ∞ のとき 0に収束しない.よってシステムは漸近安定ではない.これは矛盾である.

Page 34: システム工学 - 中央大学endow/SYS05.pdf · 第1章 線形システム 1.1 線形システムの状態表示 一般に連続時間システムの状態方程式は d dt x(t)=f[x(t),u(t),t]

30 endow-05

3.2.1 定常システムの安定性

定常システムではシステムを規定する行列 Aの固有値がシステムの安定性を決定している.こ

のことについて次の定理が知られている.

定理 3.4 定常線形システム (1.62)が安定であるのはつぎの2条件が満たされることである:

(1) Aのすべての固有値は非正の実数部を持つ.

(2) 重複度mの虚軸上の固有値は丁度m個の固有ベクトルを持つ.

証明: (省略)

定理 3.5 (安定性の基本定理) 定常線形システム (1.62)が漸近安定であるのは Aのすべての固有

値が負の実数部をもつことであり,かつそのときに限る.

Aのすべての固有値の実数部が負のとき Aは安定な行列という.

証明:  Aのすべての固有値の実数部が負のとき Aは安定な行列という.

よく知られているように適当な正則行列P を用いて行列Aを三角行列Bに変換できる:P−1AP =B. このとき元のシステムは

d

dtz(t) = Bz(t)

z(0) = c

(3.8)

となる.ここに,x(t) := Pz(t), c = P−1x0である.これを要素で表現すると

d

dtz1(t) = b11z1 + b12z2 + · · · + b1nzn, z1(0) = c1

d

dtz2(t) = +b22z2 + · · · + b2nzn, z2(0) = c2

· · · · · · · · ·d

dtzn(t) = bnnzn, zn(0) = cn

ここで bii は Aの固有値で,仮定より (bii) < 0 (i = 1, 2, · · · , n)である.まず zn について解くと

zn(t) = cnebnt

で,t→ ∞のとき zn(t) → 0.t → ∞のときすべての iに対して zi(t) → 0となることは帰納的に示せばよい.すなわち,もし

t→ ∞のとき v(t) → 0ならば

d

dtu(t) = b1u(t) + v(t), u(0) = a1

によって定まる u(t)が t→ ∞のときゼロに近づくことを示す.ここで (b1) < 0. 解は

u(t) = a1eb1t + eb1t

∫ t

0

e−b1sv(s)ds

Page 35: システム工学 - 中央大学endow/SYS05.pdf · 第1章 線形システム 1.1 線形システムの状態表示 一般に連続時間システムの状態方程式は d dt x(t)=f[x(t),u(t),t]

endow-05 31

と表わされるから u(t)が t→ ∞のときゼロに近づくことは明らかであろう.この方法を zn から始めて順次 zn−1, zn−2, · · · , z1について示すことができる.この定理をつかってつぎの結果を得ることができる.

定理 3.6 定常線形システム (1.62)が指数的安定であるのはそれが漸近安定のとき,かつそのときに限る.

証明: (省略)

3.2.2 フルビッツの判定法

安定性の基本定理によると、システムの安定性を調べるには係数行列の固有値の実数部の符号を

判定すればよい。そこで、定常線形システム (1.62)において、Aの特性方程式

P (λ) = anλn + an−1λ

n−1 + · · · + a1λ+ a0 = 0, an > 0 (3.9)

に対して行列

H =

an−1 an−3 an−5 an−7 . . . 0an an−2 an−4 an−6 . . . 00 an−1 an−3 an−5 . . . 00 an an−2 an−4 . . . 0...

......

......

...0 . . . . . . a4 a2 a0

(3.10)

を定義し、k × kの主座行列式Hk (k = 1, . . . , n)を

H1 = an−1, H2 =

∣∣∣∣∣ an−1 an−3

an an−2

∣∣∣∣∣ , H3 =

∣∣∣∣∣∣∣an−1 an−3 an−5

an an−2 an−4

0 an−1 an−3

∣∣∣∣∣∣∣ , · · · (3.11)

とする。

フルビッツは符号がすべて正であることを判定する次の方法を提案した。

定理 3.7 (フルビッツの判定法) すべての係数が an > 0, an−1 > 0, . . . , a1 > 0, a0 > 0で、かつ、すべての行列式がH1, H2 > 0, . . . , Hn−1 > 0, Hn > 0ならば、システムは漸近安定である。

証明: (省略)

例題 P (λ) = λ5 + λ4 + 6λ3 + 3λ2 + 4λ1 + 1の場合。a6 = 1 > 0, a4 = 1 > 0, a3 = 6 > 0, a2 = 3, a1 = 4 > 0, a0 = 1 > 0である。また、

H =

1 3 1 0 01 6 4 0 00 1 3 1 00 1 6 4 00 0 1 3 1

Page 36: システム工学 - 中央大学endow/SYS05.pdf · 第1章 線形システム 1.1 線形システムの状態表示 一般に連続時間システムの状態方程式は d dt x(t)=f[x(t),u(t),t]

32 endow-05

であるから、

H1 = 1, H2 =

∣∣∣∣∣ 1 31 6

∣∣∣∣∣ = 1 · 6 − 1 · 3 = 3, H3 =

∣∣∣∣∣∣∣1 3 11 6 40 1 3

∣∣∣∣∣∣∣ = 18 + 1 − 9 − 4 = 6,

H4 = 9, H5 = 9

となり、フルビッツの判定法より、このシステムは漸近安定である。

3.3 リャプノフ関数と安定性

3.3.1 リャプノフの行列方程式

リャプノフの行列方程式

ATX +XA = −CTC (3.12)

はシステム理論において重要な役割を果たしている。これは定係数の線形システム

dxdt

= Ax, x(0) = 0 (3.13)

の解の安定性に関係している。実際、スカラ関数

V (x(t)) = xT (t)Xx(t) (3.14)

を tについて微分すると、(3.13)の解軌道にそって

d

dtV (x(t)) = xT (t)Xx(t) + xT (t)Xx(t) = xT (t)(ATX +XA)x(t)

= −xT (t)CTCx(t) (3.15)

となる。したがって、もしX が正定値で、かつ CTC も正定値ならば、ある正数 rが存在して

d

dtV (x(t)) = −xT (t)CTCx(t) ≤ rxT (t)Xx = −rV (x) (3.16)

となるので、

V (x(t)) ≤ e−rtV (0) (3.17)

となり、t→ ∞ のとき  xT (t) → 0となることがわかる。そこで、一般につぎのことが成り立つ。

定理 3.8 システム (A,C)は可制御とする。そのとき、このシステムが安定になるための必要十分条件はリャプノフの方程式 (3.12)の解X が正定値となることである。

証明: (十分性)システムが安定であれば、積分

X =∫ ∞

0

eAT tCTCeAtdt (3.18)

Page 37: システム工学 - 中央大学endow/SYS05.pdf · 第1章 線形システム 1.1 線形システムの状態表示 一般に連続時間システムの状態方程式は d dt x(t)=f[x(t),u(t),t]

endow-05 33

が存在し、方程式 (3.12)をみたす一意的な解である。これが正定値であることは容易にわかる。(必要性)逆に、方程式 (3.12)の解X が正定値であったとする。このとき、方程式 (3.12)により、一般に

AT[(AT )kXAk) + ((AT )kXAk

]A = −(AT )kCTCAk, k = 0, 1, 2, . . . (3.19)

が成立するので、これらを加え合わせると

ATX +XA = −D (3.20)

が得られる。ここに、

X =n−1∑k=0

(AT )kXAk, D =n−1∑k=0

(AT )kCTCAk

である。システムは可制御であるから、Dは正定値で、かつX も正定値であるので、すべての解

x(t)は t→ ∞のときゼロ解に収束する。

3.3.2 リャプノフ関数

非線形システムの安定性を評価するときリャプノフ関数は重要である.はじめに正定値関数の定

義をしておこう.V (x)がRn の原点を含むある領域で定義されたスカラー値関数とする.つぎの

3条件を満たすとき V は正定値 (positive definite) という:

(1) V はその一次偏導関数とともに原点を含むあう開領域 Ωで連続である.

(2) V (0) = 0

(3) V (x) > 0, x = 0

よく知られている正定値関数としては二次形式がある.正方行列M に対して V (x) := xTMxが任意の x ∈ Rnに対して V (x) ≥ 0で,x = 0に対して V (x) > 0 のとき,二次形式 V あるいは行

列M は正定値という.関数 V が正定値であるとき,任意の正数 k > 0に対して

V (x) = k

は等高線と呼ばれている.つぎにリャプノフ関数を定義しよう.自律系d

dtx = f [x] (3.21)

の解軌道 xに対してd

dtV (x) ≤ 0

となるならば,正定値関数 V はリャプノフ関数 (Lyapunov function)という.線形システムの場合は前小節で見たように、リャプノフの方程式 (3.12)の解X が正定値であるとき、(3.14)で定義される V (X)はリャプノフ関数である。関数 V が微分可能であることは一次偏導関数をもつことからわかる.すなわち,

d

dtV (x) =

(∂

∂xV (x)

)Td

dtx

= V · f .

Page 38: システム工学 - 中央大学endow/SYS05.pdf · 第1章 線形システム 1.1 線形システムの状態表示 一般に連続時間システムの状態方程式は d dt x(t)=f[x(t),u(t),t]

34 endow-05

3.3.3 安定性の定理

定理 3.9 自律系 (3.21)において

(1) 原点のある近傍 Ωにおいてリャプノフ関数 V (x)が存在すれば,原点は安定である.

(2) さらに Ωにおいて −V も正定値であるならば,漸近安定である.

証明 (1) 任意の ε > 0と球面 H(ε) := x; ‖x‖ = ε に対して等高線 C := x;V (x) = kが丁度球面H(ε)の内側にくるような kと,H(δ)が丁度 C の内側に入ってしまうような δ > 0が存在する.ここで初期状態 x0が球状領域 S(δ) := x; ‖x‖ < δの中にある軌道 g+ := x(t); t ≥ 0を考える.点 x0 では V (x0) < kである.仮定より V は g+ に沿って非増加であるから決して C には

到達しない.したがってH(ε)にも到達しない.このように S(δ)から出発する任意の軌道は S(ε)内にとどもる.よって原点は安定である.

(2) ある価 l > 0に対して V (x) ≥ l と仮定する.そうすると −V (x)はある球 H(ε1)の外側でゼロに近づく.しかし,このことは,−V が正定値であるので環状領域 S(ε) \ S(ε1)で正の最小値m

をもつことと矛盾する.よって,関数 V (x)は q+に沿ってゼロに近づく.そしてこのことは q+が

原点に近づくときのみ起こる.これは漸近安定であることを示している.

Page 39: システム工学 - 中央大学endow/SYS05.pdf · 第1章 線形システム 1.1 線形システムの状態表示 一般に連続時間システムの状態方程式は d dt x(t)=f[x(t),u(t),t]

endow-05 35

練習問題

問1)撹拌タンクの例は指数的安定であることを示しなさい.

問2)倒立振子の例の安定性を調べなさい。

問3)フルビッツの判定方法により、固有方程式 P (λ) = λ3 + λ2 + 2λ1 + 1 = 0をもつシステムの安定性を調べなさい。

Page 40: システム工学 - 中央大学endow/SYS05.pdf · 第1章 線形システム 1.1 線形システムの状態表示 一般に連続時間システムの状態方程式は d dt x(t)=f[x(t),u(t),t]
Page 41: システム工学 - 中央大学endow/SYS05.pdf · 第1章 線形システム 1.1 線形システムの状態表示 一般に連続時間システムの状態方程式は d dt x(t)=f[x(t),u(t),t]

第4章 最適レギュレータ

4.1 最適制御問題の例

単純な生産計画を例に考えよう。材料を機械加工して製品に仕上げ、製品は倉庫に一旦保管され

るものとする。時刻 tにおける生産率を u(t)とし、倉庫の在庫量は x(t)とする。いま、この製品の需要率は既知で z(t)とする。時刻 t0 = 0での在庫量を x0とすると、これらの諸量の関係は

x(t) = u(t) − z(t), t ≥ 0,x(0) = x0,

(4.1)

と表される。ここで、x(t)は正負の値をとり、x > 0のとき、過剰在庫で、x < 0のとき、品切れを意味する。在庫 xと生産率 uのときの単位時間当りのコストを h(x, u)とする。関数 hの代表的

な例として

h(x, u) = c+x+ + c−x− + pu (4.2)

がある。ここに、x+ = maxx, 0, x− = max−x, 0で、c+, c− > 0はそれぞれ過剰在庫と品切れに対するマージナル・コストとマージナル・ペナルティを、また、pは単位当りの生産コストを

表している。

工場長は全期間 [0, T ]における割引きコストを最小とする生産計画 u(·) := u(t), 0 ≤ t ≤ T を選択したい。すなわち、

J(u( ·))=∫ T

0

e−γth(x(t), u(t))dt (4.3)

を最小とする u(·)を選択する。ここに、γ > 0は割引率である。機械の生産容量、すなわち最大生産量を kとすると、生産計画は

0 ≤ u(t) ≤ k, t ∈ [0, T ], (4.4)

を満たさなければならない。一方、倉庫の容量が b > 0であるとすると在庫量 x(t)は

x(t) ≤ b, t ∈ [0, T ], (4.5)

という制約を満たさなければならない。状態方程式 (4.1)を通して制約条件 (4.4)-(4.5)を満足する生産計画を実現可能計画という。したがって、問題は実現可能計画の中からコスト (4.3)を最小とするものを見つけることである。

37

Page 42: システム工学 - 中央大学endow/SYS05.pdf · 第1章 線形システム 1.1 線形システムの状態表示 一般に連続時間システムの状態方程式は d dt x(t)=f[x(t),u(t),t]

38 endow-05

4.2 最適フィードバック則

はじめに次の問題を考えよう.

問題:

J = J [u(·)] ⇒ min (4.6)

subject to

d

dtx(t) = Ax(t) +Bu(t). (4.7)

ここに,J はシステムの動作指標で

J [u(·)] := xT (t1)X1x(t1) +∫ t1

t0

[xT (t)Q(t)x(t) + uT (t)R(t)u(t)]dt (4.8)

であり,X1, Q(t), R(t)は非負定値行列で,R(t)はすべての tで正則である.

この問題を最適レギュレータ問題といい,J を最小とする u(·) := u(t), t0 ≤ t ≤ t1を最適制御入力と言う.

さて、ある n × n行列 S(t)は対称で区間 [t0, t1]において S(t)が存在するものとする。このとき、次の恒等式が成り立つことに注意しよう。

xT (t)S(t)x(t)∣∣∣t1t0

=∫ t1

t0

d

dt[xT (t)S(t)x(t)]dt

=∫ t1

t0

[xT (t)S(t)x(t) + xT (t)S(t)x(t) + xT (t)S(t)x(t)]dt (4.9)

状態変数X(t)が (4.7)にしたがっているとき、(4.9)はつぎのように表せる。

xT (t)S(t)x(t)∣∣∣t1t0−

∫ t1

t0

xT (t)[S(t) +AT (t)S(t) + S(t)A(t)]x(t)]

+ uT (t)BT (t)S(t)x(t) + xTS(t)B(t)xT (t)dt = 0 (4.10)

この結果を利用することにより、最適化の問題は容易に解決できる。

定理 4.1 n× n行列 S(t)に関する Riccatiの微分方程式

S(t) = −AT (t)S(t) − S(t)A(t) + S(t)B(t)R−1(t)BT (t)S(t) −Q(t)S(t1) = X1

(4.11)

の解が区間 [t0, t1]で存在するものとする.このとき,与えられた x(t0) = x0に対して動作指標を

最小にする最適制御入力は

u∗(t) = −R−1(t)BT (t)S(t)x(t) (4.12)

= −R−1(t)BT (t)S(t)Φ(t, t0)x0 (4.13)

である.ここに Φはシステム

x(t) =[A(t) −B(t)R−1(t)BT (t)S(t)

]x(t) (4.14)

の状態推移行列である.このときの動作指標の最小値は

J∗ := J [u∗(·)] = xT (t0)S(t0)x(t0). (4.15)

Page 43: システム工学 - 中央大学endow/SYS05.pdf · 第1章 線形システム 1.1 線形システムの状態表示 一般に連続時間システムの状態方程式は d dt x(t)=f[x(t),u(t),t]

endow-05 39

証明) まず,

xT (t)S(t)x(t)∣∣∣t1t0

=∫ t1

t0

d

dt[xT (t)S(t)x(t)]dt

=∫ t1

t0

[xT (t)S(t)x(t) + xT (t)S(t)x(t) + xT (t)S(t)x(t)]dt

であるから,x(t)を (4.7)の解とすると

xT (t)S(t)x(t)∣∣∣t1t0−

∫ t1

t0

xT (t)

[S(t) +AT (t)S(t) + S(t)A(t)

]x(t)

−uT (t)BT (t)S(t)x(t) + xT (t)S(t)B(t)u(t)dt = 0 (4.16)

となる.そこで (4.8)から (4.16)を引き,S(t)が (4.11)の解であることより

J = xT (t1)X1x(t1) − xT (t)S(t)x(t)∣∣∣t1t0

+∫ t1

t0

xT (t)

[Q(t) + S(t) +AT (t)S(t) + S(t)A(t)

]x(t)

+uT (t)BT (t)S(t)x(t) + xT (t)S(t)B(t)u(t) + uT (t)R(t)u(t)dt

= xT (t0)S(t0)x(t0)

+∫ t1

t0

[u(t) +R−1(t)BT (t)S(t)x(t)

]TR(t)

[u(t) +R−1(t)BT (t)S(t)x(t)

]dt

となる.R(t)は正定値であるから,J は (4.12)が成り立つとき最小になり,その値は (4.15)である.次に (4.12)を (4.7)に代入すると (4.14)が得られる.この方程式の解は x(t) = Φ(t, t0)x(t0) =Φ(t, t0)x0 で与えられ,これを (4.12)に代入すると (4.13)が得られる.式 (4.12)は,時刻 tにおける最適制御入力がその時点における状態ベクトルの値に直接線形結合

されていることを示している.すなわち,最適制御が状態変数のフィードバックによって実現して

いることを示しており,このため (4.12)は最適フィードバック則と呼ばれている.

4.2.1 Riccatiの行列微分方程式

すで見たように最適制御入力を得るためにはRiccatiの行列微分方程式の解が必要である.この方程式は Lipschitzの条件を満たしているので解が局所的に存在することがわかる.しかし2次の項を含むので任意の時間区間にわたって解が存在するか否かは不明である.実はこの場合は次に見

るように解が一意的に存在することが知られている.

定理 4.2 Riccatiの行列微分方程式 (4.11)の解が区間 [t0, t1]において一意的に存在する.

証明は省略する.

Page 44: システム工学 - 中央大学endow/SYS05.pdf · 第1章 線形システム 1.1 線形システムの状態表示 一般に連続時間システムの状態方程式は d dt x(t)=f[x(t),u(t),t]

40 endow-05

4.2.2 定常システムに対する最適レギュレーター

システムが定常である場合について考えよう.

問題:

J = J [u(·)] ⇒ min (4.17)

subject to

d

dtx(t) = Ax(t) +Bu(t)

y(t) = Cx(t)

(4.18)

ここに,J はシステムの 動作指標で

J [u(·)] =∫ ∞

0

[yT (t)Qy(t) + uT (t)Ru(t)]dt (4.19)

であり,Q, Rはそれぞれm×m, r × rの正定値行列である.

この問題に対してつぎの定理が成り立つことが知られている.

定理 4.3 システム (4.18)は可制御かつ可観測とする.このとき最適制御入力は一意的に存在し,その最適フィードバック則は

u∗(t) = −R−1BTSx(t) (4.20)

である.ここに S(t)は Riccatiの行列方程式

ATS(t) + S(t)A− S(t)B(t)R−1BTS(t) = −CTQC (4.21)

を満たす正定値行列である.

証明は省略する.

4.3 最大値原理

一般に非線形の状態方程式x(t) = b(t, x(t), u(t)),x(0) = x0,

(4.22)

で表される制御システムとコスト汎関数

J [u(·)] =∫ T

0

f(t, x(t), u(t))dt + h(x(T )) (4.23)

について考える.可測関数 u(t) ∈ U [0, T ] := u(·) : [0, T → U, u(·) : 可測 に対して (4.22)は一意的な解をもつと仮定する.

最適制御問題: コスト汎関数 (4.23)を U [0, T ]上で最小化する.すなわち,

J [u(·)] = infu(·)∈U [0,T ]

J [u(·)] (4.24)

Page 45: システム工学 - 中央大学endow/SYS05.pdf · 第1章 線形システム 1.1 線形システムの状態表示 一般に連続時間システムの状態方程式は d dt x(t)=f[x(t),u(t),t]

endow-05 41

をみたす u(·) ∈ U [0, T ] のことを最適制御という.また,x(·) := x(·, u(·)) を最適軌道といい,(x(·), u(·))を最適ペアという.つぎに述べる Pontryaginの最大値原理は,この問題について最適ペアに関する必要条件を与える.

定理 4.4 (Pontryaginの最大値原理) 最適制御問題の最適ペアを (x(·), u(·))とする.このとき,以下をみたす関数 p(·) : [0, T ] → Rn が存在する.

p(t) = −bx(t, x(t), u(t))T p(t) + fx(t, x(t), u(t)), t ∈ [0, T ]p(T ) = −hx(x(T ))

(4.25)

かつ

H(t, x(t), u(t), p(t)) = maxu∈U

H(t, x(t), u, p(t)), t ∈ [0, T ]. (4.26)

ここに,

H(t, x, u, p) := 〈p, b(t, x, u)〉 − f(t, x, u). (4.27)

関数 p(·)をペア (x(·), u(·))に対する随伴変数,(4.25)を随伴方程式という.また,(4.26)を最大値条件といい,(4.27)により定義される関数HはHamiltonianとよばれている.状態方程式 (4.22),随伴方程式 (4.25),および最大条件 (4.26)を合わせて表記するとつぎのようになる;

Hamiltonian system

x(t) = Hp(t, x(t), u(t), p(t)), t ∈ [0, T ],p(t) = −Hx(t, x(t), u(t), p(t)), t ∈ [0, T ],x(0) = x0, p(T ) = −hx(x(T )),H(t, x(t), u(t), p(t)) = maxu∈U H(t, x(t), u, p(t)), t ∈ [0, T ].

(4.28)

最適ペアを (x(t), u(t))とし,これに対する随伴変数を p(t)とするとき,(x(t), u(t), p(t))を最適トリプルという.最適制御問題は Hamilton systemによって完全に記述することができる.最後に,最適性の十分条件についてのべておく.

定理 4.5 (最適性の十分条件) (x(t), u(t))を実行可能ペアとし,p(t)を対応する随伴変数とする.関数 h(·)は凸で,H(t, ·, ·, p(t))は凹とする.このとき,(x(t), u(t))が最適ペアであるための必要十分条件は

H(t, x(t), u(t), p(t)) = maxu∈U

H(t, x(t), u, p(t)), t ∈ [0, T ]. (4.29)

が成り立つことである.

Page 46: システム工学 - 中央大学endow/SYS05.pdf · 第1章 線形システム 1.1 線形システムの状態表示 一般に連続時間システムの状態方程式は d dt x(t)=f[x(t),u(t),t]
Page 47: システム工学 - 中央大学endow/SYS05.pdf · 第1章 線形システム 1.1 線形システムの状態表示 一般に連続時間システムの状態方程式は d dt x(t)=f[x(t),u(t),t]

第5章 待ち行列システム

5.1 バスや電車の待ち時間

5.1.1 等間隔運行の場合

電車の発車間隔が一定である場合を考えよう。そして君は電車の運行ダイヤとは無関係にホーム

に到着するものとする。

Q1)5分間隔で運行している場合、電車が来るまで君は平均して何分待つか。A1)君がホームに着く時刻は電車の発車とは無関係に決まるので、君の到着時刻は前の電車の発

車時刻と次の電車の発車時刻との間で一様分布していると考えられる。すなわち、君がホームに到

着する時刻は区間 [0, 5)上の一様分布に従う確率変数X である。したがって、君の平均待ち時間

W は確率変数X の期待値であるから

W = E[X ] =15

∫ 5

0

xdx =52

= 2.5,

すなわち、2.5分である。このように電車が一定の等間隔で運行している場合に電車の運行と無関係に到着するならば、平

均の待ち時間はその運行間隔の半分である。

5.1.2 サイクル運行の場合

急行と各停電車が交互に発車し、急行が発車してから4分後に各停が発車し、その6分後に急行

が発車するという一定のサイクルで運行をしているものとしよう。

Q2) この場合君は平均何分待つか。この問題に答える前に、先ず

Q3) 急行と各停とどちらに乗る可能性が高いか。 A3) 6:4で急行の方が高い。それでは

Q4) 急行に乗るとして君は平均何分待つのだろうか。 A4) 3分。また、

Q5) 各停に乗るとして平均何分待つか。 A5) 2分。したがって、

A2) 電車が来るまでの平均の待ち時間は、急行の場合と各停の場合とに分けて考えると

610

× 3 +410

× 2 =2610

= 2.6(分).

43

Page 48: システム工学 - 中央大学endow/SYS05.pdf · 第1章 線形システム 1.1 線形システムの状態表示 一般に連続時間システムの状態方程式は d dt x(t)=f[x(t),u(t),t]

44 endow-05

である。それではこの待ち時間が

Q7) 等間隔運行の場合の平均待ち時間の 2.5分より大きいのはなぜか。

5.1.3 確率的な運行の場合

電車の運行間隔が互いに独立な同一確率分布に従う場合について考えてみよう。

はじめにランダム、すなわち運行間隔の密度関数がパラメータ α (α > 0)の指数分布の場合について考えよう。このとき運行間隔を表す確率変数をX とすると確率分布関数は

PX ≤ x = α

∫ x

0

e−αtdt = 1 − e−αx (x ≥ 0)

である。また、期待値は

E[X ] = α

∫ ∞

0

xe−αxdx

= −xe−αx]∞0

+∫ ∞

0

e−αxdx

= − 1αe−αx

]∞0

=1α

であり、さらに E[X2] = 2/α2であるから、分散は

Var[X ] = E[X2] − (E[X ])2

=2α2

− 1α2

=1α2

である。ところで、

PX > x = 1 − PX ≤ x = 1 − (1 − e−αx) = e−αx

である。そこで、条件付確率 PX > x+ y|X > yを求めると

PX > x+ y|X > y =PX > x+ y, X > y

PX > y

=PX > x+ y

PX > y =e−α(x+y)

e−αy= e−αx

= PX > x

となる。これは、電車が行ってしまってから y分経過したという条件のもとでさらに x分以上待つ

という条件付確率(左辺)が、発車直後から x分以上待つという確率(右辺)に等しいというこ

とを示している。つまり、この条件付確率は電車が行ってからどれ位経過したかという条件には無

関係で、これからどれ位待つかということだけで決まる。これは指数分布のもつ特徴で、「無記憶

性」と呼ばれている。

そこで、

Q8) 電車の発車間隔が互いに独立で平均5分 (α = 1/5)の指数分布に従う場合、君が電車の発車と無関係にホームに着くとすると、君の平均待ち時間はいくらか。

Page 49: システム工学 - 中央大学endow/SYS05.pdf · 第1章 線形システム 1.1 線形システムの状態表示 一般に連続時間システムの状態方程式は d dt x(t)=f[x(t),u(t),t]

endow-05 45

A8) 指数分布の無記憶性から、君がホームに着く前に発車した電車がどれ位前に出たかには無関

係で、発車直後に君がホームに到着した時の待ち時間と同じ分布に従う。したがって、平均待ち時

間は

W = E[X ] = 1/α = 5 (分)

である。

次に、電車の発車間隔が一般の確率密度関数 f(x) (x > 0)を持つ場合を考えよう。長さ xの区

間が出現する可能性は確率密度関数 f(x)で与えられるので、長さ xの間隔の間に到着する可能性

は xと f(x)との積に比例する。これを表す確率密度関数を g(x) := Kxf(x)とする。基準化の条件より定数K は

1 = K

∫ ∞

0

xf(x)dx = KE[X ],

すなわち、K = 1/E[X ]となる。したがって、この確率密度関数は

g(x) =xf(x)E[X ]

,

で、このときの平均待ち時間は x/2である。よって平均待ち時間W は

W =∫ ∞

0

x

2g(x)dx =

12E[X ]

∫ ∞

0

x2f(x)dx =E[X2]2E[X ]

(5.1)

となる。すなわち、平均待ち時間W はX の2次モーメント (X2の期待値)をX の平均値 (X の期待値)の2倍で割ったものである。したがって平均発車間隔が同じならば、発車間隔のバラツキが大きい程平均待ち時間は長くなることが分る。それでは改めて

Q9) 発車間隔が一定の場合の平均待ち時間はいくらか。A9) W = E[X ]/2.また、

Q10) 発車間隔がランダム、すなわち指数分布の場合の平均待ち時間はいくらか。

A10) W = E[X ].

5.1.4 ダンゴ運行のときの平均待ち時間

上で見たように、平均発車間隔が同じならば発車間隔が一定のとき平均待ち時間が一番小さくな

ることが分る。そしてランダムの場合はその2倍であるが、これより平均待ち時間が長くなること

はあるのだろうか。実はいろいろな場合があるが、例としてダンゴ状態で運行している場合を考え

よう。平均して (m+ 1)回に1回maという長い間隔が出現し、それ以外は a/mという短い区間

が続く場合を考えよう。このとき、発車間隔を表す独立な確率変数X の分布は

PX =a

m =

m

m+ 1,

PX = ma =1

m+ 1

Page 50: システム工学 - 中央大学endow/SYS05.pdf · 第1章 線形システム 1.1 線形システムの状態表示 一般に連続時間システムの状態方程式は d dt x(t)=f[x(t),u(t),t]

46 endow-05

である。

Q11) この確率変数X の期待値を求めなさい。A11) E[X ] = a.また、

Q12) 2次モーメントを求めなさい。 A12) E[X2] = (m3 + 1)a2/m(m+ 1).よって平均待ち時間は

W =m3 + 1

2(m2 +m)a

となる。これはmが大きいときおよそW ≈ ma/2であり、発車間隔が一定の場合のm倍である

ことが分る。このように何かの原因でダンゴ運行になるとダンゴの大きさに比例して平均待ち時間

は大きくなる。

5.2 客の到着とサービス

行列を作って順番を待つ現象を待ち行列 (queue)という。スーパーマーケットのレジや、駅の自動券売機の前にできる行列、あるいは診療所や理髪店にたまる客などがその例である。待ち行列理

論はあるサービスを受けようと順番を待つ客の行列の長さや待ち時間などの混雑の度合を扱う数学

的方法の一つである。

待ち行列理論の対象となる現象に共通するものとしてサービスを提供する窓口と、そのサービス

を受けようとする多数の客の流れがある。しかし、待つ客というのは人間だけではない。たとえ

ば、システムの保守では故障の発生が客であり、保守要員が窓口である。交通システムでは、自動

車を客とすれば、信号や料金所のゲートが窓口となり、航空機を客とすれば、空港施設が窓口であ

る。待ち行列をシステムとして捉える場合行列と窓口とを合わせたものをシステムと見なし、入力

は客の到着で、出力はサービスを受けた客の退出である。

ところで待ち行列システムを記述するには、客の到着の仕方とサービスの提供の仕方とを規定し

なければならない。客は一定時間間隔で規則正しく到着する場合は稀であり、一般に客の到着はラ

ンダムである。また、サービス時間も一定であることは少なく、ランダムであることが多い。そこ

で平均待ち時間や待たされる確率などを求めるには、到着人数の分布やサービス時間の分布を規定

する必要がある。

5.2.1 ポアソン到着

客が全くランダムに到着する場合を考えよう。いま、微小時間∆tの間に1人の客が到着する確率は λ∆tとする。これは客の到着が時刻に無関係で、時間の長さにのみ依存するという事を意味している。微小時間∆tの間に2人の客が到着する確率はほとんど無視できるものとして t時間内

にちょうど n(> 0)人が到着する確率 pn(t)を求めよう。時間 t+ ∆tの間に n人到着する確率 pn(t+ ∆t)は、次のように2つの排反事象の和として表される。

pn(t+ ∆t) = Pt時間内に n人到着し、その後∆t時間内に1人も到着しない +Pt時間内に (n− 1)人到着し、その後∆t時間内に1人到着する

Page 51: システム工学 - 中央大学endow/SYS05.pdf · 第1章 線形システム 1.1 線形システムの状態表示 一般に連続時間システムの状態方程式は d dt x(t)=f[x(t),u(t),t]

endow-05 47

= pn(t)(1 − λt) + pn−1(t)λ∆t

この式を変形すると

pn(t+ ∆t) − pn(t)∆t

= −λpn(t) + λpn−1(t) (5.2)

となる。両辺において∆t→ 0とすると、

dpn(t)dt

= −λpn(t) + λpn−1(t) (5.3)

となる。

n = 0の場合は (n− 1)人到着することは起こりえないから

p0(t+ ∆t) = p0(t)(1 − λ∆t)

となり、よって

dp0(t)dt

= −λp0(t) (5.4)

となる。

ところで、t = 0では誰も到着していないから p0(0) = 1, pn(0) = 0である。これらを考慮して式 (5.3)と (5.4)とをラプラス変換すると

(s+ λ)Pn(s) = λPn−1(s)

(s+ λ)P0(s) = 1

となる。よって

Pn(s) =(

λ

s+ λ

)n

P0(s) =λn

(s+ λ)n+1

となり、ラプラス逆変換をすると

pn(t) =(λt)n

n!e−λt, (n = 0, 1, · · ·) (5.5)

となる。こうして次の定理が得られた。

定理 5.1 客がランダムに到着する場合、一定時間 t内に n人の客が到着する確率は (5.5)である。すなわち、一定時間 t内に到着する客の数 nはパラメータ λのポアソン分布に従う。

次に、客がランダムに到着する場合に、前の客と後の客との到着時間間隔について考えよう。相

続く客と客との到着時点の間隔が τ 以上 τ + ∆τ 未満である確率は、τ までに1人も到着しない確率と、(τ, τ + ∆τ)の間に1人到着する確率の積とで表される。それそれの確率は

Pτまでに1人も到着しない = p0(τ) = e−λτ

P∆τの間に少なくとも1人到着する = 1 − e−λ∆τ = λ∆τ + o(∆τ)

でから、

P相続く客と客との到着時間間隔が (τ, τ + ∆τ)間にある = λe−λτ∆τ + o(∆τ)

Page 52: システム工学 - 中央大学endow/SYS05.pdf · 第1章 線形システム 1.1 線形システムの状態表示 一般に連続時間システムの状態方程式は d dt x(t)=f[x(t),u(t),t]

48 endow-05

となる。したがって、その密度関数は

f(τ) = λe−λτ (5.6)

となる。

定理 5.2 客がランダムに到着する場合、客の到着時間間隔はパラメータ λの指数分布に従う。

この場合、客の到着時間間隔の平均値は

E[τ ] =∫ ∞

0

τλe−λτdτ =1λ

(5.7)

となる。よって、λは単位時間当たりの平均到着数を表し、平均到着率という。

5.2.2 サービス時間の分布

各客がサービスを受ける時間は独立な確率変数であるとする。すなわち、客のサービス時間は他

の客のそれとは無関係であるとする。

(1)指数分布サービス

1人の客がサービスを受ける時間がパラメータ µの指数分布に従うとき、指数分布サービスとい

う。このとき、平均サービス時間は

E[τ ] =∫ ∞

0

τµe−µτdτ =1µ

(5.8)

である。よって、µは単位時間にサービスを受ける平均客数であり、サービス率という。この場合、

ある一定の時間 tの間にサービスを終えて出て行く客の数 nはパラメータ µのポアソン分布に従

う。すなわち、t時間内に n人の客がサービスを終えて出て行く確率は

pn(t) =(µt)n

n!e−µt (5.9)

である。

(2)アーラン分布サービス

指数分布では τ = 0で最大値をとるので、サービス時間としては実情に合わないことがある。このような場合、アーラン分布が用いられることが多い。すなわち、kを自然数とするとき、サービス

時間の分布として

f(t) =(kµ)ktk−1

(k − 1)!e−kµt (k = 1, · · ·) (5.10)

を用いる。これをフェーズ kのアーラン分布という。指数分布は k = 1の特別の場合である。平均と分散は

E[τ ] =1µ, Var[τ ] =

1kµ2

(5.11)

である。

Page 53: システム工学 - 中央大学endow/SYS05.pdf · 第1章 線形システム 1.1 線形システムの状態表示 一般に連続時間システムの状態方程式は d dt x(t)=f[x(t),u(t),t]

endow-05 49

5.3 窓口が1個の待ち行列

待ち行列の問題は、客の到着の仕方、サービスの提供方法などによって多様な型がある。ケン

ドールは待ち行列の標準的モデルを

A/B/s (5.12)

のように表すことを提唱した。ここで、Aは客の到着分布、Bはサービス時間の分布、sは窓口の

数を表している。指数分布はM で、アーラン分布は E で、一般の分布は Gで表す約束になって

いる。また待ち行列の長さに制限がある場合、待ち行列の最大客数がN であれば、

A/B/s(N) (5.13)

のように表す。以下では最も単純なM/M/1モデルについて考えることにする。(1)状態方程式

まず、

λ∆t = ∆t内に客1人が到着する確率

µ∆t = ∆t内に客1人がサービスを終える確率

とすると、時刻 t+ ∆tで系内の客数が n人である確率 Pn(t+ ∆t)は、次のように4つの排反事象の和として表される。

Pn(t+ ∆t) = P時刻 tで n人列にいて、∆t間に1人も到着せず、

∆t間に1人もサービスを終えない +P時刻 tで (n− 1)人列にいて、∆t間に1人の客が到着し、

∆t間に1人もサービスを終えない +P時刻 tで (n+ 1)人列にいて、∆t間に1人も到着せず、

∆t間に1人がサービスを終えて出て行く +P時刻 tで n人列にいて、∆t間に1人の客が到着し、

∆t間に1人がサービスを終えて出て行く = Pn(t)(1 − λ∆t)(1 − µ∆t) + Pn−1(t)λ∆t(1 − µ∆t)

+Pn+1(t)(1 − λ∆t)µ∆t+ Pn(t)λ∆tµ∆t

= Pn(t)(1 − λ∆t− µ∆t) + Pn−1(t)λ∆t

+Pn+1(t)µ∆t+ o(∆t)

したがって

Pn(t+ ∆t) − Pn(t)∆t

= λPn−1(t) + µPn+1 − (λ + µ)Pn(t) +o(∆t)∆t

となる。ここで両辺において∆t → 0とすると

dPn(t)dt

= λPn−1(t) + µPn+1(t) − (λ+ µ)Pn(t) (5.14)

Page 54: システム工学 - 中央大学endow/SYS05.pdf · 第1章 線形システム 1.1 線形システムの状態表示 一般に連続時間システムの状態方程式は d dt x(t)=f[x(t),u(t),t]

50 endow-05

が得られる。

特に n = 0の場合には

P0(t+ ∆t) = P時刻 tで n = 0であり、∆t間に1人も到着しない

+P時刻 tで n = 1であり、∆t間に1人の客も到着せず、

∆t間に1人がサービスを終えて出て行く = P0(t)(1 − λ∆t) + P1(t)(1 − λ∆t)µ∆t

であるから、同様にして

dP0(t)dt

= −λP0(t) + µP1(t) (5.15)

が得られる。(5.15)と (5.14)とを状態方程式という。

5.3.1 定常状態

確率 Pn(t)が tに無関係のとき、待ち行列システムは定常状態であるという。システムが定常状

態ならば、dPn(t)/dt = 0であるから、(5.15) と (5.14)とは

λPn−1 + µPn+1 = (λ+ µ)Pn (5.16)

λP0 = µP1 (5.17)

これらの式を P0について解くと

Pn =(λ

µ

)n

P0 = ρnP0 (5.18)

となる。ここで

ρ =λ

µ=

(平均到着率)(平均サービス時間)

=(到着率)

(サービス率)= (利用率) (5.19)

である。ところで、ρ ≥ 1の場合は (5.18) により nを大きくすると P0 = 0のとき以外は Pn はい

くらでも大きくなって、やがて 1を越えてしまう。したがって定常状態となるためには ρ < 1でなければならない。これを平衡条件という。

次に確率の性質∑∞

n=0 Pn = 1と (5.18)とにより

∞∑n=0

Pn =∞∑

n=0

ρPo =P0

1 − ρ= 1

てなり、よって

P0 = 1 − ρ (5.20)

を得る。これより

1 − P0 = ρ

Page 55: システム工学 - 中央大学endow/SYS05.pdf · 第1章 線形システム 1.1 線形システムの状態表示 一般に連続時間システムの状態方程式は d dt x(t)=f[x(t),u(t),t]

endow-05 51

となるが、確率 P0は客数がゼロである確率であるから、その余事象は窓口がふさがっている確率

で、任意の時刻に到着した客が待たされる確率を表している。

さらに、(5.20)と (5.18)により

Pn = (1 − ρ)ρn

=(λ

µ

)n (1 − λ

µ

)(n = 0, 1, 2, · · ·) (5.21)

を得る。

5.3.2 システムの平均値

(1)システム内の客数の平均値 期待値の定義により

L = E[n] =∞∑

n=0

nPn = P0

∞∑n=0

nρn

である。ここで、

∞∑n=0

nρn−1 =d

( ∞∑n=0

ρn

)

という関係を用いて

L = P0ρd

( ∞∑n=0

ρn

)= P0ρ

d

(1

1 − ρ

)

(1 − ρ)2P0 =

ρ

1 − ρ=

λ

µ− λ(5.22)

となる。

(2)待ち行列の長さの平均値 サービス中の客を含めないシステム内の客数の平均値、すなわち待

ち行列の長さの平均値は

Lq =∞∑

n=1

(n− 1)Pn =∞∑

n=1

nPn −∞∑

n=1

Pn

= L− (1 − P0) = L− ρ

=ρ2

1 − ρ=

λ2

µ(µ− λ)(5.23)

したがって

Lq = L− ρ = L− λ

µ(5.24)

のようにも表される。

(3)システム内にいる時間の平均値 到着してからサービスを受けて出てゆくまでの時間、すなわ

ちシステム内にいる時間の平均値を求めよう。客の平均到着時間間隔は 1/λである。定常状態ではこのシステムから出て行く客の平均時間間隔はやはり 1/λである。また、システム内にいる平

Page 56: システム工学 - 中央大学endow/SYS05.pdf · 第1章 線形システム 1.1 線形システムの状態表示 一般に連続時間システムの状態方程式は d dt x(t)=f[x(t),u(t),t]

52 endow-05

均客数は Lである。よってシステム内にいる時間の平均値は行列の最後尾に着いた客がサービス

を終えて出て行くまでの時間であるから L/λである。すなわち、

W =1λL =

λ

µ− λ=

1µ− λ

(5.25)

となる。

(4)待ち時間の平均値 客1人に対するサービス時間の平均値は 1/µ であるから、平均待ち時間は

Wq = W − 1µ

=1

µ− λ− 1µ

µ(µ− λ)(5.26)

となる。

(5)平均の法則 これら4つの量 L, Lq, W, Wq の間には

L = Lq + ρ

W = Wq +1µ

すなわち

Lq = λWq (5.27)

L = λW (5.28)

の関係がある。

例1) 数値例 到着率 λ = 2/3(人/分)、サービス率 µ = 5/6(人/分)の待ち行列システムM/M/1を考えよう。このとき利用率は ρ = 4/5であるから

(1) システム内の客数の平均値 L = 4

(2) 待ち行列の長さの平均値 Lq = 16/5

(3) システム内にいる時間の平均値 W = 6

(4) 待ち時間の平均値 Wq = 24/5

となる。

Page 57: システム工学 - 中央大学endow/SYS05.pdf · 第1章 線形システム 1.1 線形システムの状態表示 一般に連続時間システムの状態方程式は d dt x(t)=f[x(t),u(t),t]

endow-05 53

練習問題

問1) 特急、急行、各停の順に電車が発車し、特急の後3分して急行が発車し、急行の後5分して

各停が発車し、その後7分して特急が発車するという一定のサイクルで運行している場合を

考える。このとき君が運行ダイヤと無関係にホームに到着するものとし、一番早く来た電車

に乗るものとする。

1) 君は特急、急行、各停をどの程度の割合で待つのだろうか。

2) 君はホームで電車を平均して何分待つか。

問2 ダンゴ運行で、a = 5, m = 4の場合の平均待ち時間を求めなさい。

問3)待ち行列システムM/M/1の定常状態における状態推移図を描きなさい。

問4)例1)においてサービス率を2倍としたときの L, Lq, W, Wq を求めなさい。

Page 58: システム工学 - 中央大学endow/SYS05.pdf · 第1章 線形システム 1.1 線形システムの状態表示 一般に連続時間システムの状態方程式は d dt x(t)=f[x(t),u(t),t]
Page 59: システム工学 - 中央大学endow/SYS05.pdf · 第1章 線形システム 1.1 線形システムの状態表示 一般に連続時間システムの状態方程式は d dt x(t)=f[x(t),u(t),t]

第6章 金融システム

本章では、金融システムにおけるデリバティブと呼ばれるものについて簡単に述べる。金融システ

ムの最大の役割は、経済全体で資金を無駄なく利用することを可能にすることだ。経済の中には、

余裕資金を持っているがそれをうまく利用することができない経済主体(家計部門)と、資金は

持っていないがもし持っていれば有効に利用して価値を生むことができる経済主体(企業部門)が

存在し、両者の間の資金を移転し、経済全体としての資金を効率的に利用できるようにするのが金

融システムの役割の 1つで、これが、金融システムの「資金仲介」機能というものだ。もう1つの重要な機能として、「流動化」がある。これは、資金仲介にともなってすでに発行さ

れている証券を売買して、満期以前に換金できるようにすることだ。流動化が可能な場合には、必

要になった時点で証券を売却することによって資金を得ることができ、いつ資金が必要になるのか

が分からないといった「流動性リスク」が軽減されて、資金仲介も促進されるのだ。

こうした金融システムの「資金仲介」や「流動化」は金融市場を通して実現する。

さらに、金融システムでは「お金の時間価値」は大きな要因の1つである。例えば、今もってい

る 1万円は 1年後の 1万円より価値があるということだ。つまり、お金は箪笥にしまっておくと時間とともに目減りすることになるのだ。そこで、お金を運用する、つまり何かに投資することに

よって、目減りを解消するだけでなく増やすこともできるのだ。例えば、銀行に預金すれば利子が

付き、株式を買うと値上がりするのだ。この両者には根本的な違いがある。それは預金の場合は、

ペイオフは別にして、元金は保障されるが、株式は大きく値上がりもするが、購入時の価格を大き

く割る可能性もある。つまり、預金は「ローリスク・ローリターン」商品であるのに対して、株式

は銘柄にもよるけれど、一般的に「ハイリスク・ハイリターン」商品であるのだ。金融工学では、

金融商品の取引によってリスクをコントロールすることが主たる目的の1つとなっているのだ。

6.1 ファイナンスの用語

金融商品は大別すると 2つのタイプがある。1つは株式、債券、物資、外貨などの原資で、もう1つは原資を基礎とし、その将来の振舞いに付随する決済や譲渡を約束する請求権であるところのデリバティブ(派生証券)とよばれるものである。株価、物価、外貨交換率などは時間とともに変

動していて、将来の価値は誰にも正確に予測できるものではない。こうした状況の下で、デリバ

ティブはその保有者に対して、将来の取引価格を現時点で固定させることで、リスクを軽減するこ

とができる。あるいは場合によっては増大することにもなるのだ。

定義 6.1 (フォワード契約) ある資産を将来の定められた時点 T に決められた価格K で買う

(または、売る)という取決めのことをフォワード契約という。このとき、買い手はロング・ポジ

ションを保持するといい、売り手はショート・ポジションを保持するという。

55

Page 60: システム工学 - 中央大学endow/SYS05.pdf · 第1章 線形システム 1.1 線形システムの状態表示 一般に連続時間システムの状態方程式は d dt x(t)=f[x(t),u(t),t]

56 endow-05

フォワードは一般に交換によって取引することはないので、フォワード契約の開始にはコストがか

からない。フォワードの「価格決定問題」は契約に書くべき価格K をいくらに決めるかというこ

とだ。

フォワードはデリバティブ証券の最も簡単な例を与えてくれ、この価格決定に使われる数学も簡

単なものだ。さらに複雑なものに、オプションの価格決定問題がある。オプションはその保有者に

何かをする権利を与えるものであるが、義務を強要するものではない。オプションにはいろいろな

種類があるが、1997年のノーベル経済学賞で一躍有名になったBlack-Scholesの公式はヨーロピ

アン・コール・オプションの価格を決定する公式のことだ。

定義 6.2 (ヨーロピアン・コール・オプション) 将来の定められた時点 T において決められた

価格K で、ある資産を買う権利を与え、義務を負わせない契約のことをヨーロピアン・コール・

オプションという。

一般に、コールは買いを意味し、プットは売りを意味する。ヨーロピアンという用語は契約の満

了時点 T において保有者にもたらされる価値が、時点 T における市場の状態だけに依存するオプ

ションに対して使われる。オプションにもいろいろあり、例えばアメリカン・オプションやアジア

ン・オプションは、そのペイオフが期間 [0, T ]全体にわたる原資の挙動を条件として決まるものである。

定義 6.3 デリバティブが行使される時点 T のことを行使期日、あるいは満期という。また、価格

K のことを行使価格という。

(価格決定問題)

それでは、ヨーロピアン・コール・オプションの価格決定問題とはいったいどんなものか? ある

会社が日常的に石油のような本質的にリスクをともなう資産をあつかっているものとする。この会

社は 3ヶ月以内に 1000バレルの原油が必要な状況にある。原油の価格は大きく変動するが、たとえば行使価格K のヨーロピアン・コール・オプションを買うことにより、会社は(3ヶ月の間に)1000バレルを買うために必要とする金額の最高額をK と知ることができるのだ。(その理由は?)

つまり、このオプションは高騰する原油価格に対する保険とみなすことができるわけだ。そこでこ

の価格決定問題は、与えられた T とK に対してこの会社はそのような保険にいくら支払うつもり

があるか、を決めることにある。

この例にはさらに、石油を貯蔵するための費用という付加的な複雑さがある。問題をより簡単に

するために、付加的な費用を必要としない株式のような資産をもとにしたデリバティブの価格決定

について考える。また、株式を所有することによる付加的な利潤も生じないとする。つまり、配当

も支払われないとするのだ。

仮定:とくに断りのないかぎり、原資は付加的なコストや利潤なしに所有できる。

この仮定は、本質的なものではなくて、問題を簡単化するために設定してあり、必要なら緩和する

ことができる。

そこで、この会社が 3ヶ月後に 1単位の株を価格K で買う権利を与えられ、義務は負わない契

約に対していくら支払うべきか?

(ペイオフ)

はじめに、この契約は行使期日にいくらの価値があるかを知らなければならない。オプションが満

Page 61: システム工学 - 中央大学endow/SYS05.pdf · 第1章 線形システム 1.1 線形システムの状態表示 一般に連続時間システムの状態方程式は d dt x(t)=f[x(t),u(t),t]

endow-05 57

了する時点(3ヶ月後)において、その株式の実価格が ST で、しかも ST > K ならば、オプショ

ンは行使される。このとき、オプションはイン・ザ・マネーといい、価値が ST の資産をわずかK

で買うことができる。よって、会社にとってこのオプションの価値は (ST −K)となる。一方、もし、ST < K ならば、この株式は市場で安く買えるのでオプションは行使されないであろう(オプ

ションとフォワードの違いはこの行使しないという自由にある)。このとき、オプションには価値

がなく、アウトオブ・ザ・マネーという(ST = K のときはアット・ザ・マネーという)。こうし

て、時点 T におけるオプションのペイオフは

(ST −K)+def= max(ST −K), 0

となる。3種類のデリバティブの満期におけるペイオフを図 6.1に示す。

図 6.1: ペイオフの例

(パッケージ )

上ではヨーロピアン・コール・オプションをリスク軽減の一方法として提示した。もちろん、投機

家はオプションを株価の上昇をもくろむ投機対象として利用するものだ。実際、上に述べた「バニ

ラ・オプション」の組み合せ、すなわち、パッケージを保有することによって、さらに複雑な投資

ができる。ここでは一例を示すだけに止めることにする。

例 6.1 ストラッドル 投機家は株価に大きな動きを期待しているが、それがどの方向に動くのかはわからないものと仮定する。このとき、一つの可能性のある組み合せがストラッドルである。す

なわち、同一の行使価格と満期とをもつヨーロピアン・コール・オプションとヨーロピアン・プッ

ト・オプションを同時に保有することである。

解説 このストラッドルのペイオフは(コールの)(ST −K)+ と(プットの)(K − ST )+ の和、すなわち、|ST −K|となる。この組み合せのペイオフはつねに正であるが、もし満期において株価が行使価格に接近している場合には, このペイオフでオプションの購入費用を十分にまかなえずに投機家は損することになる。

Page 62: システム工学 - 中央大学endow/SYS05.pdf · 第1章 線形システム 1.1 線形システムの状態表示 一般に連続時間システムの状態方程式は d dt x(t)=f[x(t),u(t),t]

58 endow-05

6.2 フォワードの価格決定

価格決定問題を解くためには、市場が運営されている方法についてある種の仮定をおくことにす

る。この問題を定式化するために、フォワード契約についてさらに詳しく調べることから始める。

フォワード契約は将来の定められた期日に定められた価格で資産を買う(または、売る)という

合意であることを思い出そう。そこで、私がある資産を時点 T において価格K で買うことに同意

したとする。時点 T におけるペイオフは ST −K である。ここで、ST はその資産の時点 T におけ

る実価格を表わす。このペイオフは正にも負にもなり得る。そして、フォワードをはじめるための

コストはゼロであるから、このペイオフがフォワードの総利益(または損失)となる。問題はK

の公正な値を決めることにある。

(期待値価格決定)

契約が交わされる時点において我われには ST の値は分からず、せいぜいそれを推量したり、もつ

と形式的に言えば、その確率分布を与えることができるだけである。よく使われるモデルでは、株

価は対数正規分布に従っている。つまり ST /S0(時点 T での株価と時点 0での株価の比、ふつう、収益と呼ばれている)の対数は平均 ν と分散 σ2の正規分布に従うような定数 ν と σが存在するこ

とを仮定している。これを式で表すと次のようになる;

P

ST

S0∈ [a, b]

= P

log

(ST

S0

)∈ [log a, log b]

=∫ log b

log a

1√2πσ

exp(− (x− ν)2

2σ2

)dx

ここに株価は正でなければならないので a, bはともに正であり、右辺の積分は有限な確定値である

ことに注意。

第1の考え方として、E[ST ]は契約時点での公正な価格を示しているとすることだ。しかし、この値が市場価格と一致するのは稀である。実際に以下で、価格決定問題のカギとなるのは借り入れ

コストだ、ということを示す。

(無リスク金利)

ここで、お金の時間価値について考慮しなければならない。すなわち、現時点の 1万円は将来の 1万円より価値があるということである。この将来を約束された市場(債券市場)では価格はある利

率から導かれると仮定する。もっと正確には次のように言うことができる。

貨幣の時価: 将来の時点 T で保証された 1万円は現時点ではある定数 r > 0について e−rT

万円の価値がある。このとき、率 rはこの期間における連続複利率とよばれるものである。

たとえば、国債から生ずる市場は債務不履行となるリスクはないと考えられる。だから、現在の

e−rT 万円は将来の T 時点では 1万円を保障している。このことを重視して、我われは rのことを

しばしば無リスク金利とみなすのだ。もっとも、国債が本当に無リスクかどうかは分からないので

あるが。

もちろん、現実の金利市場はこれほど単純ではない。

(裁定価格決定)

いまや、フォワード契約における行使価格K の値を決めるのは無リスク金利、すなわち、債券の

価格であって、対数正規モデルではないことがわかる。

Page 63: システム工学 - 中央大学endow/SYS05.pdf · 第1章 線形システム 1.1 線形システムの状態表示 一般に連続時間システムの状態方程式は d dt x(t)=f[x(t),u(t),t]

endow-05 59

金利は通貨毎に異なるので、明確にするために、ここでは(無リスク)金利が rの市場で運営さ

れているものとする。

• はじめにK > S0erT とする。このとき、時点 T で 1単位の株式にK 円を支払う義務を負っ

ている売り手は次のような戦略をとる;時点 0で S0円借りて(つまり、債券を S0円で売っ

て)1単位の株式を買う。時点 T では S0erT 円支払わなければならないが、K 円で売れる株

を持っているので、(K − S0erT )円だけ確実な利益が残る。

• もしK < S0erT とすると、買い手は逆の戦略をとる;時点 0で 1単位の株式を S0円で売り、

債券を買う。時点 T において、債券の価値は S0erT 円で、この中から 1単位の株式を買い戻

すのにK 円を使うから、(S0erT −K)円だけ確実な利益が残る。

よって、K = S0erT でない限り、どちらか一方に利益を保証することになってしまうのだ。

定義 6.4 一般に、無リスク利益をもたらす機会のことを裁定機会という。

現代的ファイナンス理論においてモデルを構築するための出発点は、裁定が存在しないことを明記

することである。実際、裁定機会を有効に利用して生活している人々がいるが、そのような機会は

市場価格が動いて裁定機会を消滅させるまでのわずかな時間しか存在し得ない。こうして、以下の

補題が証明されたことになる。

補題 6.1 裁定が存在しないとき、時点ゼロでの価値が S0 の株式にもとづいた満期 T のフォ

ワード契約の行使価格はK = S0erT である。ここで rは無リスク金利だ。

この価格 S0erT はしばしば裁定価格とよばれる。あるいは株のフォワード価格としても知られ

ているものだ。

注意事項: 補題 6.1の証明において、買い手は株を売ってしまっていて、所有していないかもしれない。これは空売りとして知られている。空売りができる理由は、お金と同じように株を「借り

る」ことができるからだ。

もちろん、フォワードはデリバティブの中で非常に特別なものだ。上の議論はオプションの価格を

決める方法を教えてくれるものではないが、以下でも、双方に無リスク利益をもたらさないような

価格を見つけるという戦略が原則となるのだ。

これまでの議論を要約しておく。フォワードの価格を決めるために、株式 1単位と −S0の債券

からなるポートフォリオを組むと、満期においてその価値が丁度フォワード契約の価値そのものと

なる。すなわち、

ST − S0erT = ST −K

となる。このようなポートフォリオを完全ヘッジとか、複製ポートフォリオという。この考え方は

現代的数理ファイナンスの中心的なパラダイムであって、今後、たびたび繰り返される。

6.3 1期間2値オプション・モデル

ヨーロピアン・コール・オプションの公正な価格を定めるために、以下では非常に簡単な市場モ

デルについて考える。これまでと同じように市場は 2時点において、すなわち、契約時点と契約を

Page 64: システム工学 - 中央大学endow/SYS05.pdf · 第1章 線形システム 1.1 線形システムの状態表示 一般に連続時間システムの状態方程式は d dt x(t)=f[x(t),u(t),t]

60 endow-05

行使する時点だけで観測される。そして、時点 T において株価は2つの値だけをとるものとする。

簡単な例をあげる。

(ヨーロピアン・コールの価格決定)

例 6.2 ある株式の現在価格は日本円で 2500円とする。6ヶ月満期のヨーロピアン・コール・オプションは 3000円の行使価格である。ある投資家は 6ヶ月後の株価は 1/2の確率で 4000円に、1/2の確率で 2000円になると考えている。したがって、(それが行使されたとき)オプションの期待価値 500円と見積もっている。日本の無リスク金利は現在のところゼロであり、彼はオプションに対して 500円支払うことに同意している。これは公正な価格だろうか?

解答: 前節の説明から、読者はおそらくこの質問の答えは誤りと考えるであろう。この契約では

片方に無リスク利益をもたらすことがわかる。というのは、売り手はいろいろな手の中から次のよ

うな戦略がとれるからだ。

戦略: 時点ゼロにおいて、オプションを売り、2000円を借りて 1単位の株を買う。

• まず満期での株価が 4000円とすると、契約は行使されて株を 3000円で売る。そうすると(−2000 + 3000)円、つまり 1000円を手にする。

• 一方満期における株価が 2000円とすると、オプションは行使されないで、持ち株を 2000円で市場に出す。すると正味の取り分は (−2000 + 2000)円、つまり引き分けとなる。

いずれの場合も売り手は損をするリスク無しに利益をあげるチャンスがある。つまり、オプション

の価格は高すぎるのだ。

それでは、このオプションの公正な価格はいくらか?

売り手の立場で考えてみよう。契約が行使されるときの株価を ST で表すと、時点 T において、

売り手は請求権に見合うためには (ST − 3000)+円が必要となる。考え方はとしては、株と債券を組み合わせて所有してこの必要額を満たすために、時点ゼロにおいていくらのお金が必要となるか

を計算することだ。

このときオプションを売って得たお金で、x1 円の債券と x2 株からなるポートフォリオを組む。

もし満期において株価が 4000円とすると、時点 T でのポートフォリオの価値は x1erT + 4000x2

となる。オプションの売り手はこのために少なくとも 1000円が必要だ。つまり、金利はゼロであるから

x1 + 4000x2 ≥ 1000

と表される。もし株価が 2000円ならば、ポートフォリオの価値は非負でなければならないので、

x1 + 2000x2 ≥ 0

となる。点 (x1, x2)が図 6.2の斜線領域の内部に位置するならば、売り手にとって(リスクなしに)利益が保証される。境界上においては、2直線の交点以外のすべての点において利益を得る確率は正で、損する確率はゼロである。点 (x1, x2)により示されるポートフォリオは、時点 T において請

求権に対して正確に見あう額の富をもたらす。

Page 65: システム工学 - 中央大学endow/SYS05.pdf · 第1章 線形システム 1.1 線形システムの状態表示 一般に連続時間システムの状態方程式は d dt x(t)=f[x(t),u(t),t]

endow-05 61

図 6.2: ポートフォリオの条件

この連立方程式を解くと x1 = −1000, x2 = 1/2となり、これが請求権にちょうど見あうものだ。時点ゼロにおいてこのポートフォリオを組むためのコストは (−1000+ 2500/2)円、すなわち、250円である。250円以上ならば、売り手は無リスク利益を得ることができる。もし、オプション価格が 250円以下ならば、買い手はポートフォリオ (x1, x2)を「借りて」、オ

プションを買うことにより無リスク利益を得ることができる。したがって、裁定が存在しない場合

オプションの公正な価格は 250円である。フォワード契約の場合と同じように公正な価格を決めるためには、市場がとるであろう可能な動

きに対して定められる確率は使わない。むしろ、簡単なポートフォリオによって請求権を複製でき

るという事実だけが必要なのだ。売り手は x1 円の債券と x2 単位の株式から成るポートフォリオ

によって条件付き請求権 (ST − 3000)+円をヘッジできるのだ。同じような議論によって次の結果を証明できる。

(ヨーロピアン・コールの価格決定公式)

Page 66: システム工学 - 中央大学endow/SYS05.pdf · 第1章 線形システム 1.1 線形システムの状態表示 一般に連続時間システムの状態方程式は d dt x(t)=f[x(t),u(t),t]

62 endow-05

補題 6.2 無リスクドル建て金利(将来のある時点の T における)を rとする。時点ゼロでの

資産価値を S0とする。時点 T での資産価値は S0uか S0dのいずれかであるとし、さらに

d < erT < u

とする。満期でのペイオフを C(ST )とするヨーロピアン・オプションの時点ゼロにおける市場価格は(

1 − de−rT

u− d

)C(S0u) +

(ue−rT − 1u− d

)C(S0d).

さらにオプションの売り手はオプションから得た金で、時点ゼロにおいて

φdef=

C(S0u) − C(S0d)S0u− S0d

(6.1)

単位の株を買って残りを債券で所有することにすれば、時点 T での価値がちょうど (ST −K)+となるポートフォリオを構成できる。

証明は演習問題とする。

6.4 3値モデル

2値モデルにはいくつか特有の事情がある。とくに、時点 T において資産価格はたった2つの値

のいずれか1つを取るものとしている。もし、3つの値を許すとどうだろうか?6.3節の解析をくり返えしてみよう。売り手は時点 T における請求権を債券 x1円と x2単位の株

とからなるポートフォリオにより複製したいと考えている。この場合 ST の 3つの可能な取り得る値に対応してそれぞれのシナリオを考える。金利がゼロとすると、3つの不等式

x1 + SiTx2 ≥ (Si

T − 3000)+, i = 1, 2, 3

が得られる。ここで、SiT は ST の取り得る値とする。この場合は図 6.3のようなグラフが描ける。

時点 T での請求権に見あう保証をするために売り手は点 (x1, x2)が斜線領域に位置することを要求するが、この領域ではどの点も、正の確率で利益が得られ、損失をこうむる確率はゼロであ

る。斜線領域以外のポートフォリオは損失をこうむるリスクが存在する。この場合、請求権を正確

に複製するポートフォリオは無く、このオプションには一意的な「公正」価格は存在しないという

わけだ。

このような市場は完備ではない。すなわち、この市場には完全にヘッジできないような条件付き

請求権があるということだ。

(大きいモデル)

それでも、請求権をヘッジするためにどうすればよいか考えてみよう。まず、この市場は原資と債

券だけから成るポートフォリオを組むことが許されているが、現実の市場はこれよりもっと大き

い。もし、第3の「独立した」資産をあつかうことができるならば、R3空間の中に 3つの平行でない平面ができる。この 3平面は請求権を正確に復製する 1つのポートフォリオを表す 1点で交わることもあるであろう。そこで、次の問題が起こる。大きい市場にはいつ裁定が存在するか?1

Page 67: システム工学 - 中央大学endow/SYS05.pdf · 第1章 線形システム 1.1 線形システムの状態表示 一般に連続時間システムの状態方程式は d dt x(t)=f[x(t),u(t),t]

endow-05 63

図 6.3: ポートフォリオの条件

期間モデルに対するこの質問には次節で答えることにする。もう1つの制約は、契約時点と満期と

の中間でポートフォリオを調整することはできない、ということだ。実際、もしゼロ時点と T 時

点の中間で市場を観察することができて、(その価値を変えないで)ポートフォリオを再構築する

ことができるならば、時点 T における株価の取り得る値はいくつあっても許されるし、その原資

と債券だけから成るポートフォリオによって時点 T におけるそれぞれの請求権を複製できるのだ。

しかし、このことについては以下では触れないことにする。

6.5 無裁定の条件

2値モデルではオプションの公正価格は 2本の連立方程式を解くことによって容易に求めることができた。しかしながら 2値モデルはきわめて特殊であり、3値モデルの検討から、いろいろ注意すべきことがある。2値モデルはただ 1つの株式(と 1つの債券)の動きだけを記述していることだ。3値問題の困難さを解決する 1つの方法は、さらにもう1つの「独立な」資産を取引できるようにすることである。この節では、この考え方を大きな市場に拡張して、任意のオプションが公正

な価格をもつために十分な個数の独立な資産を考慮したモデルの特徴付けを行なう。定義??と定

理 6.1以外については詳しい議論を省略する。(N 資産の市場)

さて、市場は有限(かなり大きい)個数の取引可能な資産から構成されているが、時点ゼロと固定

された未来時点 T の 2時点のみで観測される 1期間モデルに限定して考える。さて、市場には取引できる資産が N 種類あるとする。ゼロ時点におけるこれらの価格は列ベク

Page 68: システム工学 - 中央大学endow/SYS05.pdf · 第1章 線形システム 1.1 線形システムの状態表示 一般に連続時間システムの状態方程式は d dt x(t)=f[x(t),u(t),t]

64 endow-05

トル

S0 =(S1

0 , S20 , . . . , S

N0

)t def=

S10

S20

...SN

0

で与えられる。

表記法: ベクトルや行列に対して上付き添え字「t」は転置を意味する。

市場の不確かさは時点 T で市場がとり得る有限個の可能な状態で表現されるが、これらの状態を

1, 2, . . . , N とラベルを付ける。時点 T での証券の価値はN × n行列D = (Dij)で与えられる。ここに、Dij は市場が状態 jにあるとき、時点 T における第 i証券の価値を意味する。2値モデルの場合は N = 2(株と無リスク債券)と n = 2(ST の2つの可能な価値により決まる2つの状態)

に対応している。

この表記法を使うと、ポートフォリオとはベクトル θ = (θ1, θ2, . . . , θN )t ∈ RN のことで、時点

ゼロにおける市場価値は内積 S0 · θで表される。時点 T におけるポートフォリオの価値はやはりベ

クトルで表され、そのベクトルの第 i要素は市場が状態 iのときのポートフォリオの価値を示す。

すなわち、時点 T でのポートフォリオの価値は

D11θ1 +D21θ2 + · · · +DN1θN

D12θ1 +D22θ2 + · · · +DN2θN

...D1nθ1 +D2nθ2 + · · · +DNnθN

= Dtθ

と書ける。

表記法: ベクトル x = (x1, x2, . . . , xn)t ∈ Rn に対して、すべての i = 1, . . . , nについて xi ≥ 0ならば x ≥ 0、あるいは x ∈ Rn

+と書く。また、x > 0は、xi ≥ 0、かつ x = 0を意味する。ここ

で、x > 0はベクトル xのすべての要素が正であることを要求していものではない、ことに注意。

すべての要素が正であるようなRn のベクトルは、x >> 0または x ∈ Rn++のように表わす。

この表記法でいうと、

裁定とは

S0 · θ ≤ 0, Dtθ > 0 または S0 · θ < 0, Dtθ ≥ 0

を満たすポートフォリオ θ ∈ RN のことだ。

(裁定価格決定)

このモデルにおける裁定価格決定のカギは状態価格ベクトルの概念にある。

定義 6.5  状態価格ベクトルとは、S0 = Dψを満たすベクトル ψ ∈ Rn++のことだ。

Page 69: システム工学 - 中央大学endow/SYS05.pdf · 第1章 線形システム 1.1 線形システムの状態表示 一般に連続時間システムの状態方程式は d dt x(t)=f[x(t),u(t),t]

endow-05 65

この用語が自然であることを示そう。まず上式を展開すると

S10

S20

...SN

0

= ψ1

D11

D21

...DN1

+ ψ2

D11

D21

...DN2

+ · · · + ψn

D1n

D2n

...DNn

, (6.2)

定数 ψi倍したベクトルD(i) は市場が状態 iにある場合の証券の価格ベクトルである。定数 ψiは、

市場が状態 iにあるとき、期間の終りにおいてさらに 1単位の富を得るための時点ゼロにおける限界コストと見なすことができる。いいかえると、期間の終りにおいて市場の状態が iであるなら

ば、ポートフォリオの価値は時点ゼロにおける投資を ψi追加することによって1増増加する。こ

のことを確めるために

θ(i) ·D(j) =

1, i = j

0, その他

をみたすベクトル θ(i) ∈ RN1≤i≤nが存在するとしよう。すなわち、時点 T におけるポートフォ

リオ θ(i) の価値は市場が状態 iにあるということを示す指標関数だ。方程式 (6.2)を使うと、時点ゼロにおいて θ(i)を購入するコストは確かに S0 · θ(i) =

∑nj=1 ψj

(D(j) · θ(i)) = ψiだ。このような

ポートフォリオのことを θ(i)1≤i≤nをArrow-Debreu証券という。6.6節において状態価格ベクトルについて考えるために便利な方法を紹介するが、さしあたって、

ここではカギとなる結果だけを述べておく。

定理 6.1 上で述べた市場モデルに対して、裁定が存在しないための必要十分な条件は状態価格ベクトルが存在することだ。

Harrison & Krep (1979)によるこの結果は、しばしば「資産価格決定の基礎定理」として知られている一連の定理の中でもっとも単純な表現だ。この証明は超平面分離定理とよばれるHahn-Banachの分離定理を適用する。さらに、Rieszの表現定理も必要だ。次のことを思い出そう。集合M ⊂ Rd

が円錐体であるとは、x ∈M のときすべての正のスカラー λに対して λx ∈M となること、そし

てRd上の線形汎関数とは線形写像 F : Rd → Rのことである。

定理 6.2 (超平面分離定理) 集合M と K は原点だけで交わる Rd 内の閉円錐体とする。

もし、K が線形部分空間でなければ、任意の x ∈ M とゼロでない任意の y ∈ K に対して

Fx) < F (y)となる非零線形汎関数 F が存在する。

この定理の証明は省略する。

定理 6.3 (Rieszの表現定理) 空間Rd上の任意の線形汎関数は F (x) = v0 ·xと表わされる。つまり、F (x)はある固定したベクトル v0 ∈ Rdと xとの内積というわけだ。

定理 6.1の証明 定理 6.2において d = 1 + nとして

M =(−S0 · θ,Dtθ) : θ ∈ RN

⊂ R × Rn = R1+n,

K = R+ × Rn+

Page 70: システム工学 - 中央大学endow/SYS05.pdf · 第1章 線形システム 1.1 線形システムの状態表示 一般に連続時間システムの状態方程式は d dt x(t)=f[x(t),u(t),t]

66 endow-05

とおく。このとき、K は円錐体ではあるが線形空間ではなく、M は線形空間であることに注意す

る。明らかにK とM が図 6.4で示されるように原点でのみ交わるとき、かつそのときだけ、裁定は存在しない。よってK ∩M = 0のとき、かつそのときだけ状態価格ベクトルが存在することを示せばよい。

図 6.4: 裁定機会の存在しない条件

(i)  はじめにK ∩M = 0を仮定する。定理 6.2から線形汎関数 F : Rd → Rが存在して、すべての z ∈M とゼロでない x ∈ K に対して F (z) < F (x)が成り立つ。第 1ステップとして F

がM 上でゼロとなることを示す。集合M が線形空間という事実を利用する。まず(F が線

形であることから)F (0) = 0であり、しかも 0 ∈M であるから、x ∈ Kに対して F (x) ≥ 0

であり、x ∈ K \ 0に対して F (x) > 0となる。さて、x0 = 0なる x0 ∈ K を固定すると、

任意の z ∈M に対して F (z) < F (x0)となる。さらにM は線形空間であるから、すべての

λ ∈ Rに対して λF (z) = F (λz) < F (x0)である。これが成り立つのは、任意の z ∈M に対

して F (z) = 0のときだけである。こうして、F はM 上でゼロとなることが示された。

第 2ステップとして、以上のことを使って実際に F から状態価格ベクトルを構成する。ま

ず Rieszの表現定理から F がある v0 ∈ Rdによって F (x) = v0 · xと書ける。便利のためにv0 = (α, φ)と書く。ここに α ∈ R、かつ φ ∈ Rn。そうすると

F (v, c) = αv + φ · c, ∀(v, c) ∈ R × Rn

と表わすことができる。すべてのゼロでない x ∈ K に対して F (x) > 0であるから、α > 0

Page 71: システム工学 - 中央大学endow/SYS05.pdf · 第1章 線形システム 1.1 線形システムの状態表示 一般に連続時間システムの状態方程式は d dt x(t)=f[x(t),u(t),t]

endow-05 67

かつ(ベクトルの要素毎に考えると)φ >> 0を得る。さらに F はM 上でゼロであるから

0 = F (−S0 · θ,Dtθ) = −αS0 · θ + φ ·Dtθ, ∀θ ∈ RN .

よって φ ·Dtθ = (Dφ) · θという関係から

−αS0 · θ + (Dφ) · θ = 0, ∀θ ∈ RN

と表わされ、これは−αS0 + (Dφ) = 0を意味する。すなわち S0 = D(φ/α)となり、ベクトル ψ = φ/αは状態価格ベクトルである。

(ii)  次に状態価格ベクトル ψが存在すると仮定する。そしてK ∩M = 0を示す。定義によりS0 = Dψであり、よって任意のポートフォリオ θに対して

S0 · θ = (Dψ) · θ = ψ · (Dtθ). (6.3)

いまあるポートフォリオ θに対して (−S0 · θ,Dtθ) ∈ K とする。このとき、Dtθ ∈ Rn+ かつ

−S0 · θ ≥ 0である。ところが ψ >> 0から、もしDtθ ∈ Rn+とすると ψ · (Dtθ) ≥ 0となり、

これは (6.3)によって S0 · θ ≥ 0を意味する。よって S0 · θ = 0、かつDtθ = 0でなければならない。こうしてK ∩M = 0が示された。

6.6 リスク中立確率測度

このように状態価格ベクトルは多種資産市場モデルに対する裁定価格決定のカギを握っている。

このベクトルについて経済的な解釈をあたえることはできるが、それでも確率やマルチンゲールを

完全に使いこなすためには別の考え方をしなければならない。

ベクトル ψのすべての要素は厳密に正であることに注意する。

(状態ベクトルと確率)和を ψ0 =

∑ni=1 ψi とおいて(基準化することにより)

ψdef=

(ψ1

ψ0,ψ2

ψ0, . . . ,

ψn

ψ0

)t

(6.4)

をそれぞれの状態に対する確率を表すベクトルとみなすことができる。このベクトルはマーケット

の将来の動きについてなんらかの見通しを与えるものではない、ことを強調することは重要だ。は

じめに

ψ0とは何か?

2値モデル(では無リスク債券を取り入れた)と同じように、この市場は正の無リスク借入を認めるものとする。この一般的な設定において、条件

Dtθ =

11...1

Page 72: システム工学 - 中央大学endow/SYS05.pdf · 第1章 線形システム 1.1 線形システムの状態表示 一般に連続時間システムの状態方程式は d dt x(t)=f[x(t),u(t),t]

68 endow-05

をみたすポートフォリオ θによってこのような債券が複製されることだけを仮定する。すなわち時

点 T におけるポートフォリオの価値は、市場がどの状態にあったとしても 1とするのだ。ベクトル ψが状態価格ベクトルであることを利用して、時点ゼロにおけるこのようなポートフォリオの

コストは

S0 · θ = (Dψ) · θ = ψ · (Dtθ) =n∑

i=1

ψi = ψ0

と求まる。つまり ψ0 は無リスク借入割引のことで、6.2節の記号で表わすと ψ0 = e−rT のことだ。

(期待値)

さて、ベクトル (6.4)で与えられる確率分布のもとで、時点 T における第 i証券の期待価格は

E[Si

T

]=

n∑i=1

Dijψj

ψ0=

1ψ0

n∑i=1

Dijψj =1ψ0Si

0

となる。ここで最後の等式で S0 = Dψという関係を使った。よって

Si0 = ψ0E

[Si

T

], i = 1, . . . , N. (6.5)

つまり証券の価格は確率分布 (6.4)に関するペイオフの期待値を割り引いた値である、ということだ。これは任意のポートフォリオについても当てはまることに違いないので、この考え方は条件付

き請求権の価格決定に新しい方法を与えてくれるものと期待できる。

定義 6.6 時点 T における請求権 C が達成可能であるというのは、それがヘッジできること、すな

わち時点 T においてその価値がちょうど C となるようなポートフォリオが存在することだ。

表記法 確率測度がQであることを強調するときは、期待値作用素を EQのように書く。

定理 6.4 無裁定の場合、時点 T で達成可能な請求権 C の時点ゼロにおける一意的な価格は

ψ0EQ[C]である。ここで、期待値はすべての iに対して Si0 = ψ0EQ[Si

T ]をみたすような任意の確率測度Qについてとられる。また ψ0は無リスク金利である。

注意事項: 請求権が達成可能であるというのはとても重要なことだ。

定理 6.4の証明 定理 6.1から状態価格ベクトルが存在し、これより Si0 = ψ0E[ST ]をみたす確率

測度 (6.4)が導かれる。この請求権はヘッジできるので、θ · ST = C をみたすポートフォリオ θが

存在する。無裁定の場合この請求権の時点ゼロでの価格は、時点ゼロにおけるこのポートフォリオ

のコストに等しいので

θ · S0 = θ · (ψ0E[ST ]) = ψ0

N∑i=1

θiE[SiT ] = ψ0E[θ · ST ] = ψ0E[C].

同じようにして Si0 = ψ0EQ[ST ]をみたす任意の確率ベクトルQに関して期待値をとると、やはり

同じ値が得られる。というのは裁定が存在しない場合、一意的な無リスク金利が存在するからであ

る。これで定理の証明が完結する。

Page 73: システム工学 - 中央大学endow/SYS05.pdf · 第1章 線形システム 1.1 線形システムの状態表示 一般に連続時間システムの状態方程式は d dt x(t)=f[x(t),u(t),t]

endow-05 69

(リスク中立価格の決定)

この裁定価格の決定法について次のように言えるだろう。すべての原資について、そのゼロ時点価

値と T におけるその割引された期待値とを等しくするような確率ベクトルを見つけることができ

るならば、任意の達成可能な条件付き請求権のゼロ時点における価値は、請求権の(この確率測度

に関する)期待値を割り引くことにより求めることができる。このとき、請求権の如何にかかわら

ず同じ確率測度で期待値をとることに注意する。

定義 6.7 市場は時点 T において n個の可能な状態のうちの1つをとるものとする。各証券の(時

点ゼロでの)価格とそのペイオフの割引期待値とを等しくするような任意の確率ベクトル p =(p1, p2, . . . , pn) >> 0のことをリスク中立確率測度、または同値なマルチンゲール測度という。

同値なという単語は p >> 0という条件に反映されている。資産価格決定の基本的定理(定理 6.1)は簡単にいうと、正の無リスク金利の市場において裁定がないということは、同値なマルチンゲー

ル測度が存在するとき、かつ、そのときに限るということだ。リスク中立確率測度に関して期待値

をとって価格を決定することをリスク中立価格の決定という。

例 6.2の改定 ヨーロピアン・コール・オプションの価格決定の例にもどって上の公式が本当に裁定価格を与えるかどうか確めてみよう。

この市場は 2つの証券、つまり債券と原資だけから成る。借り入れ割引率は ψ0 = e−rT と表さ

れるが、円の金利はゼロと仮定したので、この場合は ψ0 = 1だ。よって T における証券価値の行

列は

D =

(1 1

4000 2000

)

で与えられる。証券価格ベクトルが (1, 4000)tであるリスク中立確率を pと書く。もし株価がその

割引期待値ペイオフに等しいとすると、pは方程式

4000p+ 2000(1− p) = 2500

を解いて、p = 0.25となる。行使時点の株価が 4000円ならば、条件付き請求権は 1000円で、そうでないならばゼロである。リスク中立確率の下で請求権の期待値は、したがって(利子率はゼロ

だから)オプションの価格は 0.25 × 1000 = 250円となってこの結果は前と同じだ。この方法の利点は確率 pの値が既知ならば、この株を原資とする同一行使期日(6ヶ月間)のす

べてのヨーロピアン・オプションについて、その価格決定にはこの確率測度を用いて期待値をとれ

ばよい、という簡便法が使えることだ。たとえば、行使価格 3500円のヨーロピアン・プット・オプションに対して、その価格は

E[(K − ST )+] = 0.75 × 1500 = 1125

円となる。すでに述べた議論から、新しい請求権に対しては新しい同時方程式が導かれるのだ。

(完備市場)

いまや我われは請求権の裁定価格が存在するならば、すなわち、もし請求権が達成可能ならば、そ

れに対する処方箋を得たことになる。しかしこれには少しばかり注意が必要だ。裁定価格は達成可

能な請求権に対してだけ存在するからだ。それでもこの処方箋には意味がある。

Page 74: システム工学 - 中央大学endow/SYS05.pdf · 第1章 線形システム 1.1 線形システムの状態表示 一般に連続時間システムの状態方程式は d dt x(t)=f[x(t),u(t),t]

70 endow-05

定義 6.8 任意の条件付き請求権が達成可能ならば、すなわち、任意の実行可能なデリバティブ請

求権がヘッジできるならば、市場は完備であるという。

命題 6.1 1期モデルにしたがって展開する市場において、期末で可能な n状態のうちの 1つをとるものとする。N 種類の取引可能な資産から成るとき、市場が完備であるのは、N ≥ n

であり、しかも債券価格の行列Dの階数が nのとき、かつ、そのときに限る。

証明: この市場における任意の請求権はベクトル v ∈ Rnによって表現できる。この請求権に対

するヘッジはDtθ = vをみたすポートフォリオ θ = θ(v) ∈ RN である。このような θを求めるた

めには未知数がN 個の n本の方程式を解くことだ。よって vの任意の選択に対してヘッジ・ポー

トフォリオが存在するのは、N ≥ nでありDの階数が nのとき、かつそのときだけとなる。

とくに 1期間 2値モデルは完備であることに注意しよう。いま市場は完備かつ無裁定で、QとQ′は任意の2つの同値なマルチンゲール測度とする。このとき完備性により任意の請求権は達成可能であるので、任意の確率変数X に対して、ただ 1つの無リスク金利が存在することを用いると

EQ[X ] = EQ′[X ],

つまりQ = Q′を得る。 よって、完備な無裁定市場において同値なマルチンゲール測度は一意的である。

(これまでに得られた主な結果)

1期間市場に対する結果をまとめておく。1期間モデルの結果

•  市場が無裁定であるのは、マルチンゲール測度が存在するとき、かつそのときだけである。

•  市場が完備であるのは、Qが一意的であるとき、かつそのときだけである。

•  達成可能な請求権 C の裁定価格は e−rTEQ[C]である。

マルチンゲール測度は強力な道具であるものの、不完全市場においては、請求権 C が達成可能で

ない場合、異なるマルチンゲール測度にたいして同一価格を与えるとはかぎらない。それゆえ公正

価格が無裁定であるという概念は、ヘッジができるときにだけに意味があるのだ。

6.7 連続時間への序章

これまでは、市場の観測は 0時点と T 時点に限られていたが、実際には、市場の情報は時々刻々

得られるものであるので、連続時間として扱われる。また、価格などのとる値も離散的ではあるが

連続としてモデル化すると数学的に取り扱いやすくなる。株価は連続時間確率過程の 1つであるBrown運動 Wt, 0 ≤ t <∞を基にした幾何 Brown運動

St = S0 exp (νt+ σWt) (6.6)

によって記述される。これは Samuelsonモデルと呼ばれる株価の基本的なモデルだ。

Page 75: システム工学 - 中央大学endow/SYS05.pdf · 第1章 線形システム 1.1 線形システムの状態表示 一般に連続時間システムの状態方程式は d dt x(t)=f[x(t),u(t),t]

endow-05 71

Brown運動のパスは非常に不規則な挙動を示す。そのパスは連続ではあるが、微分可能ではなく、有界変分でもない。シミュレーションによる Brown運動のパスの例を図 6.5に示す。

Brown運動を使って、Samuelsonモデルを解説しておくことにする。株価の収益率は平均収益率とランダムな変動部分とに分けられるとすると

St+∆t − St

St= c∆t+ σ∆Wt (6.7)

と表わすことができる。ここで、cは平均収益率を表し、σは変動の大きさを表すボラティリティ

を示す。この式において、形式的に∆t→ 0と極限をとると

dSt = cStdt+ σStdWt (6.8)

となる。が、これは Brown運動の性質から、通常の意味の微分方程式として定義することはできない。そこで、第 2項に伊藤積分を適用して次の積分方程式の意味で定義する:

St − S0 = c

∫ t

0

Sudu+ σ

∫ t

0

SudWu (6.9)

この方程式を解くと (6.6)が得られるのだ。日経平均株価を図 6.6に、その収益と対数収益を図 6.7に示す。

Page 76: システム工学 - 中央大学endow/SYS05.pdf · 第1章 線形システム 1.1 線形システムの状態表示 一般に連続時間システムの状態方程式は d dt x(t)=f[x(t),u(t),t]

72 endow-05

図 6.5: Brown運動のパスの例

図 6.6: 日経平均株価

Page 77: システム工学 - 中央大学endow/SYS05.pdf · 第1章 線形システム 1.1 線形システムの状態表示 一般に連続時間システムの状態方程式は d dt x(t)=f[x(t),u(t),t]

endow-05 73

図 6.7: 日経平均株価の収益と収益率

演習問題

1. 例 6.1のストラッドルのペイオフのグラフを描きなさい。

2. ある資産価格が対数正規分布をもつとする。つまり、log (St/S0)は平均 ν と分散 σ2 の正規

分布にしたがう。このとき、E[ST ]を計算しなさい。

3. (a) 補題 6.2を証明しなさい。

(b) 仮定 d < erT < uを外すとどんなことが起きるか?

4. 石油のような商品に基づくオプションの価格決定をする場合、例題 6.2の解析方法をどのように変更すればよいだろうか?

5. 裁定が存在しない市場において、時点 T における請求権 C を正確に複製する時点ゼロで構

築されたポートフォリオは、すべて時点ゼロで同じ価値を持つことを示しなさい。

6. プール・コール・パリティ: 満期 T と行使価格K のヨーロッピアン・コール・オプション

とプット・オプションの時点 tでの価格をそれぞれ Ctと Ptとする。無リスク利子率は一定

値 rで、市場には裁定は存在しないとする。このとき、各 t < T に対して

Ct − Pt = St −Ke−r(T−t)

となることを示しなさい。

7. 満期におけるフォワードのペイオフを求めなさい。リスク中立価格決定法を使ってフォワード契約に対する価格決定問題を解きなさい。