ポリビニールピロリドン中の銀ナノ粒子の光化学形成と マスク...

6
愛総研・研究報告 8 2006 PhotochemicalFormationofSilverNanoparticlesin Poly(N vinylpyrrolidone)FilmandDirectMetalPhoto-patterningb ya Mask ポリビニールピロリドン中の銀ナノ粒子の光化学形成と マスクによる直接的金属光パターニング Yu Zhangt Shizuyasu Ochiaitt Kenzo Kojima t Yoshiyuki Uchidat 什, Asao Ohashi 字、 落合鎮康、 小嶋憲三、 内田悦行、 大橋朝夫 Abstrad: Silver nanoparticle-poly (N vinylpyrrolidone) composite films (called nano-AgIPVP) were preparedbyAg+dopedPVPthinfilmsirradiated ultravioletligh t. TheAgparticlesin thefilms exhibitedtypical fcc(face-centered-cubic)structuralX-ray diffractionpeakswithbroadened nanoparti c1 e linewidth characteristics where the sizeof Ag nanop ticleisestimated to be approx. 25 nm. Coordinationbonding formationbetweenPVP carbonyl oxygenand s i1 veratoms on nanoparti c1 e surfaces (>C=O--Ag) was also demonstrated by using an FTIR spec ummeasurement Th ephoto-generationprocesses ofnano Ag lP VP composite films with differentAg+ doping concentration were investigatedby using UV-vis absorption spectroscopy. A photo-reduction growthmechanismofAgnanoparticlesinPVPfilmsispresented in c1 udingbothinitialslow induction periods toformsmallAgparticlesandsubsequentrapidgrowthstageof Agp ticles. Fina l1 y direct metal photo-patterningof PVP thin films was realized using 254nm light irradiation of Ag+ doped PVP thin films covered with a mas k. So far s i1 ver patterned arrays with a period of 12 .5 μm(5μm spacing) can be achieved. 1. In h uction of composite systems of me ta1 fumsisofconsiderableinterestatp 民間1t e ibitnovelcombinationsof parti c1 e and Irapplications Il aging _間d circuits'l magnl light-sensitive nature well known therefore develop light sensitiveion doped polymer realize direct me ta1 phot o- patterning by a sirnple combined wi UV-lightirradiation. 百出世ategy eeapproach 血田 issirnple and low-cost from convention a1 photolithography te t Key Laboratory ofMolecular dBiomolecular Electronics :r-.住d yofEducation Southeast University (N叫ingin CH AN) ttDepar 1entofElec ic a1 En gineering Ai chi fustitute ofTechnology (Toyota) ttt De par 1entoffuformation Network Engine ing Ai chi fustitute ofTechnology (Toyo 匂) costs duetoecomplexfa cation coating etchingprocesses high-energy li .ographicsteps.To date some doped pol ner syst 1Sand 也位 form metal nanoparti c1 es-polymer well as phot o- patterning have been scientists are seeking v ousnew reported the photochemical formation films made omblends of poly (vinyl poly( acrylic acid) P AA, where t1! e ons was initiated by excited pol ner O }. of SPEEK (s fonated )wi be ophenonegroups was a1 so A ピぬn doped PVA system as a Ag'"ions and 40 Ilffi wideAgline 1efilmsurfaceusingamask PVP ,加shighsolub 旭町 ina dsuperb film forming capability as for me ta1 colloids in solution which applied to various colloi da1 ntainsafunction a1 groupof >C=O It has been demonstrated mtthe can reduce Ag + to Ag in aq ous 43

Upload: others

Post on 28-Jan-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

  • 愛総研・研究報告

    第8号 2006年

    Photochemical Formation of Silver Nanoparticles in

    Poly(N圃 vinylpyrrolidone)Film and Direct Metal Photo-patterning by a

    Mask

    ポリビニールピロリドン中の銀ナノ粒子の光化学形成と

    マスクによる直接的金属光パターニング

    Yu Zhangt, Shizuyasu Ochiaitt Kenzo Kojima↑t, Yoshiyuki Uchidat什, Asao Ohashi↑↑

    張 字、 落合鎮康、 小嶋憲三、 内田悦行、 大橋朝夫

    Abstrad: Silver nanoparticle-poly (N・vinylpyrrolidone)composite films (called nano-AgIPVP) were

    prepared by Ag+ doped PVP thin films irradiated ultraviolet light. The Ag particles in the films

    exhibited typical fcc (face-centered-cubic) structural X-ray diffraction peaks with broadened

    nanopartic1e linewidth characteristics where the size of Ag nanop紅 ticleis estimated to be approx.

    25 nm. Coordination bonding formation between PVP carbonyl oxygen and si1ver atoms on

    nanopartic1e surfaces (>C=O--Ag) was also demonstrated by using an FTIR spec位ummeasurement

    The photo-generation processes of nano・AglPVPcomposite films with different Ag+ doping

    concentration were investigated by using UV-vis absorption spectroscopy. A photo-reduction

    growth mechanism of Ag nanoparticles in PVP films is presented, inc1uding both initial slow

    induction periods, to form small Ag particles and subsequent rapid growth stage of Ag p紅 ticles.

    Final1y, direct metal photo-patterning of PVP thin films was realized using 254nm light irradiation

    of Ag+ doped PVP thin films covered with a mask. So far, si1ver patterned arrays with a period of

    12.5μm(5μm spacing) can be achieved.

    1. Inh吋 uction

    of composite systems of meta1 fums is of considerable interest at p民間1te油ibitnovel combinations of partic1e and

    Ir applications Ilaging _間dcircuits'l, magnl light-sensitive nature well known, therefore,

    develop light・sensitiveion doped polymer realize direct meta1 photo-patterning by a sirnple combined wi也 UV-lightirradiation.百 出 世ategy

    企eeapproach血田 issirnple and low-cost, from conventiona1 photolithography te

    t Key Laboratory ofMolecular血 dBiomolecular Electronics, :r-.住d蛇yofEducation, Southeast University (N叫ingin CH悶AN)ttDepar旬1entofElec位ica1Engineering, Aichi fustitute ofTechnology (Toyota) ttt Depar伽1entoffuformation Network Engineぽing,Aichi fustitute ofTechnology (Toyo匂)

    costs due to也ecomplex fa加 cationcoating, etching processes, high-energy

    li也.ographicsteps. To date, some doped pol戸ner syst回 1S and 也位form metal nanopartic1es-polymer well as photo-patterning, have been scientists are seeking v叩 ousnew reported the photochemical formation

    films made企omblends of poly (vinyl poly( acrylic acid), P AA, where t1!e ons was initiated by excited pol戸nerO}.

    of SPEEK (s凶fonated)wi也 be回 ophenonegroups was a1so

    Aピぬn doped PVA system as a Ag'" ions, and 40 Ilffi wide Ag line

    せ1efilm surface using a mask

    PVP,加shigh solub旭町 ina血 dsuperb film forming capability, as for meta1 colloids in solution which applied to various colloida1

    ∞ntains a functiona1 group of >C=O • It has been demonstrated吐mtthe

    can reduce Ag + to Ag in aq田 ous

    43

  • 44

    愛知工業大学総合技術研究所研究報告、第8号、平成18年、 NO.8ヲ2006

    0.1ウO

    .. a句ー言語

    ー居0.085z ー:c ‘♂ 書雪

    量白

    0 30

    s.oluti.on c.ontaining PVP wiせ1high c.onc阻むati.on9) at UV irradiati.on, yet detailed ph.oto-reducti.on mechanisms were not presented P.olymer elec位olytesc.ontaining silver salts are currently under intensive inve武igati.on because .of.血世p.otential applicati.on in facilitated transp.ort membranesll). PVP is .0食.enused as a p.olymer c訂riぽ血 the preparati.on .of silver salt-p.olymer elec位。lyt白, while the higl酔1S叫.olu曲b副t勿y.ofA勾g+ionsin PVP ha鎚sbe鎚end白巳:m.o叩n碕国s坑甜t位ra瓜teddue tωo s町仕凶o叩ngint缶eract凶tio叩n 1 be~肺f倒 j¥g+ ピi附o叩 卿n凶s組制dp.o咽l凶a訂rgr伊ou耶p戸s0ぱf>刈C=OQ叩np伊.01加ymeぽr ch】:hain註insl2砕山,1可3

    tω.op戸're叩pareSilver nanoparticle-PVP (nan.o・Ag/PVP)c.omp.osite films using an ultravi.olet light-induced ph.ot.ochemical reacti.on, while也eph.oto-generation procedure .of Ag nanoparticles in PVP films was studied by UV・visabs.orpti.on s戸C仕osc.opy.Direct silver pat回ningp.ol戸ner白血 filmswere also realized using a simple mask meth.od c.ombined with uv -light irradiation.

    80

    Fig. 1 XRD patt佃 1.of nan.o-AglPVP c.omp.osite film (Sample c).

    40 50 60 70

    DitI目l'ac伽 11柚 gle[Dt"gI'tt]

    which are ch釘acteri副c .of n組 oparticles. The average crystallite diamet,ぽ(ACD).of Ag nanoparticles was determined using the XRD linewid血.ofthe (111) peak using Scherrer's Form叫aI4),明白血.ecalculated result being approx. 25 run.

    Fτ1R spec仕osc.opywas used t.o study血einteracti.on betw田 nsilver nan.oparticles and p.ol紅 gr.oups.on PVP chains. Figure 2 presents FTIR spectrum .of nan.o-AglPVP c.omp.osite films .ob也inedfr.om the precurs.or s.oluti.on wi也 AgN03c.oncen回 tion.oflOmM.

    2.1 Cbemicals Silver nitrate, A酬03(99.9%) was used as precurs.or .of Ag

    n叩 op副 cles.Poly (N・vinylpyrr.olidone)σVPK30,1-何'40000) was purchased fr.om Wako Pure Chemical Indus出es,Ltd Eth四.01(EtOH, 99.5%) (Amakasu) W:鎚国edas s.olvents. All of the chernicals were used as re回 ived企'omthe suppliers.

    2. Experimental Sedion

    4∞ 1日)() 121∞ 800 Vぬ,venumber(1叩 1)

    @υccvzEωccお

    /r~

    1676.6 1652.3

    2∞o

    2.2 Preparation of Nano・A!UPVPComoosite Films and Their Photo-patte

    First, P民 curs.orsoluti.ons .of PVP (9 mM, calculated pぽp.olymer units) in e白血01c.on臼白血gA.酬03wi由 di庄町'entc.oncen岡山田 (2.5, 5, and 10 mM) we日 prepared(R=[Ag"]/[pVP]=0.28, 0.56, 1.11, respectively). A 50μL precurs.or s.oluti.on was cast directly .ont.o a cl伺 nedglass micr.osc.ope c.over slip. The f.ormed Ag" d.oped PVP films we記せlen企iedat r.o.om tempera旬ref.or 15 min f.ollowed by UV-irr司diati.onin the ventilat.or at different times acc.ording t.o UV-vis abs.orption variation.百四 yell.ow Ag n姐 opむticlec.omposite films WIぽe.obtained and marked as Samples a, b, 組 dc, res戸 ctively.百1euv 1釘npused W:ωT.oshiba GL20・A20 W l.ow-pressure mぽcurylamp wi血 amain並radiati.onwavelen耕1.of 254 run.百leglass micros∞pe cov,ぽ slipsubstrates w町ecl四 1edf.or 15 min. in a freshly prep蹴 d1:3 mixture .of 30% H202 and 98% H2S04 (p包富由as.oluti.on)也mwashed with a large am.ount .of dei.onized water血dethanol bef.ore p.olymぽfilmsfilms were .obtained PVP films c.overed by a mask whぽetransmission elec仕onmicrosc.opy (τ'EM) c.opper grids wi也differenth.ole sizes .of 200, 400 and 2000 mesh were used as

    Fig.2FTIRs戸ctrum.ofn佃.o-AglPVPc.omp.osite film (Sample c). Inset sh.ows the spec仕um.ofs釘nple(c) atr,叩.ge.of2000-4000cm".

    It is found也atc訂'b.onylgr.oups e油ibita broad and splitting abs.orpti.on band at 1676.6 and 1652.3 cm".百lef.ormer band bel.ongs t.o 企'eecarb.onyl gr.oups, while 也ela枕ぽ C血 beattributed t.o a new carb.onyl s仕etchingband which shifts t.o the I.ower frequency due t.o carb.onyl gr.oups b.ound t.o也esurface .of Ag nan.oparticles 也r.ough 血e co.ordination b.onding .of >C=O-Ag. 古田 re叩 ltis c.onsistent with the previ.ously rep.orted results f.or the in匂racti.on.of Ag+ i.ons and PW12). Th巴abs.orpti.on band at appr.ox. 1290.1 is attributed t.o C-N stretching vibrati.on.百leinset in .Figure 2 als.o sh.ows a br.oad abs.orpti.on band at 3425.9 cm", caused by也.es仕etchingvibrati.on .of H20 ads.orbed .on PVP chains.百leabs.orpti.on band at2962.3

    2.3 Charaderization Techniques UV-vis可Jectrawere recorded using a uv・2450UV-visible

    spectr.oph.ot.ometer (Shima也u). FTlR (F.ourier 凶 lsf.ormm企'aredspectr.osc.opy) measurements were pぽf.ormed.on a FTIR-8400S spectr.oph.ot.ometer (Shimaむu).X-ray diffracti.on (XRD) measurements were perf.ormed .on a V.oyager 1000 X -ray diffract.ometer with Cu K,αradiati.on (λ=1.5406 A) .operated at 40 kV and 40 m A Silver ph.oto-pa社erningp.olymer films were .observed using transmissi.on .optical microsc.opy (01戸npusBX 50) with a DP 11 digita1 camera (2.5 M pixels).

    Figure 1 sh.ows an X-ray diffracti.on p出回1of nano-AglPVP comp.osite films .obtained from血eprecurs.or s.oluti.on wi白血A酬03c.oncentr油.on.oflO mM.百lecharact出 sticdiffracti.on peaks .of (111), (200), (220), and (311) indicate f1ωs飢lC旬ralsilver. The broadened di借acti.onpe法sc組 be.observedヲ

    3. Results and Discussion

  • 45

    Photochemical Fonnation of Silver Nanoparticles in PVP Fihn and Direct Metal Photo-patteming by a Mask

    narrowing for all曲目 S副 plesc姐 beobserved while the shapes of世leabsorption band u1timately obtainedぽ'ealmost symme仕ical,sugges也19也enanoparticles are well dispersed in PVP films and sphere-shaped as the aggregation of nanoparticles leads to red-shifted and broadened surface plasInon absorptionsI8), while the anisotropic silver n叩 oparticlesresult in splitting into multiple bandsI6).

    Table 1 provides the optical parameters of silver nanoparticles in PVP ft1ms obtained from the fmal absorption spec仕umin Figure 3 a, b, and c, including the maximum absorption wavelen尉1of Amax, the maximum absorbance,姐dthe full bandwidth at half-maximum (FWHM).

    cm・1can be at住ibutedto groups of -CH2・and-CH・.Silver partic1es reduced to nanometer dimensions e油ibitunique optical properties in the visible spectra1 range due to也eexcitation of col1ective osci11ations of conducting elec仕'Onskn'Own as plasm'On res'On血 ces'Or surface plasmai5). UV-vis abs'Orpti'On s戸 C凶 havebeen sh'Own t'O be q国tesensitive to也e恒久 shape, 血d也e田町oundingdielectric envir'Omnent 'Of silver nanop紅白1自由国 t'O也町 f'Ormati'On processes in s'Oluti'On 'Or f11mslC>-lll. Figure 3 sh'Ows UV・vis spec仕dev'Oluti'Ons during也,eformati'On 'Of n組 0・AgJPVP∞mposite films 'Obtained fr'Om the precurs'Or s'Oluti'Ons wi也 di庄町田tAρ~03 conc四国ti'Ons'Of 2.5, 5, and 10 mM markedぉSamples a, b, and c, respectively.

    Table 1. Optical p紅 'ametぽSof silver nan'Oparticles in PVP films 'Obtained企omfmal abs'Orpti'On spectrum 'Of Sample a, b and c in Figures 3

    SampleName Sample Sample Sample I a b c

    ASoilutionCs (omncbeo ntration 立1 2.5 5 10

    Ag+ Amount inFilms 0.26 0.52 1.03 (xlO・7m'OVcm'勺λ由也(mn) 414 415 432

    Adsorbance atλ百 四 0.35 0.52 0.79

    FWl削(mn) 92 96 120

    55min

    45附n

    35min

    25min

    10min

    (a)

    ¥

    伽ハベxh州

    0.4

    =司 0.3偲

    8 a 0.2 a S 妻0.1

    C姐 besaid t'O enhance lin回 rlywith Ag + i'On doping c'Oncentrati'On in PVP fi1ms wh悶'Of PVP is c'Onstant.白骨 slightincrl回 ses訂'eseen a四 db. while柑'Ongenhancements匂keplace f'Or

    Samples a and b for Am蹴血dFWl剖.αl. rl句'Orted世leph'Ot'Ochemical f'Ormati'On 'Of Ag

    in aqueous soluti'On in吐le戸esenceof PVP and 伽 tthe variati'On of A正ionconcentration only

    りze and size dis出buti'On 'Of Ag in solution"'.百lUSwe infer也at也eirbehavi'Or is

    se formati'On 'Of Ag nan'Opartic1es f'Or 組 db叩,thl'Ow Ag + i'On ∞nceI帥 .ti'On.This is in wi白血~e high s'Olubility 'Of Ag+ i'Ons in PVP rep'Orted al"'''I. H'Owever. i'On田町武artt'O f'Orm foll'Owed

    'Order i'Onic aggregates12) at silver c'Oncentrati'On relative t'O carb'Onyl 'Oxygen. F'Or Sample c, =0]=1.1l.百lUSwe conclude也at也.ehigh of Ag T i'Ons f'Or Sample c leads t'O社lef'Ormati'On

    wi也 l紅ge and br'Oad dis仕ibuti'Onf'Or bothせlelarge Am蹴組dFWHM. It has been

    l'Onger as p釘tic1esbec'Ome larger"l. In Huang's studies, wi也 anaverage size of 15.2 t'O 22.4 mn were fT.,e c'Orresponding UV-VIs abs'Orpti'On peaks fr'Om

    nm町.It is reas'Onable t'O estimate sizes f'Or 'Our Ag in PVP fi1ms at a r,血gefr'Om 15 t'O 30 mn

    UV-VIs abs'Orption spec回 伽tagree Wl'也吐les国 sfr'Om XDR by co_nsidering也ee能 ct'Of四 rr'Ounding

    SIO) (PVP -f11m has higher refractive water s'Oluti'Ons, res叫也19in a red-shi食'Of血e

    band).τ'he'Oretical calculati'Ons have revealed血atabs凹pti'On is dOlninant in也iss包e

    the symmetric absorpti'On田北sfor也巴 fi1ms'Obtained can be obsぽ ved.

    ー increaseand abs'Orpti'On band blue-shift erved c1early in Fi伊lTe3 for all世rreeSamples at UV

    may be difficult to decipher the blue-shifts as白e'Of Ag particles sh'Ou1d lead t'O size increases,

    red-shi食 ofthe abs'Orpti'On band acc'Ording t'O the si'On. The'Oretical investigati'Ons have indicated吐lat

    'Of surface plasma in meta1 n'Ot 'On1v depends on effective e1ec往'Onmass,the

    語信有

    印o900

    900

    (防

    800

    55円,in

    45min 35min 25min 10 min

    5∞印o71∞ V冶velength(nm)

    5∞6∞7∞ w.ヨvelength(nm)

    4∞

    4∞ 0.0 3∞

    ,-... 0.5 コ~ 0.4 Q) ιJ a 0.3 .c ~ 0.2

    是 0.1

    0.0 ま氾

    0.6

    90n唱n70 rnin 50n首n30町、,in10町、InO 町~n

    0.8

    9∞

    (c)

    500 600 7∞8∞ 川危velength(nm)

    400

    コ0.6官官

    Q)

    詰0.4

    2 主0.2

    0.0 300

    Fig. 3 UV-vis spectral ev'Oluti'On during nano・AgJPVPc'Omp'Osite film f'Ormation fr'Om prec山富'Ors'Oluti'Ons with differentA似 03concentrati'Ons: (a) 2.5mM; (b) 5mM; (c) 10mM冒

    The films were irradiated with 254 mn UV light. The irradiati'On time is indicated in也eFigure f'Or回 .chspectrum. The absorption spectra of Ag particles in PVP films continu'Ously devel'Op wi也也neuntil也.eyreach a stable state when a11 the silver ions have been reduced at 254 mn light irradiati'On. An 'Obvi'Ous abs'Orption band blue-shift and

  • 46

    愛知工業大学総合技術研究所研究報告、第8号、平成18年、 No.8,2006

    andshapeof也ech紅-gedis出bution,but is also atIected by density of electrons1oJ.四 ewavelen尉lof也eabsorption

    ot of血eHenglein

    伽 tthe surfi蹴 Aピionabsorptions can gr'曲世yreduce density of企eeelectrons in Ag nanoparticles dispersed in

    s solution,出国resultin血eabsorption peak red-shi食bye nanometer百20).Compared wi也仕leres凶tsof Huang's

    也.eetIect of size incrl田 seson A官蹴 ismuch smaller也組of surface ion absorption. As a res凶L世leobserved shift in Figure 3 c組 beexplained by the consumption of ions in也ephoto・.reductionreaction, which ca回目 a

    in the amount of Ag+ ions ad悶 'bedon particle es, al也叩.ghAg particles grad叫 lyincrease. The Ag + ion

    most likely takes place from the photo-reduction adsorbed Ag+ ions on p副 cle surfaces. 1刀取T五'he溜e白削釧llowir叩nwill discuss the photo-reduction of Agピ+ions tωofiお01ロmAg

    sinPVP gure 4 shows也eabsorption intensity at A.m臨悩 a

    of仕lephoto-reduction reaction time for Samples a, b shown in Figure

    Fig. 4 Absorption in回 sityatλ阻 asa function of photoreduction reaction也nefor samples (め,(b),and (c) shown in Figure 1.

    We use the change of absorption intensity to reflect the photo-reduction reaction of Ag + ions, alth∞.gh也eabsorption intensity is relative not only to也eparticle concentration formed, but also to也.epぼ ticles包e,aggregate s包.te,etc.. Thぽe紅白 two distinct r回 ctionはagesbefore也efmal武ableはate.百lefrrst stage is from the beginning of the reaction toせle也neat 25・30min., in which也eformation mte of Ag p紅 ticlesis ve巧fslow and a wide absorption region坑M也gfrom 300 nm is observed前世lout也echaracteristic absorption peak of Ag n阻 op訂ticles.Ag clusters of a few atoms of Agn (n=l・3,4・7,叩 d8・12)wlぽ'echaract,出zedwi也UVabsorption bands at 292, 325, and 370・380nm, respectively in the e紅liぽ 7也radiationstudy of aqueous silver nitrate solution 21) 羽田世1巴 wideabsorption region observed in也epresent study can be reasonably attributed to吐leexistence of Ag clusters wi也ditIerent n values, as well as small Ag particles. In世lesecond 由民也eformation rate of Ag p副 clesis dramatically accelerated while the characteristic absorption peak of Ag nanoparticles appears and blue-必ifts occur wi白血econsumption of Ag + ions.

    PVP contains a functional group of >C=O which adsorbs 254 nm light more s住onglyせlanAg + ions in our experimental conditions and hぉ甜0昭 interaction明白 Aぜionsor Ag nanoparticles出roughthe coordination bonding as shown by 血.eFTIR spectrum.百leformation of the coordination bonding induces a食actionalelec仕on仕ansferfrom the carbonyl group 10 silver. According 10 Henglein's work,出iseffect induces a

    displacement ofthe metal Fenni level toward the more negative potentials20). Simultaneously, the carbonyl group redox potential increases and becomes easier to photo-oxidize. The excited s戸ciesof>C=O箪 canreduce Ag + ions to Ag atom as a result at 254 nm light irradiation. Subsequent agglomeration of Ag atoms occurs to form Ag clusters and small Ag particles. Possible reaction mechanismsぽ'eas follows.

    >C=O-Ag+. hv >C=O・+AgU

    nAgO 一一一一..(AgO)n

    >C=O.-Ag+

    >C=O・+H20 (or EtOH)一一+>C=O + W +OH. (orEtO・)

    一一一+(1)

    (2)

    (3)

    百le企'eeradicals of>C=O・formedare reverted to >C=O by也ereaction with water or e白血01adsorbed in PVP films. Similar free radical rl田 ctionwas also shown in the previous reports on the photo-reduction of Ag + ions in surface-modified polyimide layers wtぽ ethe carboxyl mdicals of -C02・undergoa s泊rilarreaction~J. Henglein et al. performed a detailed investigated of the photo-reduction of Aぜionsin aqueous solution in也epresence of acetone and 2・propanol,where the photo-reduction was initiated by acetone ketyl radicals with a low rate of reaction20). Similar low reaction rates should also appe紅 血 our reaction syst回 1for Eq. 1.百由 slowr伺 ctionp出 odc阻 becalled an induction period for silver reduction, corresponding to the frrst託ageshown in Figure 3.

    Wi也也.egrad田 1formation of the small Ag particles, a second reduction process occurs, in油 ichAg + ions are reduced on也esurface of the Ag pぽ ticles,as Ag n組 opartid田伺nact as an electron storage皿 dtransfer medium. It has be田observed by Henglein20)組 dBrus22) et al.世lat也ぽ'eIS a displacem四 tof plasmon民 son組問 a食erelectron iniection inside Ag n阻 op副 icles,and組 mcre渇seof吐lechemical reactivity on particle surfaces.百1由也巴 excitedspecies of >C=O. frrst transfer an elec仕onto Ag particles, then the Ag + ions adsorbed on由 surfacesare reduced by stored electrons in 由esecond s也.ge,resulting in the gradual grow也 ofAg particles wi也 afastぽ rate. 百leelectron transfer procedures are illus仕atedin Figure 5‘

    Fig. 5 Elec位'ontransfer process企omexcited species of>C=O. to Ag + ions adsorbed on Ag nanop副 clesurfaces.

    S出rilarly,both the slow induction p白 odand rapid particle growth stage could be observed for allせrreesamples with ditIerent initial Ag + concentrations σigure 4). However, the inal absorbance in the two 陶酔sincreases wi也也e凶凶Ag+concentrations in PVP films官記 increaseof the initial Ag + concentrations re四 ltsin forming more coordination bonding of >C=O-Aピinthe induction period, which is helpful to facilitate the photo-reduction of Ag+ ions. Yet in the second stage, the largest rate of increぉein absorbance may be observed for Sample b in comparison to Sample a and c, suggesting仕留tthe Ag particle formation rate is de戸ndentnot onlyon社leinitial Ag + concen回 1ionbut also on the relative

  • Photochemical Fonnation of Silver N血 oparticlesin PVP Fibn and Direct Metal Photo-patterr由19bya民1ask

    Fig. 6 Transmission optical microscopy images of silver pa故 田ledpolymer也infllms formed from UV irradiation of Ag + ion doped PVP曲 ns(Ion concentration: 1.03x 10・7moνcm-2) for 90 min. Using a copper grid as mask with different hole sizes: (a) 200 mesh, (b) 400 mesh, (c) 2000 mesh.

    amOlmt of PVP to Ag+. The relatively high PVP concentration may be usefiu for electron transfcぽ forrningPVP 10 Ag particles.

    PVP has good solub益ityin wat,ぽ andethanol. However, the nano-Ag/PVP composite fllms obtained e油ibitvery good

    stab姐ityfor water and eせlanol.No changes in absorption spec国 W悶 observedwhen immersing the fi1ms in10 wa脂血de仕lanolfor 3 hours.百uscan be reasonably at回buted10也Ecross-linking interaction between PVP血 dAgnanop紅 ticles.

    An application for direct metal photo-pa枕田ringpolymer 也infllms has been realized using Ag + ion doped PVP thin films and a TEM copper grid as a mask Figure 6 shows the obtained silvlぽ patternedPVP thin films wi也 differ田.tperiods. Pa性四1dimensions are in s仕ongagreement wi也仕1ephotomask used. An array period of 12.5 l1lIl and resolution of 5問narray spacing are achieved as observed in Figure 6 c.百1eultimate resolution of this pat匂lIlingmethod remains unknown. Fur仕1ぽstudy is currently being conducted.

    4. Condusions

    Nano・Ag/PVP composite fi1ms were fabricated using ultraviolet ligh1 irradiation of Ag + doped PVP白血 fi1msobtained from an AgN03-PVP-e白血01mixing solution with a simple casting method.百出 isa simple photo-reduction system to fabricate silver/polymer composite fi1ms, where PVP ac包sm叫凶1eouslyas film matrix and photo叩 ductant.百1eAg nanop氾ticlesin設1ePVP fi1ms have a typical fcωs位 協tllrecharacterized by X-ray diffraction.τbe coordination bonding foロnationbetween PVP carbonyl oxygen叩 dsilver atom on nanoparticle surfaces (>C=O・-Ag)was also d四 10ns回 tedby FTIR spectrum measurement. The photo-generation process図。fnano・Ag/PVPcomposite fi1ms wi也 differentAピdoping∞nc阻むationswere investigated using UV-vis abso叩tionspec仕oscopy.A photo-reduction growth mechanism of Ag n叩 .op紅ticlesin PVP films was presented, including both initial slow induction periods to form small Ag particles叩 d也esubsequent rapid grow也 s匂.geof Ag p訂 ticles.白leapplication is direct meta1 photo-patteming of PVPせrinfilms realized using 254nm light irradiation of AピdopedPVP也血 fi1mscov,ぽedwith a mask. So 11眠 silverpa社eredarrays wi也 aperiodof12.5四n(5問nspacing) can be formed.

    Acknowledgments 百1epresent work was∞nducted as part of也.eresearch

    pr句ect日Materialsfor血e21st Century-Materials Development for Environment, Energy, and Information" (ゐ,rfiscal year 2002-2006)四 pportedby也eMinis町 ofEducation, Culture, Sports, Science, and Technology.

    (1) A. He出nann:Polymer Films with Embedded Metal λTanoparticles; Springer Series in Materials Science 52, (Springer Berlin, 2003)

    (2) M. Jose-Yacam皿, R. Perez, P. Santiago, M. Benaissa, K Gonsalves, G. Carlson, Appl. Phys. Lett 69 (1996) 913.

    (3) O. L. A. Monti, J. T. Fo町 kas,D. J. J. Nesbitt, Phys. Chem. 108 (2004) 1604.

    (4) A. S. Korchev, M. J. Bozack, B. L. Slaten, Gι J. Mills, Am. Chem. Soc. 126 (2004) 10.

    (5) K. Akamatsu, S. Ikeda, H. Nawafime, Langmuir 19 (2003) 10366.

    (6) 1. W. Park, M. Yoon, Y. M. Kim, Y. Kim, H‘Yoon, H. J. Song, V. Volkov, A. Avilov, Y. P紅k,J. Solid State Commun. 126 (2003) 385.

    (7) F. P. Zamborini, M. C. Leopold, J. F. 1五cks,P. J. Kulesza, M. A. Malik, R. W. Murray, J. Am. Chem. Soc. 124 (2002) 8958.

    (8) G. A.Gaddy, J. L. Mclain, E. S. Steilgerwalt, R. Broughton, B. L. Slaten, G. Mills, J. Cluster Sci. 12 (2001)457.

    47

  • 48

    愛知工業大学総合技術研究所研究報告、第8号、平成18年、 No.8,2006

    (9) H. H. Huang, X. P. Ni, G. L. Loy, C. H.Chew, K. L. T.叩,F. C. Loh, J. F. D田 g,G. Q. Xu, Langmuir 12 (1996) 909.

    (10) I. p,ぉtoriza-Santos,L. M. Liz・Marz佃, L組伊lUir18 (2002) 2888. Y. Yoon, J. Won, Y. S. Kang, Macromolecules 33 (2000) 3185. (11) J. H. Jin, S. U.Hong, J. Won, Y. S. K血 g,Macromolecules 33 (2000) 4932.

    (12) S. Choi, J.H. Kim, Y. S. Kang, Macromolecules 34 (2001) 9087.

    (13) M. Ma, Y. Zhang, X.B. Li, D. G. Fu, H. Q. Zh血 g,N. GuヲColl. Surf A, 224 (2003) 207.

    (14) U. Kreibig, M. Vollmer, Optical Properties 01 Metal Clusters; (Springぽ, Verlag: Berlin, Heidelberg, 1995)

    (15) K. L. Kelly, E. Coronado, L. L. Zhao, G. C. J. Schatz, J. Phys. Chem. B. 107 (2003) 668.

    (16) M. Kerker, O. Siiman, D. S. W,叩g,J. Ph拘置 Ch佃 1.88 (1984) 3186.

    (1η 工Zheng,M. S. Stevenson, R. S.団組也, P. Gregory Van PattenヲJ.Phys. Chem. B. 106ο002) 1252.

    (18) S. M. H聞 d,F. Gries民 C.G.B町 aclough,J. V. Sanders, J. Colloid IntぽfaceSci. 93 (1983) 545.

    (19) A. Henglein, Chem. Mater. 10 (1998) 444 (20) M. Mostafavi, M. O. Delcourt, G. Picq, Radiat. phys.

    Chem. 41 (1993) 453 (21)M‘M創llard,P. H田 ng,L. Brus, Nano Lett. 3 (2003) 1611.

    (受理 2006年 5月 2日)