fibre channel and iscsi configuration guideolbaum.free.fr/old/log/netapp/fibre channel and...

110
Fibre Channel and iSCSI Configuration Guide for the Data ONTAP 7.3 Release Family NetApp, Inc. 495 East Java Drive Sunnyvale, CA 94089 U.S.A. Telephone: +1 (408) 822-6000 Fax: +1 (408) 822-4501 Support telephone: +1 (888) 4-NETAPP Documentation comments: [email protected] Information Web: http://www.netapp.com Part number 215-04943_A0 December 2009

Upload: others

Post on 20-Sep-2020

24 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

Fibre Channel and iSCSI Configuration Guidefor the Data ONTAP 7.3 Release Family

NetApp, Inc.495 East Java Drive Sunnyvale, CA 94089 U.S.A. Telephone: +1 (408) 822-6000 Fax: +1 (408) 822-4501 Support telephone: +1 (888) 4-NETAPPDocumentation comments: [email protected] Web: http://www.netapp.com

Part number 215-04943_A0December 2009

Page 2: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP
Page 3: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

Contents

Copyright information ................................................................................. 7Trademark information ............................................................................... 9About this guide .......................................................................................... 11

Audience .................................................................................................................... 11

Terminology .............................................................................................................. 11

Keyboard and formatting conventions ...................................................................... 12

Special messages ....................................................................................................... 13

How to send your comments ..................................................................................... 14

iSCSI topologies .......................................................................................... 15Single-network active/active configuration in an iSCSI SAN .................................. 15

Multinetwork active/active configuration in an iSCSI SAN ..................................... 17

Direct-attached single-controller configurations in an iSCSI SAN ........................... 18

VLANs ....................................................................................................................... 19

Static VLANs ................................................................................................ 19

Dynamic VLANs ........................................................................................... 19

Fibre Channel topologies ........................................................................... 21FC onboard and expansion port combinations .......................................................... 22

Fibre Channel supported hop count ........................................................................... 23

Fibre Channel switch configuration best practices .................................................... 23

The cfmode setting .................................................................................................... 23

Host multipathing software requirements .................................................................. 24

60xx supported topologies ......................................................................................... 24

60xx target port configuration recommendations .......................................... 25

60xx: Single-fabric single-controller configuration ...................................... 26

60xx: Single-fabric active/active configuration ............................................ 27

60xx: Multifabric active/active configuration ............................................... 28

60xx: Direct-attached single-controller configuration .................................. 30

60xx: Direct-attached active/active configuration ......................................... 31

31xx supported topologies ......................................................................................... 32

31xx target port configuration recommendations .......................................... 32

31xx: Single-fabric single-controller configuration ...................................... 33

31xx: Single-fabric active/active configuration ............................................ 34

Table of Contents | 3

Page 4: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

31xx: Multifabric active/active configuration ............................................... 35

31xx: Direct-attached single-controller configurations ................................. 36

31xx: Direct-attached active/active configuration ......................................... 37

30xx supported topologies ......................................................................................... 38

30xx target port configuration recommendations .......................................... 39

3040 and 3070 supported topologies ............................................................. 39

3020 and 3050 supported topologies ............................................................. 45

FAS20xx supported topologies ................................................................................. 51

FAS20xx: Single-fabric single-controller configuration ............................... 51

FAS20xx: Single-fabric active/active configuration ..................................... 52

FAS20xx: Multifabric single-controller configuration .................................. 53

FAS20xx: Multifabric active/active configuration ........................................ 54

FAS20xx: Direct-attached single-controller configurations .......................... 55

FAS20xx: Direct-attached active/active configuration ................................. 56

FAS270/GF270c supported topologies ..................................................................... 57

FAS270/GF270c: Single-fabric active/active configuration ......................... 57

FAS270/GF270c: Multifabric active/active configuration ............................ 58

FAS270/GF270c: Direct-attached configurations ......................................... 59

Other Fibre Channel topologies ................................................................................. 60

R200 and 900 series supported topologies .................................................... 60

Fibre Channel over Ethernet overview ..................................................... 67FCoE initiator and target combinations ..................................................................... 67

Fibre Channel over Ethernet supported topologies ................................................... 68

FCoE: FCoE initiator to FC target configuration .......................................... 69

FCoE: FCoE end-to-end configuration .......................................................... 70

FCoE: FCoE mixed with FC ......................................................................... 71

FCoE: FCoE mixed with IP storage protocols .............................................. 73

Fibre Channel and FCoE zoning ............................................................... 75Port zoning ................................................................................................................. 76

World Wide Name based zoning ............................................................................... 76

Individual zones ......................................................................................................... 76

Single-fabric zoning .................................................................................................. 77

Dual-fabric active/active configuration zoning ......................................................... 78

Shared SAN configurations ....................................................................... 81ALUA configurations ................................................................................. 83

(Native OS, FC) AIX Host Utilities configurations that support ALUA .................. 83

4 | Fibre Channel and iSCSI Configuration Guide for the Data ONTAP 7.3 Release Family

Page 5: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

ESX configurations that support ALUA ................................................................... 85

HP-UX configurations that support ALUA ............................................................... 85

Linux configurations that support ALUA ................................................................. 86

(MPxIO/FC) Solaris Host Utilities configurations that support ALUA .................... 86

Windows configurations that support ALUA ............................................................ 87

Configuration limits .................................................................................... 89Configuration limit parameters and definitions ......................................................... 89

Host operating system configuration limits for iSCSI and FC .................................. 91

60xx and 31xx single-controller limits ...................................................................... 92

60xx and 31xx active/active configuration limits ...................................................... 93

30xx single-controller limits ...................................................................................... 95

30xx active/active configuration limits ..................................................................... 96

FAS20xx single-controller limits .............................................................................. 97

FAS20xx active/active configuration limits .............................................................. 98

FAS270/GF270 , 900 series, and R200 single-controller limits .............................. 100

FAS270c/GF270c and 900 series active/active configuration limits ...................... 101

Index ........................................................................................................... 105

Table of Contents | 5

Page 6: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP
Page 7: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

Copyright information

Copyright © 1994–2009 NetApp, Inc. All rights reserved. Printed in the U.S.A.

No part of this document covered by copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including photocopying, recording, taping, or storage in anelectronic retrieval system—without prior written permission of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license anddisclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP "AS IS" AND WITHOUT ANY EXPRESS ORIMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIEDWARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE,WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL NETAPP BE LIABLE FOR ANYDIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIALDAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTEGOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESSINTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHERIN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OROTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IFADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice.NetApp assumes no responsibility or liability arising from the use of products described herein,except as expressly agreed to in writing by NetApp. The use or purchase of this product does notconvey a license under any patent rights, trademark rights, or any other intellectual property rights ofNetApp.

The product described in this manual may be protected by one or more U.S.A. patents, foreignpatents, or pending applications.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject torestrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and ComputerSoftware clause at DFARS 252.277-7103 (October 1988) and FAR 52-227-19 (June 1987).

Copyright information | 7

Page 8: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP
Page 9: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

Trademark information

NetApp, the Network Appliance logo, the bolt design, NetApp-the Network Appliance Company,Cryptainer, Cryptoshred, DataFabric, DataFort, Data ONTAP, Decru, FAServer, FilerView,FlexClone, FlexVol, Manage ONTAP, MultiStore, NearStore, NetCache, NOW NetApp on the Web,SANscreen, SecureShare, SnapDrive, SnapLock, SnapManager, SnapMirror, SnapMover,SnapRestore, SnapValidator, SnapVault, Spinnaker Networks, SpinCluster, SpinFS, SpinHA,SpinMove, SpinServer, StoreVault, SyncMirror, Topio, VFM, VFM Virtual File Manager, andWAFL are registered trademarks of NetApp, Inc. in the U.S.A. and/or other countries. gFiler,Network Appliance, SnapCopy, Snapshot, and The evolution of storage are trademarks of NetApp,Inc. in the U.S.A. and/or other countries and registered trademarks in some other countries. TheNetApp arch logo; the StoreVault logo; ApplianceWatch; BareMetal; Camera-to-Viewer;ComplianceClock; ComplianceJournal; ContentDirector; ContentFabric; Data Motion; EdgeFiler;FlexShare; FPolicy; Go Further, Faster; HyperSAN; InfoFabric; Lifetime Key Management,LockVault; NOW; ONTAPI; OpenKey, RAID-DP; ReplicatorX; RoboCache; RoboFiler;SecureAdmin; SecureView; Serving Data by Design; Shadow Tape; SharedStorage; Simplicore;Simulate ONTAP; Smart SAN; SnapCache; SnapDirector; SnapFilter; SnapMigrator; SnapSuite;SohoFiler; SpinMirror; SpinRestore; SpinShot; SpinStor; vFiler; VPolicy; and Web Filer aretrademarks of NetApp, Inc. in the U.S.A. and other countries. NetApp Availability Assurance andNetApp ProTech Expert are service marks of NetApp, Inc. in the U.S.A.

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International BusinessMachines Corporation in the United States, other countries, or both. A complete and current list ofother IBM trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml.

Apple is a registered trademark and QuickTime is a trademark of Apple, Inc. in the U.S.A. and/orother countries. Microsoft is a registered trademark and Windows Media is a trademark of MicrosoftCorporation in the U.S.A. and/or other countries. RealAudio, RealNetworks, RealPlayer,RealSystem, RealText, and RealVideo are registered trademarks and RealMedia, RealProxy, andSureStream are trademarks of RealNetworks, Inc. in the U.S.A. and/or other countries.

All other brands or products are trademarks or registered trademarks of their respective holders andshould be treated as such.

NetApp, Inc. is a licensee of the CompactFlash and CF Logo trademarks.

NetApp, Inc. NetCache is certified RealSystem compatible.

Trademark information | 9

Page 10: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP
Page 11: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

About this guide

You can use your product more effectively when you understand this document's intended audienceand the conventions that this document uses to present information.

This document describes the configuration of fabric-attached, network-attached, and direct-attachedstorage systems in Fibre Channel (FC), Fibre Channel over Ethernet (FCoE), and iSCSIenvironments. This guide explains the various topologies that are supported and describes therelevant SAN configuration limits for each controller model.

The configurations apply to controllers with their own disks and to V-Series configurations.

Next topics

Audience on page 11

Terminology on page 11

Keyboard and formatting conventions on page 12

Special messages on page 13

How to send your comments on page 14

AudienceThis document is written with certain assumptions about your technical knowledge and experience.

This document is for system administrators who are familiar with host operating systems connectingto storage systems using FC, FCoE, and iSCSI protocols.

This guide assumes that you are familiar with basic FC, FCoE, and iSCSI solutions and terminology.This guide does not cover basic system or network administration topics, such as IP addressing,routing, and network topology; it emphasizes the characteristics of the storage system.

TerminologyTo understand the concepts in this document, you might need to know how certain terms are used.

Storage terms

array LUN Refers to storage that third-party storage arrays provide to storage systemsrunning Data ONTAP software. One array LUN is the equivalent of one disk ona native disk shelf.

LUN (LogicalUnit Number)

Refers to a logical unit of storage identified by a number.

About this guide | 11

Page 12: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

native disk Refers to a disk that is sold as local storage for storage systems that run DataONTAP software.

native disk shelf Refers to a disk shelf that is sold as local storage for storage systems that runData ONTAP software.

storagecontroller

Refers to the component of a storage system that runs the Data ONTAPoperating system and controls its disk subsystem. Storage controllers are alsosometimes called controllers, storage appliances, appliances, storage engines,heads, CPU modules, or controller modules.

storage system Refers to the hardware device running Data ONTAP that receives data fromand sends data to native disk shelves, third-party storage, or both. Storagesystems that run Data ONTAP are sometimes referred to as filers, appliances,storage appliances, V-Series systems, or systems.

third-partystorage

Refers to back-end storage arrays, such as IBM, Hitachi Data Systems, and HP,that provide storage for storage systems running Data ONTAP.

Cluster and high-availability terms

active/activeconfiguration

In the Data ONTAP 7.2 and 7.3 release families, refers to a pair of storagesystems (sometimes called nodes) configured to serve data for each other if oneof the two systems stops functioning. Also sometimes referred to as active/activepairs. In the Data ONTAP 7.1 release family and earlier releases, thisfunctionality is referred to as a cluster.

cluster In the Data ONTAP 7.1 release family and earlier releases, refers to a pair ofstorage systems (sometimes called nodes) configured to serve data for each otherif one of the two systems stops functioning. In the Data ONTAP 7.3 and 7.2release families, this functionality is referred to as an active/active configuration.

Keyboard and formatting conventionsYou can use your product more effectively when you understand how this document uses keyboardand formatting conventions to present information.

Keyboard conventions

Convention What it means

The NOW site Refers to NetApp On the Web at http://now.netapp.com/.

12 | Fibre Channel and iSCSI Configuration Guide for the Data ONTAP 7.3 Release Family

Page 13: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

Convention What it means

Enter, enter • Used to refer to the key that generates a carriage return; the key is namedReturn on some keyboards.

• Used to mean pressing one or more keys on the keyboard and then pressing theEnter key, or clicking in a field in a graphical interface and then typinginformation into the field.

hyphen (-) Used to separate individual keys. For example, Ctrl-D means holding down theCtrl key while pressing the D key.

type Used to mean pressing one or more keys on the keyboard.

Formatting conventions

Convention What it means

Italic font • Words or characters that require special attention.• Placeholders for information that you must supply.

For example, if the guide says to enter the arp -d hostname command,you enter the characters "arp -d" followed by the actual name of the host.

• Book titles in cross-references.

Monospaced font • Command names, option names, keywords, and daemon names.• Information displayed on the system console or other computer monitors.• Contents of files.• File, path, and directory names.

Bold monospaced

fontWords or characters you type. What you type is always shown in lowercaseletters, unless your program is case-sensitive and uppercase letters arenecessary for it to work properly.

Special messagesThis document might contain the following types of messages to alert you to conditions that youneed to be aware of.

Note: A note contains important information that helps you install or operate the systemefficiently.

About this guide | 13

Page 14: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

Attention: An attention notice contains instructions that you must follow to avoid a system crash,loss of data, or damage to the equipment.

How to send your commentsYou can help us to improve the quality of our documentation by sending us your feedback.

Your feedback is important in helping us to provide the most accurate and high-quality information.If you have suggestions for improving this document, send us your comments by e-mail to [email protected]. To help us direct your comments to the correct division, include in thesubject line the name of your product and the applicable operating system. For example, FAS6070—Data ONTAP 7.3, or Host Utilities—Solaris, or Operations Manager 3.8—Windows.

14 | Fibre Channel and iSCSI Configuration Guide for the Data ONTAP 7.3 Release Family

Page 15: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

iSCSI topologies

Supported iSCSI configurations include direct-attached and network-attached topologies. Bothsingle-controller and active/active configurations are supported.

In an iSCSI environment, all methods of connecting Ethernet switches to a network approved by theswitch vendor are supported. Ethernet switch counts are not a limitation in Ethernet iSCSItopologies. For specific recommendations and best practices, see the Ethernet switch vendor'sdocumentation.

For Windows iSCSI multipathing options, please see Technical Report 3441.

Next topics

Single-network active/active configuration in an iSCSI SAN on page 15

Multinetwork active/active configuration in an iSCSI SAN on page 17

Direct-attached single-controller configurations in an iSCSI SAN on page 18

VLANs on page 19

Related information

NetApp Interoperability Matrix - now.netapp.com/NOW/products/interoperability/Technical Report 3441: iSCSI multipathing possibilities on Windows with Data ONTAP -media.netapp.com/documents/tr-3441.pdf

Single-network active/active configuration in an iSCSI SANYou can connect hosts using iSCSI to active/active configuration controllers using a single IPnetwork. The network can consist of one or more switches, and the controllers can be attached tomultiple switches. Each controller can have multiple iSCSI connections to the network. The numberof ports is based on the storage controller model and the number of supported Ethernet ports.

The following figure shows two Ethernet connections to the network per storage controller.Depending on the controller model, more connections are possible.

iSCSI topologies | 15

Page 16: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

Figure 1: iSCSI single network active/active configuration

Attribute Value

Fully redundant No, due to the single network

Type of network Single network

Different host operating systems Yes, with multiple-host configurations

Multipathing required Yes

Type of configuration Active/active configuration

16 | Fibre Channel and iSCSI Configuration Guide for the Data ONTAP 7.3 Release Family

Page 17: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

Multinetwork active/active configuration in an iSCSI SANYou can connect hosts using iSCSI to active/active configuration controllers using multiple IPnetworks. To be fully redundant, a minimum of two connections to separate networks per controlleris necessary to protect against NIC, network, or cabling failure.

Figure 2: iSCSI multinetwork active/active configuration

Attribute Value

Fully redundant Yes

Type of network Multinetwork

Different host operating systems Yes, with multiple-host configurations

Multipathing required Yes

Type of configuration Active/active configuration

iSCSI topologies | 17

Page 18: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

Direct-attached single-controller configurations in an iSCSISAN

You can connect hosts using iSCSI directly to controllers. The number of hosts that can be directlyconnected to a controller or pair of controllers depends on the number of available Ethernet ports.

Note: Direct-attached configurations are not supported in active/active configurations.

Figure 3: iSCSI direct-attached single-controller configurations

Attribute Value

Fully redundant No, due to the single controller

Type of network None, direct-attached

Different host operating systems Yes, with multiple-host configurations

Multipathing required Yes

Type of configuration Single controller

18 | Fibre Channel and iSCSI Configuration Guide for the Data ONTAP 7.3 Release Family

Page 19: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

VLANsA VLAN consists of a group of switch ports, optionally across multiple switch chassis, groupedtogether into a broadcast domain. Static and dynamic VLANs enable you to increase security, isolateproblems, and limit available paths within your IP network infrastructure.

Reasons for implementing VLANs

Implementing VLANs in larger IP network infrastructures has the following benefits.

• VLANs provide increased security because they limit access between different nodes of anEthernet network or an IP SAN. VLANs enable you to leverage existing infrastructure while stillproviding enhanced security.

• VLANs improve Ethernet network and IP SAN reliability by isolating problems.• VLANs can also help reduce problem resolution time by limiting the problem space.• VLANs enable you to reduce the number of available paths to a particular iSCSI target port.• VLANs enable you to reduce the maximum number of paths to a manageable number. You need

to verify that only one path to a LUN is visible if a host does not have a multipathing solutionavailable.

Next topics

Static VLANs on page 19

Dynamic VLANs on page 19

Static VLANsStatic VLANs are port-based. The switch and switch port are used to define the VLAN and itsmembers.

Static VLANs offer improved security because it is not possible to breach VLANs using mediaaccess control (MAC) spoofing. However, if someone has physical access to the switch, replacing acable and reconfiguring the network address can allow access.

In some environments, static VLANs are also easier to create and manage because only the switchand port identifier need to be specified, instead of the 48-bit MAC address. In addition, you can labelswitch port ranges with the VLAN identifier.

Dynamic VLANsDynamic VLANs are MAC address based. You can define a VLAN by specifying the MAC addressof the members you want to include.

Dynamic VLANs provide flexibility and do not require mapping to the physical ports where thedevice is physically connected to the switch. You can move a cable from one port to another withoutreconfiguring the VLAN.

iSCSI topologies | 19

Page 20: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP
Page 21: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

Fibre Channel topologies

Supported FC configurations include single-fabric, multifabric, and direct-attached topologies. Bothsingle-controller and active/active configurations are supported.

For multiple-host configurations, hosts can use different operating systems, such as Windows orUNIX.

Active/active configurations with multiple, physically independent storage fabrics (minimum of two)are recommended for SAN solutions. This provides redundancy at the fabric and storage systemlayers, which is particularly important because these layers typically support many hosts.

The use of heterogeneous FC switch fabrics is not supported, except in the case of embedded bladeswitches. For specific exceptions, see the Interoperability Matrix on the NOW site.

Cascade, mesh, and core-edge fabrics are all industry-accepted methods of connecting FC switches toa fabric, and all are supported.

A fabric can consist of one or multiple switches, and the storage arrays can be connected to multipleswitches.

Note: The following sections show detailed SAN configuration diagrams for each type of storagesystem. For simplicity, the diagrams show only a single fabric or, in the case of the dual-fabricconfigurations, two fabrics. However, it is possible to have multiple fabrics connected to a singlestorage system. In the case of dual-fabric configurations, even multiples of fabrics are supported.This is true for both active/active configurations and single-controller configurations.

Next topics

FC onboard and expansion port combinations on page 22

Fibre Channel supported hop count on page 23

Fibre Channel switch configuration best practices on page 23

The cfmode setting on page 23

Host multipathing software requirements on page 24

60xx supported topologies on page 24

31xx supported topologies on page 32

30xx supported topologies on page 38

FAS20xx supported topologies on page 51

FAS270/GF270c supported topologies on page 57

Other Fibre Channel topologies on page 60

Related information

NetApp Interoperability Matrix - now.netapp.com/NOW/products/interoperability/

Fibre Channel topologies | 21

Page 22: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

FC onboard and expansion port combinationsYou can use storage controller onboard FC ports as both initiators and targets. You can also addstorage controller FC ports on expansion adapters and use them as initiators and targets.

The following table lists FC port combinations and specifies which combinations are supported. Allexpansion adapters should be the same speed (2 Gb, 4 Gb, or 8 Gb); you can configure 4-Gb or 8-Gbports to run at a lower speed if needed for the connected device.

Onboard ports Expansion ports Supported?

Initiator + Target None Yes

Initiator + Target Target only Yes with Data ONTAP 7.3.2 andlater

Initiator + Target Initiator only Yes

Initiator + Target Initiator + Target Yes with Data ONTAP 7.3.2 andlater

Initiator only Target only Yes

Initiator only Initiator + Target Yes

Initiator only Initiator only Yes, but no FC SAN support

Initiator only None Yes, but no FC SAN support

Target only Initiator only Yes

Target only Initiator + Target Yes with Data ONTAP 7.3.2 andlater

Target only Target only Yes with Data ONTAP 7.3.2 andlater, but no FC disk shelf or V-Series configurations or tapesupport

Target only None Yes, but no FC disk shelf or V-Series configurations or tapesupport

Related concepts

Configuration limits on page 89

Related references

FCoE initiator and target combinations on page 67

22 | Fibre Channel and iSCSI Configuration Guide for the Data ONTAP 7.3 Release Family

Page 23: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

Fibre Channel supported hop countThe maximum supported FC hop count, or the number of inter-switch links (ISLs) crossed between aparticular host and storage system, depends on the hop count that the switch supplier and storagesystem support for FC configurations.

The following table shows the supported hop count for each switch supplier.

Switch supplier Supported hop count

Brocade 6

Cisco 5

McData 3

QLogic 4

Fibre Channel switch configuration best practicesA fixed link speed setting is highly recommended, especially for large fabrics, because it provides thebest performance for fabric rebuild times. In large fabrics, this can create significant time savings.

Although autonegotiation provides the greatest flexibility, it does not always perform as expected.Also, it adds time to the overall fabric-build sequence because the FC port has to autonegotiate.

Note: Where supported, it is recommended to set the switch port topology to F (point-to-point).

The cfmode settingThe cfmode setting controls how the FC adapters of a storage system in an active/activeconfiguration log in to the fabric, handle local and partner traffic in normal operation and duringtakeover, and provide access to local and partner LUNs. The cfmode setting of your storage systemand the number of paths available to the storage system must align with cabling, configuration limits,and zoning requirements.

Both controllers in an active/active configuration must have the same cfmode setting.

A cfmode setting is not available on single-controller configurations. You can change the cfmodesetting from the storage system console by setting privileges to advanced and then using the fcpset command.

Fibre Channel topologies | 23

Page 24: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

The Data ONTAP 7.3 release family only supports single_image cfmode, unless you are upgradingfrom an earlier release. The mixed cfmode is not supported even when upgrading; you must changefrom mixed to single_image.

Detailed descriptions of port behavior with each cfmode are available in the Data ONTAP BlockAccess Management Guide for iSCSI and FC.

For details about migrating to single_image cfmode and reconfiguring hosts, see Changing theCluster cfmode Setting in Fibre Channel SAN Configurations.

Related information

Data ONTAP Blocks Access Management Guide for iSCSI and FC - now.netapp.com/NOW/knowledge/docs/ontap/ontap_index.shtmlChanging the Cluster cfmode Setting in Fibre Channel SAN Configurations - now.netapp.com/NOW/knowledge/docs/san/fcp_iscsi_config/

Host multipathing software requirementsMultipathing software is required on a host computer any time it can access a LUN through morethan one path.

The multipathing software presents a single disk to the operating system for all paths to a LUN.Without multipathing software, the operating system could see each path as a separate disk, whichcan lead to data corruption.

Multipathing software is also known as MPIO (multipath I/O) software. Supported multipathingsoftware for an operating system is listed in the Interoperability Matrix.

For single-fabric single-controller configurations, multipathing software is not required if you have asingle path from the host to the controller. You can use zoning to limit paths.

For an active/active configuration in single_image cfmode, host multipathing software is requiredunless you use zoning to limit the host to a single path.

60xx supported topologies60xx controllers are available in single-controller and active/active configurations.

The 6030 and 6070 systems have eight onboard 2-Gb FC ports per controller and each one can beconfigured as either a target or initiator FC port. 2-Gb target connections are supported with theonboard 2-Gb ports. 4-Gb target connections are supported with 4-Gb target expansion adapters. Ifyou use 4-Gb target expansion adapters, then you can only configure the onboard ports as initiators.You cannot use both 2-Gb and 4-Gb targets on the same controller or on two different controllers inan active/active configuration.

The 6030 and 6070 systems are supported by single_image cfmode.

24 | Fibre Channel and iSCSI Configuration Guide for the Data ONTAP 7.3 Release Family

Page 25: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

The 6040 and 6080 systems have eight onboard 4-Gb FC ports per controller and each one can beconfigured as either a target or initiator FC port. 4-Gb target connections are supported with theonboard 4-Gb ports configured as targets.

Additional target connections can be supported using 4-Gb target expansion adapters with DataONTAP 7.3 and later.

The 6040 and 6080 systems are only supported by single_image cfmode.

Note: The 60xx systems support the use of 8-Gb target expansion adapters beginning with DataONTAP version 7.3.1. While 8-Gb and 4-Gb target expansion adapters function similarly, 8-Gbtargets cannot be combined with 2-Gb or 4-Gb targets (whether using expansion adapters oronboard).

Next topics

60xx target port configuration recommendations on page 25

60xx : Single-fabric single-controller configuration on page 26

60xx : Single-fabric active/active configuration on page 27

60xx : Multifabric active/active configuration on page 28

60xx : Direct-attached single-controller configuration on page 30

60xx : Direct-attached active/active configuration on page 31

60xx target port configuration recommendationsFor best performance and highest availability, use the recommended FC target port configuration.

The port pairs on a 60xx controller that share an ASIC are 0a+0b, 0c+0d, 0e+0f, and 0g+0h.

The following table shows the preferred port usage order for onboard FC target ports. For targetexpansion adapters, the preferred slot order is given in the System Configuration Guide for theversion of Data ONTAP software being used by the controllers.

Number of target ports Ports

1 0h

2 0h, 0d

3 0h, 0d, 0f

4 0h, 0d, 0f, 0b

5 0h, 0d, 0f, 0b, 0g

6 0h, 0d, 0f, 0b, 0g, 0c

7 0h, 0d, 0f, 0b, 0g, 0c, 0e

Fibre Channel topologies | 25

Page 26: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

Number of target ports Ports

8 0h, 0d, 0f, 0b, 0g, 0c, 0e, 0a

60xx: Single-fabric single-controller configurationYou can connect hosts to single controllers using a single FC switch. If you use multiple paths,multipathing software is required on the host.

Note: The FC target port numbers in the following figure are examples. The actual port numbersmight vary depending on whether you are using onboard ports or FC target expansion adapters. Ifyou are using FC target expansion adapters, the target port numbers also depend on the expansionslots into which your target expansion adapters are installed.

Figure 4: 60xx single-fabric single-controller configuration

Attribute Value

Fully redundant No, due to the single fabric and single controller

Type of fabric Single fabric

Different host operating systems Yes, with multiple-host configurations

26 | Fibre Channel and iSCSI Configuration Guide for the Data ONTAP 7.3 Release Family

Page 27: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

Attribute Value

FC ports or adapters One to the maximum number of supported onboard FC ports percontroller

One to the maximum number of supported 4-Gb or 8-Gb FCtarget expansion adapters

Type of configuration Single-controller configuration

Related references

60xx target port configuration recommendations on page 25

60xx: Single-fabric active/active configurationYou can connect hosts to both controllers in an active/active configuration using a single FC switch.

Note: The FC target port numbers in the following figure are examples. The actual port numbersmight vary depending on whether you are using onboard ports or FC target expansion adapters. Ifyou are using FC target expansion adapters, the target port numbers also depend on the expansionslots into which your target expansion adapters are installed.

Figure 5: 60xx single-fabric active/active configuration

Fibre Channel topologies | 27

Page 28: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

Attribute Value

Fully redundant No, due to the single fabric

Type of fabric Single fabric

Different host operating systems Yes, with multiple-host configurations

FC ports or adapters One to the maximum number of supported onboard FC ports percontroller

One to the maximum number of supported 4-Gb or 8-Gb FCports using target expansion adapters per controller

Type of configuration Active/active configuration

Related references

60xx target port configuration recommendations on page 25

60xx: Multifabric active/active configurationYou can connect hosts to both controllers in an active/active configuration using two or more FCswitch fabrics for redundancy.

Note: The FC target port numbers in the following figure are examples. The actual port numbersmight vary depending on whether you are using onboard ports or FC target expansion adapters. Ifyou are using FC target expansion adapters, the target port numbers also depend on the expansionslots into which your target expansion adapters are installed.

28 | Fibre Channel and iSCSI Configuration Guide for the Data ONTAP 7.3 Release Family

Page 29: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

Figure 6: 60xx multifabric active/active configuration

Attribute Value

Fully redundant Yes

Type of fabric Multifabric

Different host operating systems Yes, with multiple-host configurations

FC ports or adapters One to the maximum number of supported onboard FC ports percontroller

One to the maximum number of supported 4-Gb or 8-Gb FCports using target expansion adapters per controller

Type of configuration Active/active configuration

Related references

60xx target port configuration recommendations on page 25

Fibre Channel topologies | 29

Page 30: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

60xx: Direct-attached single-controller configurationYou can connect hosts directly to FC target ports on a single controller. Each host can connect to oneport, or to two ports for redundancy. The number of hosts is limited by the number of available targetports.

Direct-attached configurations typically need the FC ports set to loop mode. Be sure to follow therecommendation of your host operating system provider for FC port settings. You can use the DataONTAP fcp config mediatype command to set the target ports.

Figure 7: 60xx direct-attached single-controller configuration

Attribute Value

Fully redundant No, due to the single controller

Type of fabric None

Different host operating systems Yes, with multiple-host configurations

FC ports or adapters One to the maximum number of supported onboard FC ports percontroller

One to the maximum number of supported 4-Gb or 8-Gb FCtarget expansion adapters

Type of configuration Single-controller configuration

30 | Fibre Channel and iSCSI Configuration Guide for the Data ONTAP 7.3 Release Family

Page 31: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

Related references

60xx target port configuration recommendations on page 25

60xx: Direct-attached active/active configurationYou can connect hosts directly to FC target ports on both controllers in an active/activeconfiguration. The number of hosts is limited by the number of available target ports.

Direct-attached configurations typically need the FC ports set to loop mode. Be sure to follow therecommendation of your host operating system provider for FC port settings. You can use the DataONTAP fcp config mediatype command to set the target ports.

Note: The FC target port numbers in the following figure are examples. The actual port numbersmight vary depending on whether you are using onboard ports or FC target expansion adapters. Ifyou are using FC target expansion adapters, the target port numbers also depend on the expansionslots into which your target expansion adapters are installed.

Figure 8: 60xx direct-attached active/active configuration

Attribute Value

Fully redundant Yes

Type of fabric None

Different host operating systems Yes, with multiple-host configurations

Fibre Channel topologies | 31

Page 32: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

Attribute Value

FC ports or adapters One to the maximum number of supported onboard FC ports percontroller

One to the maximum number of supported 4-Gb or 8-Gb FCtarget expansion adapters

Type of configuration Active/active configuration

Related references

60xx target port configuration recommendations on page 25

31xx supported topologies31xx systems are available in single-controller and active/active configurations.

The 31xx systems have four onboard 4-Gb FC ports per controller and each port can be configured aseither an FC target port or an initiator port. For example, you can configure two ports as SAN targetsand two ports as initiators for disk shelves.

Each 31xx controller supports 4-Gb FC target expansion adapters.

The 31xx systems are only supported by single_image cfmode.

Note: 31xx controllers support the use of 8-Gb target expansion adapters beginning with DataONTAP 7.3.1. However, the 8-Gb expansion adapters cannot be combined with 4-Gb targets(whether using expansion adapters or onboard).

Next topics

31xx target port configuration recommendations on page 32

31xx : Single-fabric single-controller configuration on page 33

31xx : Single-fabric active/active configuration on page 34

31xx : Multifabric active/active configuration on page 35

31xx : Direct-attached single-controller configurations on page 36

31xx : Direct-attached active/active configuration on page 37

31xx target port configuration recommendationsFor best performance and highest availability, use the recommended FC target port configuration.

The port pairs on a 31xx controller that share an ASIC are 0a+0b and 0c+0d.

The following table shows the preferred port usage order for onboard FC target ports. For targetexpansion adapters, the preferred slot order is given in the System Configuration Guide for theversion of Data ONTAP software being used by the controllers.

32 | Fibre Channel and iSCSI Configuration Guide for the Data ONTAP 7.3 Release Family

Page 33: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

Number of target ports Ports

1 0d

2 0d, 0b

3 0d, 0b, 0c

4 0d, 0b, 0c, 0a

31xx: Single-fabric single-controller configurationYou can connect hosts to single controllers using a single FC switch. If you use multiple paths,multipathing software is required on the host.

Note: The FC target port numbers in the following figure are examples. The actual port numbersmight vary depending on whether you are using onboard ports or FC target expansion adapters. Ifyou are using FC target expansion adapters, the target port numbers also depend on the expansionslots into which your target expansion adapters are installed.

Figure 9: 31xx single-fabric single-controller configuration

Attribute Value

Fully redundant No, due to the single fabric and single controller

Type of fabric Single fabric

Different host operating systems Yes, with multiple-host configurations

Fibre Channel topologies | 33

Page 34: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

Attribute Value

FC ports or adapters One to the maximum number of supported onboard FC ports percontroller

One to the maximum number of supported 4-Gb or 8-Gb FCtarget expansion adapters

Type of configuration Single-controller configuration

Related references

31xx target port configuration recommendations on page 32

31xx: Single-fabric active/active configurationYou can connect hosts to both controllers in an active/active configuration using a single FC switch.

Note: The FC target port numbers in the following figure are examples. The actual port numbersmight vary depending on whether you are using onboard ports or FC target expansion adapters. Ifyou are using FC target expansion adapters, the target port numbers also depend on the expansionslots into which your target expansion adapters are installed.

Figure 10: 31xx single-fabric active/active configuration

Attribute Value

Fully redundant No, due to the single fabric

34 | Fibre Channel and iSCSI Configuration Guide for the Data ONTAP 7.3 Release Family

Page 35: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

Attribute Value

Type of fabric Single fabric

Different host operating systems Yes, with multiple-host configurations

FC ports or adapters One to the maximum number of supported onboard FC ports percontroller

One to the maximum number of supported 4-Gb or 8-Gb FCtarget expansion adapters

Type of configuration Active/active configuration

Related references

31xx target port configuration recommendations on page 32

31xx: Multifabric active/active configurationYou can connect hosts to both controllers in an active/active configuration using two or more FCswitch fabrics for redundancy.

Note: The FC target port numbers in the following figure are examples. The actual port numbersmight vary depending on whether you are using onboard ports or FC target expansion adapters. Ifyou are using FC target expansion adapters, the target port numbers also depend on the expansionslots into which your target expansion adapters are installed.

Figure 11: 31xx multifabric active/active configuration

Fibre Channel topologies | 35

Page 36: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

Attribute Value

Fully redundant Yes

Type of fabric Multifabric

Different host operating systems Yes, with multiple-host configurations

FC ports or adapters One to the maximum number of supported onboard FC ports percontroller

One to the maximum number of supported 4-Gb or 8-Gb FCtarget expansion adapters

Type of configuration Active/active configuration

Related references

31xx target port configuration recommendations on page 32

31xx: Direct-attached single-controller configurationsYou can connect hosts directly to FC target ports on a single controller. Each host can connect to oneport, or to two ports for redundancy. The number of hosts is limited by the number of available targetports.

Direct-attached configurations typically need the FC ports set to loop mode. Be sure to follow therecommendation of your host operating system provider for FC port settings. You can use the DataONTAP fcp config mediatype command to set the target ports.

Note: The FC target port numbers in the following figure are examples. The actual port numbersmight vary depending on whether you are using onboard ports or FC target expansion adapters. Ifyou are using FC target expansion adapters, the target port numbers also depend on the expansionslots into which your target expansion adapters are installed.

36 | Fibre Channel and iSCSI Configuration Guide for the Data ONTAP 7.3 Release Family

Page 37: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

Figure 12: 31xx direct-attached single-controller configurations

Attribute Value

Fully redundant No, due to the single controller

Type of fabric None

Different host operating systems Yes, with multiple-host configurations

FC ports or adapters One to the maximum number of supported onboard FC ports percontroller

One to the maximum number of supported 4-Gb or 8-Gb FCtarget expansion adapters

Type of configuration Single-controller configuration

Related references

31xx target port configuration recommendations on page 32

31xx: Direct-attached active/active configurationYou can connect hosts directly to FC target ports on both controllers in an active/activeconfiguration. The number of hosts is limited by the number of available target ports.

Direct-attached configurations typically need the FC ports set to loop mode. Be sure to follow therecommendation of your host operating system provider for FC port settings. You can use the DataONTAP fcp config mediatype command to set the target ports.

Note: The FC target port numbers in the following figure are examples. The actual port numbersmight vary depending on whether you are using onboard ports or FC target expansion adapters. If

Fibre Channel topologies | 37

Page 38: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

you are using FC target expansion adapters, the target port numbers also depend on the expansionslots into which your target expansion adapters are installed.

Figure 13: 31xx direct-attached active/active configuration

Attribute Value

Fully redundant Yes

Type of fabric None

FC ports or adapters One to the maximum number of supported onboard FC ports per controller

One to the maximum number of supported 4-Gb or 8-Gb FC targetexpansion adapters

Type of configuration Active/active configuration

Related references

31xx target port configuration recommendations on page 32

30xx supported topologies30xx systems are available in single-controller and active/active configurations.

Note: 3040 and 3070 controllers support the use of 8-Gb target expansion adapters beginning withData ONTAP 7.3.1. While 8-Gb and 4-Gb target expansion adapters function similarly, pleasenote that the 8-Gb target expansion adapters cannot be combined with 4-Gb targets (expansionadapters or onboard). 3020 and 3050 controllers do not support the use of 8-Gb target expansionadapters.

38 | Fibre Channel and iSCSI Configuration Guide for the Data ONTAP 7.3 Release Family

Page 39: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

3020 and 3050 controllers support 2-Gb or 4-Gb FC target connections, but you cannot use both onthe same controller or on two different controllers in an active/active configuration. If you use targetexpansion adapters, then you can only use onboard adapters as initiators.

Only single_image cfmode is supported with new installations of the Data ONTAP 7.3 release familysoftware. For 3020 and 3050 controllers running partner or standby cfmode with earlier versions ofData ONTAP, those cfmodes continue to be supported when upgrading the controllers to DataONTAP 7.3. However, converting to single_image cfmode is recommended.

Next topics

30xx target port configuration recommendations on page 39

3040 and 3070 supported topologies on page 39

3020 and 3050 supported topologies on page 45

30xx target port configuration recommendationsFor best performance and highest availability, use the recommended FC target port configuration.

The port pairs on a 30xx controller that share an ASIC are 0a+0b, 0c+0d.

The following table shows the preferred port usage order for onboard FC target ports. For targetexpansion adapters, the preferred slot order is given in the System Configuration Guide for theversion of Data ONTAP software being used by the controllers.

Number of target ports Ports

1 0d

2 0d, 0b

3 0d, 0b, 0c

4 0d, 0b, 0c, 0a

3040 and 3070 supported topologies3040 and 3070 systems are available in single-controller and active/active configurations.

The 3040 and 3070 controllers have four onboard 4-Gb FC ports per controller and each port can beconfigured as either an FC target port or an initiator port. For example, you can configure two portsas SAN targets and two ports as initiators for disk shelves.

Next topics

3040 and 3070 : Single-fabric single-controller configuration on page 40

3040 and 3070 : Single-fabric active/active configuration on page 41

3040 and 3070 : Multifabric active/active configuration on page 42

Fibre Channel topologies | 39

Page 40: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

3040 and 3070 : Direct-attached single-controller configurations on page 43

3040 and 3070 : Direct-attached active/active configuration on page 44

3040 and 3070: Single-fabric single-controller configuration

You can connect hosts to single controllers using a single FC switch. If you use multiple paths,multipathing software is required on the host.

Note: The FC target port numbers in the following figure are examples. The actual port numbersmight vary depending on whether you are using onboard ports or FC target expansion adapters. Ifyou are using FC target expansion adapters, the target port numbers also depend on the expansionslots into which your target expansion adapters are installed.

Figure 14: 3040 and 3070 single-fabric single-controller configuration

Attribute Value

Fully redundant No, due to the single fabric and single controller

Type of fabric Single fabric

Different host operating systems Yes, with multiple-host configurations

FC ports or adapters One to the maximum number of supported onboard FC ports percontroller

One to the maximum number of supported 4-Gb or 8-Gb FCtarget expansion adapters

Type of configuration Single-controller configuration

40 | Fibre Channel and iSCSI Configuration Guide for the Data ONTAP 7.3 Release Family

Page 41: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

Related references

30xx target port configuration recommendations on page 39

3040 and 3070: Single-fabric active/active configuration

You can connect hosts to both controllers in an active/active configuration using a single FC switch.

Note: The FC target port numbers in the following figure are examples. The actual port numbersmight vary depending on whether you are using onboard ports or FC target expansion adapters. Ifyou are using FC target expansion adapters, the target port numbers also depend on the expansionslots into which your target expansion adapters are installed.

Figure 15: 3040 and 3070 single-fabric active/active configuration

Attribute Value

Fully redundant No, due to the single fabric

Type of fabric Single fabric

Different host operating systems Yes, with multiple-host configurations

FC ports or adapters One to the maximum number of supported onboard FC ports percontroller

One to the maximum number of supported 4-Gb or 8-Gb FCports using target expansion adapters per controller

Type of configuration Active/active configuration

Fibre Channel topologies | 41

Page 42: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

Related references

30xx target port configuration recommendations on page 39

3040 and 3070: Multifabric active/active configuration

You can connect hosts to both controllers in an active/active configuration using two or more FCswitch fabrics for redundancy.

Note: The FC target port numbers in the following figure are examples. The actual port numbersmight vary depending on whether you are using onboard ports or FC target expansion adapters. Ifyou are using FC target expansion adapters, the target port numbers also depend on the expansionslots into which your target expansion adapters are installed.

Figure 16: 3040 and 3070 multifabric active/active configuration

Attribute Value

Fully redundant Yes

Type of fabric Multifabric

Different host operating systems Yes, with multiple-host configurations

FC ports or adapters One to the maximum number of supported onboard FC ports percontroller

One to the maximum number of supported 4-Gb or 8-Gb FCports using target expansion adapters per controller

42 | Fibre Channel and iSCSI Configuration Guide for the Data ONTAP 7.3 Release Family

Page 43: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

Attribute Value

Type of configuration Active/active configuration

Related references

30xx target port configuration recommendations on page 39

3040 and 3070: Direct-attached single-controller configurations

You can connect hosts directly to FC target ports on a single controller. Each host can connect to oneport, or to two ports for redundancy. The number of hosts is limited by the number of available targetports.

Direct-attached configurations typically need the FC ports set to loop mode. Be sure to follow therecommendation of your host operating system provider for FC port settings. You can use the DataONTAP fcp config mediatype command to set the target ports.

Figure 17: 3040 and 3070 direct-attached single-controller configurations

Attribute Value

Fully redundant No, due to the single controller

Type of fabric None

Different host operating systems Yes, with multiple-host configurations

FC ports or adapters One to the maximum number of supported onboard FC ports percontroller

One to the maximum number of supported 4-Gb or 8-Gb FCtarget expansion adapters

Fibre Channel topologies | 43

Page 44: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

Attribute Value

Type of configuration Single-controller configuration

Related references

30xx target port configuration recommendations on page 39

3040 and 3070: Direct-attached active/active configuration

You can connect hosts directly to FC target ports on both controllers in an active/activeconfiguration. The number of hosts is limited by the number of available target ports.

Direct-attached configurations typically need the FC ports set to loop mode. Be sure to follow therecommendation of your host operating system provider for FC port settings. You can use the DataONTAP fcp config mediatype command to set the target ports.

Note: The FC target port numbers in the following figure are examples. The actual port numbersmight vary depending on whether you are using onboard ports or FC target expansion adapters. Ifyou are using FC target expansion adapters, the target port numbers also depend on the expansionslots into which your target expansion adapters are installed.

Figure 18: 3040 and 3070 direct-attached active/active configuration

Attribute Value

Fully redundant Yes

Type of fabric None

FC ports or adapters One to the maximum number of supported onboard FC ports per controller

One to the maximum number of supported 4-Gb or 8-Gb FC targetexpansion adapters

44 | Fibre Channel and iSCSI Configuration Guide for the Data ONTAP 7.3 Release Family

Page 45: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

Attribute Value

Type of configuration Active/active configuration

Related references

30xx target port configuration recommendations on page 39

3020 and 3050 supported topologies3020 and 3050 systems are available in single-controller and active/active configurations.

The 3020 and 3050 controllers have four onboard 2-Gb FC ports per controller and each port can beconfigured as either an FC target port or an initiator port.

2-Gb FC target ports are supported with the onboard 2-Gb FC ports on the 3020 and 3050controllers. 4-Gb FC target connections are supported with 4-Gb FC target HBAs.

Each 3020 and 3050 controller supports 2-Gb or 4-Gb FC target HBAs, but you cannot use both onthe same controller or on two different controllers in an active/active configuration. If you use targetexpansion HBAs, then you can only use onboard ports as initiators.

Next topics

3020 and 3050 : Single-fabric single-controller configuration on page 45

3020 and 3050 : Single-fabric active/active configuration on page 46

3020 and 3050 : Multifabric active/active configuration on page 47

3020 and 3050 : Direct-attached single-controller configurations on page 49

3020 and 3050 : Direct-attached active/active configuration on page 50

3020 and 3050: Single-fabric single-controller configuration

You can connect hosts to single controllers using a single FC switch. If you use multiple paths,multipathing software is required on the host.

Note: The FC target port numbers in the following figure are examples. The actual port numbersmight vary depending on whether you are using onboard ports or FC target expansion adapters. Ifyou are using FC target expansion adapters, the target port numbers also depend on the expansionslots into which your target expansion adapters are installed.

Fibre Channel topologies | 45

Page 46: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

Figure 19: 3020 and 3050 single-fabric single-controller configuration

Attribute Value

Fully redundant No, due to the single fabric and single controller

Type of fabric Single fabric

FC ports or adapters One to the maximum number of supported onboard FC ports per controller

One to the maximum number of supported 2-Gb or 4-Gb FC targetexpansion adapters

Type of configuration Single-controller configuration

Related references

30xx target port configuration recommendations on page 39

3020 and 3050: Single-fabric active/active configuration

You can connect hosts to both controllers in an active/active configuration using a single FC switch.

Note: The FC target port numbers in the following figure are examples. The actual port numbersmight vary depending on whether you are using onboard ports or FC target expansion adapters. Ifyou are using FC target expansion adapters, the target port numbers also depend on the expansionslots into which your target expansion adapters are installed.

46 | Fibre Channel and iSCSI Configuration Guide for the Data ONTAP 7.3 Release Family

Page 47: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

Figure 20: 3020 and 3050 single-fabric active/active configuration

Attribute Value

Fully redundant No, due to the single fabric

Type of fabric Single fabric

Different host operating systems Yes, with multiple-host configurations

FC ports or adapters One to the maximum number of supported onboard FC ports percontroller

One to the maximum number of supported 2-Gb or 4-Gb FCports using target expansion adapters per controller

Type of configuration Active/active configuration

Related references

30xx target port configuration recommendations on page 39

3020 and 3050: Multifabric active/active configuration

You can connect hosts to both controllers in an active/active configuration using two or more FCswitch fabrics for redundancy.

Note: The FC target port numbers in the following figure are examples. The actual port numbersmight vary depending on whether you are using onboard ports or FC target expansion adapters. If

Fibre Channel topologies | 47

Page 48: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

you are using FC target expansion adapters, the target port numbers also depend on the expansionslots into which your target expansion adapters are installed.

Figure 21: 3020 and 3050 multifabric active/active configuration

Attribute Value

Fully redundant Yes

Type of fabric Multifabric

Different host operating systems Yes, with multiple-host configurations

FC ports or adapters One to the maximum number of supported onboard FC ports percontroller

One to the maximum number of supported 2-Gb or 4-Gb FCports using target expansion adapters per controller

Type of configuration Active/active configuration

Related references

30xx target port configuration recommendations on page 39

48 | Fibre Channel and iSCSI Configuration Guide for the Data ONTAP 7.3 Release Family

Page 49: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

3020 and 3050: Direct-attached single-controller configurations

You can connect hosts directly to FC target ports on a single controller. Each host can connect to oneport, or to two ports for redundancy. The number of hosts is limited by the number of available targetports.

Direct-attached configurations typically need the FC ports set to loop mode. Be sure to follow therecommendation of your host operating system provider for FC port settings. You can use the DataONTAP fcp config mediatype command to set the target ports.

Figure 22: 3020 and 3050 direct-attached single-controller configurations

Attribute Value

Fully redundant No, due to the single controller

Type of fabric None

Different host operating systems Yes, with multiple-host configurations

FC ports or adapters One to the maximum number of supported onboard FC ports percontroller

One to the maximum number of supported 2-Gb or 4-Gb FCtarget expansion adapters

Type of configuration Single-controller configuration

Related references

30xx target port configuration recommendations on page 39

Fibre Channel topologies | 49

Page 50: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

3020 and 3050: Direct-attached active/active configuration

You can connect hosts directly to FC target ports on both controllers in an active/activeconfiguration. The number of hosts is limited by the number of available target ports.

Direct-attached configurations typically need the FC ports set to loop mode. Be sure to follow therecommendation of your host operating system provider for FC port settings. You can use the DataONTAP fcp config mediatype command to set the target ports.

Note: The FC target port numbers in the following figure are examples. The actual port numbersmight vary depending on whether you are using onboard ports or FC target expansion adapters. Ifyou are using FC target expansion adapters, the target port numbers also depend on the expansionslots into which your target expansion adapters are installed.

Figure 23: 3020 and 3050 direct-attached active/active configuration

Attribute Value

Fully redundant Yes, if configured with multipathing software

Type of fabric None

FC ports or adapters One to the maximum number of supported onboard FC ports per controller

One to the maximum number of supported 2-Gb or 4-Gb FC targetexpansion adapters

Type of configuration Active/active configuration

Related references

30xx target port configuration recommendations on page 39

50 | Fibre Channel and iSCSI Configuration Guide for the Data ONTAP 7.3 Release Family

Page 51: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

FAS20xx supported topologiesFAS20xx systems are available in single-controller and active/active configurations and aresupported by single_image cfmode only.

The FAS20xx have two onboard 4-Gb FC ports per controller. You can configure these ports aseither target ports for FC SANs or initiator ports for connecting to disk shelves.

Next topics

FAS20xx : Single-fabric single-controller configuration on page 51

FAS20xx : Single-fabric active/active configuration on page 52

FAS20xx : Multifabric single-controller configuration on page 53

FAS20xx : Multifabric active/active configuration on page 54

FAS20xx : Direct-attached single-controller configurations on page 55

FAS20xx : Direct-attached active/active configuration on page 56

FAS20xx: Single-fabric single-controller configurationYou can connect hosts to single controllers using a single FC switch. If you use multiple paths,multipathing software is required on the host.

Note: The FC target port numbers in the following illustration are examples. The actual portnumbers might vary depending on whether you are using onboard ports or an FC target expansionadapter. The FC target expansion adapter is supported only for the FAS2050 controller.

Figure 24: FAS20xx single-fabric single-controller configuration

Fibre Channel topologies | 51

Page 52: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

Attribute Value

Fully redundant No, due to the single fabric and single controller

Type of fabric Single fabric

Different host operating systems Yes, with multiple-host configurations

FC ports or adapters One to the maximum number of supported onboard FC ports percontroller

For FAS2050 only, one supported 4-Gb or 8-Gb FC targetexpansion adapter

Type of configuration Single-controller configuration

FAS20xx: Single-fabric active/active configurationYou can connect hosts to both controllers in an active/active configuration using a single FC switch.

Note: The FC target port numbers in the following illustration are examples. The actual portnumbers might vary depending on whether you are using onboard ports or an FC target expansionadapter. The FC target expansion adapter is supported only for the FAS2050 controller.

Figure 25: FAS20xx single-fabric active/active configuration

52 | Fibre Channel and iSCSI Configuration Guide for the Data ONTAP 7.3 Release Family

Page 53: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

Attribute Value

Fully redundant No, due to the single fabric

Type of fabric Single fabric

Different host operating systems Yes, with multiple-host configurations

FC ports or adapters One to the maximum number of supported onboard FC ports percontroller

For FAS2050 only, one supported 4-Gb or 8-Gb FC targetexpansion adapter

Type of configuration Active/active configuration

FAS20xx: Multifabric single-controller configurationYou can connect hosts to one controller using two or more FC switch fabrics for redundancy.

Note: The FC target port numbers in the following illustration are examples. The actual portnumbers might vary depending on whether you are using onboard ports or an FC target expansionadapter. The FC target expansion adapter is supported only for the FAS2050 controller.

Figure 26: FAS20xx multifabric single-controller configuration

Attribute Value

Fully redundant No, due to the single controller

Type of fabric Multifabric

Fibre Channel topologies | 53

Page 54: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

Attribute Value

Different host operating systems Yes, with multiple-host configurations

FC ports or adapters One to the maximum number of supported onboard FC ports percontroller

For FAS2050 only, one supported 4-Gb or 8-Gb FC targetexpansion adapter

Type of configuration Single-controller configuration

FAS20xx: Multifabric active/active configurationYou can connect hosts to both controllers in an active/active configuration using two or more FCswitch fabrics for redundancy.

Note: The FC target port numbers in the following illustration are examples. The actual portnumbers might vary depending on whether you are using onboard ports or an FC target expansionadapter. The FC target expansion adapter is supported only for the FAS2050 controller.

Figure 27: FAS20xx multifabric active/active configuration

Attribute Value

Fully redundant Yes

Type of fabric Multifabric

54 | Fibre Channel and iSCSI Configuration Guide for the Data ONTAP 7.3 Release Family

Page 55: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

Attribute Value

Different host operating systems Yes, with multiple-host configurations

FC ports or adapters One to the maximum number of supported onboard FC ports percontroller

For FAS2050 only, one supported 4-Gb or 8-Gb FC targetexpansion adapter

Type of configuration Active/active configuration

FAS20xx: Direct-attached single-controller configurationsYou can connect hosts directly to FC target ports on a single controller. Each host can connect to oneport, or to two ports for redundancy. The number of hosts is limited by the number of available targetports.

Direct-attached configurations typically need the FC ports set to loop mode. Be sure to follow therecommendation of your host operating system provider for FC port settings. You can use the DataONTAP fcp config mediatype command to set the target ports.

Note: The FC target port numbers in the following illustration are examples. The actual portnumbers might vary depending on whether you are using onboard ports or an FC target expansionadapter. The FC target expansion adapter is supported only for the FAS2050 controller.

Figure 28: FAS20xx direct-attached single-controller configurations

Attribute Value

Fully redundant No, due to the single controller

Type of fabric None

Different host operating systems Yes, with multiple-host configurations

Fibre Channel topologies | 55

Page 56: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

Attribute Value

FC ports or adapters One to the maximum number of supported onboard FC ports percontroller

For FAS2050 only, one supported 4-Gb or 8-Gb FC targetexpansion adapter

Type of configuration Single-controller configuration

FAS20xx: Direct-attached active/active configurationYou can connect hosts directly to FC target ports on both controllers in an active/activeconfiguration. The number of hosts is limited by the number of available target ports.

Direct-attached configurations typically need the FC ports set to loop mode. Be sure to follow therecommendation of your host operating system provider for FC port settings. You can use the DataONTAP fcp config mediatype command to set the target ports.

Note: The FC target port numbers in the following illustration are examples. The actual portnumbers might vary depending on whether you are using onboard ports or an FC target expansionadapter. The FC target expansion adapter is supported only for the FAS2050 controller.

Figure 29: FAS20xx direct-attached active/active configuration

Attribute Value

Fully redundant Yes

Type of fabric None

Different host operating systems Yes, with multiple-host configurations

56 | Fibre Channel and iSCSI Configuration Guide for the Data ONTAP 7.3 Release Family

Page 57: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

Attribute Value

FC ports or adapters One to the maximum number of supported onboard FC ports percontroller

For FAS2050 only, one supported 4-Gb or 8-Gb FC targetexpansion adapter

Type of configuration Active/active configuration

FAS270/GF270c supported topologiesFAS270/GF270c systems are available in active/active configurations.

Next topics

FAS270/GF270c : Single-fabric active/active configuration on page 57

FAS270/GF270c : Multifabric active/active configuration on page 58

FAS270/GF270c : Direct-attached configurations on page 59

FAS270/GF270c: Single-fabric active/active configurationYou can connect hosts to both controllers in an active/active configuration using a single FC switch.

FC Fabric 1

Host 1 Host 2 Host N

Controller 1 / Controller 2

Figure 30: FAS270/GF270c single-fabric active/active configuration

Fibre Channel topologies | 57

Page 58: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

Attribute Value

Fully Redundant No, due to the single fabric

Type of fabric Single fabric

Different host operating systems Yes, with multiple-host configurations

Type of configuration Active/active configuration

FAS270/GF270c: Multifabric active/active configurationYou can connect hosts to both controllers in an active/active configuration using two or more FCswitch fabrics for redundancy.

Host 1

FC Fabric 1 FC Fabric 2

Host 2 Host 3 Host N

Controller 1 and Controller 2

Figure 31: FAS270/GF270c multifabric active/active configuration

Attribute Value

Fully redundant Yes, if a host is dual-attached

No, if a host is single-attached

Type of fabric Multifabric

Different host operating systems Yes, with multiple-host configurations

Type of configuration Active/active configuration

58 | Fibre Channel and iSCSI Configuration Guide for the Data ONTAP 7.3 Release Family

Page 59: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

FAS270/GF270c: Direct-attached configurationsYou can connect hosts directly to FC target ports on a single controller or an Active/activeconfiguration. The number of hosts is limited by the number of available target ports.

Direct-attached configurations typically need the FC ports set to loop mode. Be sure to follow therecommendation of your host operating system provider for FC port settings. You can use the DataONTAP fcp config mediatype command to set the target ports.

Host 1 Host 1 Host 1 Host 2

Controller 1 Controller 1 / Controller 2 Controller 1 / Controller 2

Figure 32: FAS270/GF270c direct-attached configurations

Attribute Value

Fully Redundant First configuration: No, due to the single controller

Second configuration: Yes

Third configuration: No, due to a single connection from storagesystem to hosts

Type of fabric None

Different host operatingsystems

Yes, with multiple-host configurations

Type of configuration First configuration: Single controller configuration

Second configuration: Active/active configuration

Third configuration: Active/active configuration

Fibre Channel topologies | 59

Page 60: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

Other Fibre Channel topologiesOther FC systems, such as the 900 series and R200, are no longer sold, but are still supported.

R200 and 900 series supported topologiesR200 and 900 series systems are available in single controller and active/active configurations.

Next topics

R200 and 900 series: Single-fabric single-controller configuration on page 61

900 series: Single-fabric active/active configuration on page 62

900 series: Multifabric active/active configuration , one dual-ported FC target expansionadapter on page 63

900 series: Multifabric active/active configuration , two dual-ported FC target expansionadapters on page 64

900 series: Multifabric active/active configuration , four dual-ported FC target expansionadapters on page 65

R200 and 900 series: Direct-attached configurations on page 66

60 | Fibre Channel and iSCSI Configuration Guide for the Data ONTAP 7.3 Release Family

Page 61: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

R200 and 900 series: Single-fabric single-controller configuration

You can connect hosts to single controllers using a single FC switch. If you use multiple paths,multipathing software is required on the host.

FC Fabric 1

Controller 1

Host 1 Host 2 Host N

Figure 33: R200 and 900 series single-fabric single-controller configuration

Attribute Value

Fully redundant No, due to the single fabric and single controller

Type of fabric Single fabric

Different host operating systems Yes, with multiple-host configurations

FC ports or adapters One to four connections to the fabric, depending on the numberof target expansion adapters installed in each controller

Type of configuration Single controller configuration

Fibre Channel topologies | 61

Page 62: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

900 series: Single-fabric active/active configuration

You can connect hosts to both controllers in an active/active configuration using a single FC switch.

The following diagram shows the minimum FC cabling configuration for connecting an active/activeconfiguration to a single fabric.

Figure 34: 900 series single-fabric active/active configuration

Attribute Value

Fully redundant No, due to the single fabric

Type of fabric Single fabric

Different host operating systems Yes, with multiple-host configurations

FC ports or adapters Two to 16 connections to the fabric, depending on the number oftarget expansion adapters connected to the system

Type of configuration Active/active configuration

62 | Fibre Channel and iSCSI Configuration Guide for the Data ONTAP 7.3 Release Family

Page 63: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

900 series: Multifabric active/active configuration, one dual-ported FC target expansionadapter

You can connect hosts to both controllers in an active/active configuration using two or more FCswitch fabrics and a single FC target expansion adapter in each controller.

Figure 35: 900 series multifabric active/active configuration

Attribute Value

Fully redundant Yes, when the host has multipathing software properlyconfigured

Type of fabric Multifabric

Different host operating systems Yes, with multiple-host configurations

FC ports or adapters One dual-ported FC target expansion adapter per controller

Type of configuration Active/active configuration

Fibre Channel topologies | 63

Page 64: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

900 series: Multifabric active/active configuration, two dual-ported FC target expansionadapters

You can connect hosts to both controllers in an active/active configuration using two or more FCswitch fabrics and two FC target expansion adapters in each controller.

Note: The port numbers used in the following figure (7a, 7b, 9a, and 9b) are examples. The actualport numbers might vary, depending on the expansion slot in which the FC target expansionadapters are installed.

Figure 36: 900 series multifabric active/active configuration

Attribute Value

Fully redundant Yes, when the host is dually attached to two physically separatefabrics

Type of fabric Multifabric

Different host operating systems Yes, with multiple-host configurations

FC ports or adapters Two dual-ported FC target expansion adapters per controller

Type of configuration Active/active configuration

64 | Fibre Channel and iSCSI Configuration Guide for the Data ONTAP 7.3 Release Family

Page 65: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

900 series: Multifabric active/active configuration, four dual-ported FC target expansionadapters

You can connect hosts to both controllers in an active/active configuration using two or more FCswitch fabrics and four FC target expansion adapters in each controller.

This configuration is used in combination with larger, more complex fabrics where the eightconnections between the controller and the fabric are not attached to a single FC switch.

Figure 37: 900 series multifabric active/active configuration

Attribute Value

Fully redundant Yes

Type of fabric Multifabric

Different host operating systems Yes, with multiple-host configurations

FC ports or adapters Four dual-ported FC target expansion adapters per controller

Type of configuration Active/active configuration

Fibre Channel topologies | 65

Page 66: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

R200 and 900 series: Direct-attached configurations

You can connect hosts directly to FC target ports on a single controller. Each host can connect to oneport, or to two ports for redundancy. The number of hosts is limited by the number of available targetports.

Direct-attached configurations typically need the FC ports set to loop mode. Be sure to follow therecommendation of your host operating system provider for FC port settings. You can use the DataONTAP fcp config mediatype command to set the target ports.

Host 1Host 1

Host 2

Host 3

Host N

Host 2

Controller 1 Controller 1 Controller 1

Host 1

Figure 38: 900 series, or R200 direct-attached single-controller configurations

Attribute Value

Fully redundant No, due to the single controller

Type of fabric None

Different host operating systems Yes, with multiple-host configurations

Type of configuration Single controller configuration

66 | Fibre Channel and iSCSI Configuration Guide for the Data ONTAP 7.3 Release Family

Page 67: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

Fibre Channel over Ethernet overview

Fibre Channel over Ethernet (FCoE) is a new model for connecting hosts to storage systems. FCoE isvery similar to traditional Fibre Channel (FC), as it maintains existing FC management and controls,but the hardware transport is a lossless 10-gigabit Ethernet network.

Setting up an FCoE connection requires one or more supported converged network adapters (CNAs)in the host, connected to a supported data center bridging (DCB) Ethernet switch. The CNA is aconsolidation point and effectively serves as both an HBA and an Ethernet adapter.

As an HBA, the presentation to the host is FC targets and all FC traffic is sent out as FC framesmapped into Ethernet packets (FC over Ethernet). The 10 gigabit Ethernet adapter is also used forhost IP traffic, such as iSCSI, NFS, and HTTP. Both FCoE and IP communications through the CNArun over the same 10 gigabit Ethernet port, which connects to the DCB switch.

Note: Using the FCoE target adapter in the storage controller for non-FCoE IP traffic such as NFSor iSCSI is NOT currently supported.

In general, you configure and use FCoE connections just like traditional FC connections.

Note: For detailed information about how to set up and configure your host to run FCoE, see yourappropriate host documentation.

Next topics

FCoE initiator and target combinations on page 67

Fibre Channel over Ethernet supported topologies on page 68

FCoE initiator and target combinationsCertain combinations of FCoE and traditional FC initiators and targets are supported.

FCoE initiators

You can use FCoE initiators in host computers with both FCoE and traditional FC targets in storagecontrollers. The FCoE initiator must connect to an FCoE DCB (data center bridging) switch; directconnection to a target is not supported.

The following table lists the supported combinations.

Initiator Target Supported?

FC FC Yes

FC FCoE No

Fibre Channel over Ethernet overview | 67

Page 68: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

Initiator Target Supported?

FCoE FC Yes

FCoE FCoE Yes with Data ONTAP 7.3.2 andlater

FCoE targets

You can mix FCoE target ports with 4Gb or 8Gb FC ports on the storage controller regardless ofwhether the FC ports are add-in target adapters or onboard ports. You can have both FCoE and FCtarget adapters in the same storage controller.

Note: Using the FCoE target adapter for non-FCoE IP traffic such as NFS or iSCSI is NOTcurrently supported.

Note: The rules for combining onboard and expansion FC ports still apply.

Related references

FC onboard and expansion port combinations on page 22

Fibre Channel over Ethernet supported topologiesSupported FCoE native configurations include single-fabric and multifabric topologies. Both single-controller and active/active configurations are supported.

Supported storage systems with native FCoE target expansion adapters are the FAS60xx series, theFAS31xx series, and the FAS3040 and FAS3070.

In active/active configurations, only single_image cfmode is supported.

Native FCoE configurations using an FCoE target adapter are supported only in the Data ONTAP 7.3release family.

The FCoE initiator with FC target configuration is also supported on FAS60xx, FAS31xx, FAS30xx,FAS20xx, FAS270, and FAS900 series storage systems in Data ONTAP 7.2.5.1 and later using anFCoE/DCB switch.

Note: The following configuration diagrams are examples only. Most supported FC and iSCSIconfigurations on supported storage systems can be substituted for the example FC or iSCSIconfigurations in the following diagrams. However, direct-attached configurations are notsupported in FCoE.

Note: While iSCSI configurations allow any number of Ethernet switches, there must be noadditional Ethernet switches in FCoE configurations. The CNA must connect directly to the FCoEswitch.

68 | Fibre Channel and iSCSI Configuration Guide for the Data ONTAP 7.3 Release Family

Page 69: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

Next topics

FCoE: FCoE initiator to FC target configuration on page 69

FCoE: FCoE end-to-end configuration on page 70

FCoE: FCoE mixed with FC on page 71

FCoE: FCoE mixed with IP storage protocols on page 73

FCoE: FCoE initiator to FC target configurationYou can connect hosts to both controllers in an active/active configuration using FCoE initiatorsthrough data center bridging (DCB) Ethernet switches to FC target ports.

The FCoE initiator always connects to a supported DCB switch. The DCB switch can connectdirectly to an FC target, or can connect through FC switches to the FC target.

Note: The FC target expansion adapter port numbers (2a and 2b) in the following figure areexamples. The actual port numbers might vary, depending on the expansion slot in which the FCtarget expansion adapter is installed.

Host 1

CNA Ports CNA Ports CNA Ports

Switch/Fabric 1

Controller 1

Controller 2

0d0b

0d0b

Switch/Fabric 2

Host 2 Host N

FCoE Switch

IP NetworkIP Network

FCoE Switch

DCBPorts

DCBPorts

FC Ports FC Ports

Figure 39: FCoE initiator to FC dual-fabric active/active configuration

Fibre Channel over Ethernet overview | 69

Page 70: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

Attribute Value

Fully redundant Yes

Type of fabric Dual fabric

Different host operating systems Yes, with multiple-host configurations

FC ports or adapters One to the maximum number of supported onboard FC ports percontroller

One to the maximum number of supported 4-Gb or 8-Gb FCports per controller using FC target expansion adapters

Multipathing required Yes

Type of configuration Active/active configuration

FCoE: FCoE end-to-end configurationYou can connect hosts to both controllers in an active/active configuration using FCoE initiatorsthrough DCB switches to FCoE target ports.

The FCoE initiator and FCoE target must connect to the same supported DCB switch. You can usemultiple switches for redundant paths, but only one DCB switch in a given path.

Note: The FCoE target expansion adapter port numbers (2a and 2b) in the following figure areexamples. The actual port numbers might vary, depending on the expansion slot in which theFCoE target expansion adapter is installed.

70 | Fibre Channel and iSCSI Configuration Guide for the Data ONTAP 7.3 Release Family

Page 71: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

Host 1

CNA Ports

CNA Ports

CNA Ports

CNA Ports CNA Ports

Controller 1

Controller 2

2b2a

2b2a

Host 2 Host N

FCoE Switch

IP NetworkIP Network

FCoE Switch

DCBPorts

DCBPorts

DCBPorts

DCBPorts

Figure 40: FCoE end-to-end

Attribute Value

Fully redundant Yes

Type of fabric Dual fabric

Different host operating systems Yes, with multiple host-configurations

FCoE ports or adapters One or more FCoE target expansion adapters per controller

Multipathing required Yes

Type of configuration Active/active configuration

FCoE: FCoE mixed with FCYou can connect hosts to both controllers in an active/active configuration using FCoE initiatorsthrough data center bridging (DCB) Ethernet switches to FCoE and FC mixed target ports.

The FCoE initiator and FCoE target must connect to the same supported DCB switch. The DCBswitch can connect directly to the FC target, or can connect through FC switches to the FC target.You can use multiple DCB switches for redundant paths, but only one DCB switch in a given path.

Fibre Channel over Ethernet overview | 71

Page 72: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

Note: The FCoE target expansion adapter port numbers (2a and 2b) and FC target port numbers(4a and 4b) are examples. The actual port numbers might vary, depending on the expansion slotsin which the FCoE target expansion adapter and FC target expansion adapter are installed.

Host 1

Switch/Fabric 1

Controller 1

CNA Ports

CNA Ports

Controller 2

0d0b

0d0b

2b2a

2a2b

Switch/Fabric 2

Host 2 Host N

CNA Ports CNA Ports CNA Ports

FCoE Switch

IP NetworkIP Network

FCoE Switch

DCBPorts

DCBPorts

DCBPorts

DCBPorts

FCPorts

FCPorts

Figure 41: FCoE mixed with FC

Attribute Value

Fully redundant Yes

Type of fabric Dual fabric

Different host operating systems Yes, with multiple-host configurations

72 | Fibre Channel and iSCSI Configuration Guide for the Data ONTAP 7.3 Release Family

Page 73: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

Attribute Value

FC/FCoE ports or adapters One to the maximum number of supported onboard FC ports percontroller

One or more FCoE target expansion adapters per controller

At least one 4-Gb or 8-Gb FC target expansion adapter percontroller

Multipathing required Yes

Type of configuration Active/active configuration

FCoE: FCoE mixed with IP storage protocolsYou can connect hosts to both controllers in an active/active configuration using FCoE initiatorsthrough data center bridging (DCB) Ethernet switches to FCoE target ports. You can also run non-FCoE IP traffic through the same switches.

The FCoE initiator and FCoE target must connect to the same supported DCB switch. You can usemultiple switches for redundant paths, but only one DCB switch in a given path.

Note: The FCoE ports are connected to DCB ports on the DCB switches. Ports used to connectiSCSI are not required to be DCB ports; they can also be regular (non-DCB) Ethernet ports. Theseports can also be used to carry NFS, CIFS, or other IP traffic. The use of FCoE does not add anyadditional restrictions or limitations on the configuration or use of iSCSI, NFS, CIFS, or other IPtraffic.

Note: Using the FCoE target adapter for non-FCoE IP traffic such as NFS or iSCSI is NOTcurrently supported.

Note: The FCoE target expansion adapter port numbers (2a and 2b) and the Ethernet port numbers(e0a and e0b) in the following figure are examples. The actual port numbers might vary,depending on the expansion slots in which the FCoE target expansion adapters are installed.

Fibre Channel over Ethernet overview | 73

Page 74: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

CNA Ports CNA Ports CNA Ports

CNA Ports

CNA Ports

Host 1

Controller 1

Controller 2

2b2a

2b2a

e0a e0b

e0ae0b

Host 2 Host N

FCoE Switch

IP NetworkIP Network

FCoE Switch

DCBPorts

DCBPorts

DCBPorts

DCB/Ethernet

Ports

DCBPorts

DCB/Ethernet

Ports

Figure 42: FCoE mixed with IP storage protocols

Attribute Value

Fully redundant Yes

Type of fabric Dual fabric

Different host operating systems Yes, with multiple-host configurations

FCoE ports or adapters One or more FCoE target expansion adapters per controller

Multipathing required Yes

Type of configuration Active/active configuration

74 | Fibre Channel and iSCSI Configuration Guide for the Data ONTAP 7.3 Release Family

Page 75: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

Fibre Channel and FCoE zoning

An FC or FCoE zone is a subset of the fabric that consists of a group of FC or FCoE ports or nodesthat can communicate with each other. You must contain the nodes within the same zone to allowcommunication.

Reasons for zoning

• Zoning reduces or eliminates cross talk between initiator HBAs. This occurs even in smallenvironments and is one of the best arguments for implementing zoning. The logical fabricsubsets created by zoning eliminate cross-talk problems.

• Zoning reduces the number of available paths to a particular FC or FCoE port and reduces thenumber of paths between a host and a particular LUN that is visible. For example, some host OSmultipathing solutions have a limit on the number of paths they can manage. Zoning can reducethe number of paths that an OS multipathing driver sees. If a host does not have a multipathingsolution installed, you need to verify that only one path to a LUN is visible.

• Zoning increases security because there is limited access between different nodes of a SAN.• Zoning improves SAN reliability by isolating problems that occur and helps to reduce problem

resolution time by limiting the problem space.

Recommendations for zoning

• You should implement zoning anytime four or more hosts are connected to a SAN.• Although World Wide Node Name zoning is possible with some switch vendors, World Wide

Port Name zoning is recommended.• You should limit the zone size while still maintaining manageability. Multiple zones can overlap

to limit size. Ideally, a zone is defined for each host or host cluster.• You should use single-initiator zoning to eliminate crosstalk between initiator HBAs.

Next topics

Port zoning on page 76

World Wide Name based zoning on page 76

Individual zones on page 76

Single-fabric zoning on page 77

Dual-fabric active/active configuration zoning on page 78

Fibre Channel and FCoE zoning | 75

Page 76: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

Port zoningPort zoning, also referred to as hard zoning, specifies the unique fabric N_port IDs of the ports to beincluded within the zone. The switch and switch port are used to define the zone members.

Port zoning provides the following advantages:

• Port zoning offers improved security because it is not possible to breach the zoning by usingWWN spoofing. However, if someone has physical access to the switch, replacing a cable canallow access.

• In some environments, port zoning is easier to create and manage because you only work with theswitch or switch domain and port number.

World Wide Name based zoningWorld Wide Name based zoning (WWN) specifies the WWN of the members to be included withinthe zone. Depending on the switch vendor, either World Wide Node Name or World Wide PortNames can be used. You should use World Wide Port Name zoning when possible.

WWN zoning provides flexibility because access is not determined by where the device is physicallyconnected to the fabric. You can move a cable from one port to another without reconfiguring zones.

Individual zonesIn the standard zoning configuration for a simple environment where each host is shown in a separatezone, the zones overlap because the storage ports are included in each zone to allow each host toaccess the storage.

Each host can see all of the FC target ports but cannot see or interact with the other host ports.

Using port zoning, you can do this zoning configuration in advance even if all of the hosts are notpresent. You can define each zone to contain a single switch port for the host and switch ports onethrough four for the storage system.

For example, Zone 1 would consist of switch ports 1, 2, 3, 4 (storage ports) and 5 (Host1 port).Zone 2 would consist of switch ports 1, 2, 3, 4 (storage ports) and 6 (Host2 port), and so forth.

This diagram shows only a single fabric, but multiple fabrics are supported. Each subsequent fabrichas the same zone structure.

76 | Fibre Channel and iSCSI Configuration Guide for the Data ONTAP 7.3 Release Family

Page 77: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

Figure 43: Hosts in individual zones

Single-fabric zoningZoning and multipathing software used in conjunction prevent possible controller failure in a single-fabric environment. Without multipathing software in a single-fabric environment, hosts are notprotected from a possible controller failure.

In the following figure, Host1 and Host2 do not have multipathing software and are zoned so thatthere is only one path to each LUN (Zone 1). Therefore, Zone 1 contains only one of the two storageports.

Even though the host has only one HBA, both storage ports are included in Zone 2. The LUNs arevisible through two different paths, one going from the host FC port to storage port 0 and the othergoing from host FC port to storage port 1.

Because this figure contains only a single fabric, it is not fully redundant. However, as shown, Host3and Host4 have multipathing software that protects against a possible controller failure. They arezoned so that a path to the LUNs is available through each of the controllers.

Fibre Channel and FCoE zoning | 77

Page 78: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

Figure 44: Single-fabric zoning

Dual-fabric active/active configuration zoningZoning can separate hosts in a topology to eliminate HBA cross talk. Zoning can also prevent a hostfrom accessing LUNs from a storage system in a different zone.

The following figure shows a configuration where Host1 accesses LUNs from storage system 1 andHost2 accesses LUNs from storage system 2. Each storage system is an active/active configurationand both are fully redundant.

Multiple FAS270c storage systems are shown in this figure, but they are not necessary forredundancy.

78 | Fibre Channel and iSCSI Configuration Guide for the Data ONTAP 7.3 Release Family

Page 79: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

Figure 45: Dual-fabric zoning

Fibre Channel and FCoE zoning | 79

Page 80: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP
Page 81: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

Shared SAN configurations

Shared SAN configurations are defined as hosts that are attached to both NetApp and non-NetAppstorage arrays. Accessing NetApp arrays and other vendors' arrays from a single host is supported aslong as several requirements are met.

The following requirements must be met for support of accessing NetApp arrays and other vendors'arrays from a single host:

• Native Host OS multipathing or VERITAS DMP is used for multipathing (see exception for EMCPowerPath co-existence below)

• NetApp configuration requirements (such as timeout settings) as specified in the appropriateNetApp Host Utilities documents are met

• Single_image cfmode is used

Support for Native Host OS multipathing in combination with EMC PowerPath is supported for thefollowing configurations. For configurations that do meet these requirements, a PVR is required todetermine supportability.

Host Supported configuration

Windows EMC CLARiiON CX3-20, CX3-40, CX3-80 w/ PowerPath 4.5+ and connected to aNetApp storage system using Data ONTAP DSM for Windows MPIO

Solaris EMC CLARiiON CX3-20, CX3-40, CX3-80 / PowerPath 5+ and connected to aNetApp storage system using SUN Traffic Manager (MPxIO)

AIX EMC CLARiiON CX3-20, CX3-40, CX3-80 / PowerPath 5+ and connected to aNetApp storage system using AIX MPIO

Shared SAN configurations | 81

Page 82: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP
Page 83: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

ALUA configurations

ALUA (asymmetric logical unit access) is supported for certain combinations of host operatingsystems and Data ONTAP software.

ALUA is an industry standard protocol for identifying optimized paths between a storage system anda host computer. The administrator of the host computer does not need to manually select the paths touse.

ALUA is enabled or disabled on the igroup mapped to a NetApp LUN. The default ALUA setting inData ONTAP is disabled.

For information about using ALUA on a host, see the Host Utilities Installation and Setup Guide foryour host operating system. For information about enabling ALUA on the storage system, see theBlock Access Management Guide for iSCSI and FC for your version of Data ONTAP software.

Next topics

(Native OS, FC) AIX Host Utilities configurations that support ALUA on page 83

ESX configurations that support ALUA on page 85

HP-UX configurations that support ALUA on page 85

Linux configurations that support ALUA on page 86

(MPxIO/FC) Solaris Host Utilities configurations that support ALUA on page 86

Windows configurations that support ALUA on page 87

(Native OS, FC) AIX Host Utilities configurations thatsupport ALUA

The Native OS environment of the AIX Host Utilities supports ALUA on hosts using MPIO and theFC protocol.

The following AIX Native OS configurations support ALUA when you are using the FC protocol:

ALUA configurations | 83

Page 84: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

Host Utilities version Host requirements Data ONTAP version

Host Utilities 4.0, 4.1, and 5.0 • 5.2 TL8

• 5.3 TL9 SP4 with APARIZ53157

• 5.3 TL10 SP1 with APARIZ53158

• 6.1 TL2 SP4 with APARIZ53159

• 6.1 TL3 SP1 with APARIZ53160

Note: It is stronglyrecommended that, if you wantto use ALUA, you use the latestlevels of 5.3 TL9 or 6.1 TL2listed in the support matrix.ALUA is supported on all AIXService Streams that have thecorresponding APAR(authorized program analysisreport) installed. At the time thisdocument was prepared, theHost Utilities supported AIXService Streams with theAPARs listed above as well aswith APARs IZ53718, IZ53730,IZ53856, IZ54130, IZ57806,and IZ61549. If an APAR listedhere has not been publiclyreleased, contact IBM andrequest a copy.

7 3.1 and later

Note: The Host Utilities do not support ALUA with AIX environments using iSCSI or Veritas.

If you have a Native OS environment and do not want to use ALUA, you can use the dotpathsutility to specify path priorities. The Host Utilities provide dotpaths as part of the SAN Toolkit.

84 | Fibre Channel and iSCSI Configuration Guide for the Data ONTAP 7.3 Release Family

Page 85: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

ESX configurations that support ALUAESX hosts support ALUA with certain combinations of ESX, Data ONTAP, and guest operatingsystem configurations.

The following table lists which configurations support ALUA (asymmetric logical unit access). Usethe Interoperability Matrix to determine a supported combination of ESX, Data ONTAP, and HostUtilities software. Then enable or disable ALUA based on the information in the table.

ESX version Minimum Data ONTAP Windows guest in Microsoftcluster

Supported ?

4.0 or later 7.3.1 with single_image cfmode No Yes

4.0 or later 7.3.1 with single_image cfmode Yes No

3.5 and earlier any any No

Using ALUA is strongly recommend, but not required, for configurations that support ALUA. If youdo not use ALUA, be sure to set an optimized path using the tools supplied with ESX Host Utilitiesor Virtual Storage Console.

HP-UX configurations that support ALUAThe HP-UX Host Utilities support asymmetric logical unit access (ALUA). ALUA defines a standardset of SCSI commands for discovering and managing multiple paths to LUNs on FC and iSCSISANs.

You should enable ALUA when your HP-UX configuration supports it. ALUA is enabled on theigroup mapped to NetApp LUNs used by the HP-UX host. Currently, the default setting in DataONTAP software for ALUA is disabled.

You can use the NetApp Interoperability Matrix to determine a supported combination of HP-UX,Data ONTAP, Host Utilities, and Native MPIO software. You can then enable or disable ALUAbased on the information in the following table:

HP-UX version Native MPIO software Minimum Data ONTAP Supported

HP-UX 11iv3 ALUA 7.2.5 or later Yes

HP-UX 11iv2 ALUA None No

Note: ALUA is mandatory and is supported with HP UX 11iv3 September 2007 and later.

Related information

NetApp Interoperability Matrix - http://now.netapp.com/matrix/mtx/login.do

ALUA configurations | 85

Page 86: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

Linux configurations that support ALUAThe Linux Host Utilities supports asymmetric logical unit access (ALUA) on hosts running Red HatEnterprise Linux or SUSE Linux Enterprise Server. ALUA is also known as Target Port GroupSupport (TPGS).

DM-Multipath works with ALUA to determine which paths are primary paths and which paths aresecondary or partner paths to be used for failover.

ALUA is automatically enabled for Linux operating system. The following configurations supportALUA:

Host Utilities Version Host requirements Data ONTAP versions

Host Utilities 4.0 and later • Red Hat Enterprise Linux 5Update 1 and later

• SUSE Linux Enterprise Server10 SP1 and later

7.2.4 and later

Note: The Host Utilities do not support ALUA with both iSCSI and Veritas environments.

(MPxIO/FC) Solaris Host Utilities configurations that supportALUA

The MPxIO environment of the Solaris Host Utilities supports ALUA on hosts running either theSPARC processor or the x86 processor and using the FC protocol.

If you are using MPxIO with FC and active/active storage controllers with any of the followingconfigurations, you must have ALUA enabled:

Host Utilities version Host requirements Data ONTAP version

Host Utilities 4.1 through 5.1 Solaris 10 update 3 and later 7.2.1.1 and later

Host Utilities 4.0 Solaris 10 update 2 only withQLogic drivers and SPARCprocessors

7.2.1 and later

iSCSI Support Kit 3.0 Solaris 10 update 2 only 7.2.1 and later

Note: The Host Utilities do not support ALUA with iSCSI except with the 3.0 Support Kit. TheHost Utilities do not support ALUA in Veritas environments.

86 | Fibre Channel and iSCSI Configuration Guide for the Data ONTAP 7.3 Release Family

Page 87: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

Windows configurations that support ALUAWindows hosts support ALUA with certain combinations of Windows, Data ONTAP, Host Utilities,and MPIO software.

The following table lists configurations that support ALUA (asymmetric logical unit access). Use theInteroperability Matrix to determine a supported combination of Windows, Data ONTAP, HostUtilities, and MPIO software. Then enable or disable ALUA based on the information in the table.

Windows version MPIO software Minimum Data ONTAP Supported ?

Server 2008 Microsoft DSM (msdsm) 7.3.0 Yes

Server 2008 Data ONTAP DSM none No

Server 2008 Veritas DSM none No

Server 2003 all none No

ALUA is required when using the Microsoft DSM (msdsm).

ALUA configurations | 87

Page 88: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP
Page 89: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

Configuration limits

Configuration limits are available for FC , FCoE, and iSCSI topologies. In some cases, limits mightbe theoretically higher, but the published limits are tested and supported.

Next topics

Configuration limit parameters and definitions on page 89

Host operating system configuration limits for iSCSI and FC on page 91

60xx and 31xx single-controller limits on page 92

60xx and 31xx active/active configuration limits on page 93

30xx single-controller limits on page 95

30xx active/active configuration limits on page 96

FAS20xx single-controller limits on page 97

FAS20xx active/active configuration limits on page 98

FAS270/GF270 , 900 series, and R200 single-controller limits on page 100

FAS270c/GF270c and 900 series active/active configuration limits on page 101

Configuration limit parameters and definitionsThere are a number of parameters and definitions related to FC, FCoE, and iSCSI configurationlimits.

Parameter Definition

Visible target portsper host (iSCSI)

The maximum number of target iSCSI Ethernet ports that a host can see oraccess on iSCSI attached controllers.

Visible target portsper host (FC)

The maximum number of FC adapters that a host can see or access on theattached Fibre Channel controllers.

LUNs per host The maximum number of LUNs that you can map from the controllers to asingle host.

Paths per LUN The maximum number of accessible paths that a host has to a LUN.

Note: Using the maximum number of paths is not recommended.

Maximum LUN size The maximum size of an individual LUN on the respective operatingsystem.

Configuration limits | 89

Page 90: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

Parameter Definition

LUNs per controller The maximum number of LUNs that you can configure per controller,including cloned LUNs and LUNs contained within cloned volumes. LUNscontained in Snapshot copies do not count in this limit and there is no limiton the number of LUNs that can be contained within Snapshot copies.

LUNs per volume The maximum number of LUNs that you can configure within a singlevolume. LUNs contained in Snapshot copies do not count in this limit andthere is no limit on the number of LUNs that can be contained withinSnapshot copies.

FC port fan-in The maximum number of hosts that can connect to a single FC port on acontroller. Connecting the maximum number of hosts is generally notrecommended and you might need to tune the FC queue depths on the hostto achieve this maximum value.

FC port fan-out The maximum number of LUNs mapped to a host through a FC target porton a controller.

Hosts per controller(iSCSI)

The recommended maximum number of iSCSI hosts that you can connectto a single controller. The general formula to calculate this is as follows:Maximum hosts = 8 * System Memory divided by 512 MB.

Hosts per controller(FC)

The maximum number of hosts that you can connect to a controller.Connecting the maximum number of hosts is generally not recommendedand you might need to tune the FC queue depths on the host to achieve thismaximum value.

igroups per controller The maximum number of initiator groups that you can configure percontroller.

Initiators per igroup The maximum number of FC initiators (HBA WWNs) or iSCSI initiators(host iqn/eui node names) that you can include in a single igroup.

LUN mappings percontroller

The maximum number of LUN mappings per controller. For example, aLUN mapped to two igroups counts as two mappings.

LUN path namelength

The maximum number of characters in a full LUN name. For example, /vol/abc/def has 12 characters.

LUN size The maximum capacity of an individual LUN on a controller.

FC queue depthavailable per port

The usable queue depth capacity of each FC target port. The number ofLUNs is limited by available FC queue depth.

FC target ports percontroller

The maximum number of supported FC target ports per controller. FCinitiator ports used for back-end disk connections, for example, connectionsto disk shelves, are not included in this number.

90 | Fibre Channel and iSCSI Configuration Guide for the Data ONTAP 7.3 Release Family

Page 91: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

Related information

Technical Report: NetApp Storage Controllers and Fibre Channel Queue Depth - now.netapp.com/NOW/knowledge/docs/san/fcp_iscsi_config/QuickRef/Queue_Depth.pdf

Host operating system configuration limits for iSCSI and FCEach host operating system has host-based configuration limits for FC, FCoE, and iSCSI.

The following table lists the maximum supported value for each parameter based on testing. Allvalues are for FC, FCoE, and iSCSI unless noted.

Note: The values listed are the maximum that can be supported. For best performance, do notconfigure your system at the maximum values.

Parameter Windows Linux HP-UX Solaris AIX ESX

Visible target ports perhost

28 16 16 16 16 16

LUNs per host 64(Windows2000)

128(Windows2003)

255(Windows2008)

FC, 8 pathsper LUN:64

FC, 4 pathsper LUN:128

iSCSI, 8paths perLUN: 32(RHEL4,OEL4 andSLES9series); 64(all otherseries)

iSCSI, 4paths perLUN: 64(RHEL4,OEL4 andSLES9series); 128(all otherseries)

11iv2: 512

11iv3: 1024

512 128 2.x=128

3.x=256

Configuration limits | 91

Page 92: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

Parameter Windows Linux HP-UX Solaris AIX ESX

Paths per LUN 8 (max of1024 perhost)

4 (FCNativeMultipathwithoutALUA)

8 (allothers, FCand iSCSI)

11iv2: 8

11iv3: 32

16 16 2.x=4

3.x=8

Max LUN size 2 TB

16 TB(Windows2003 andWindows2008)

2 TB 2 TB 1023 GB

16 TB withSolaris 9+,VxVM,EFI, andappropriatepatches

1 TB

16 TB withAIX5.2ML7 orlater andAIX5.3ML3 orlater

2 TB

Related references

Configuration limit parameters and definitions on page 89

60xx and 31xx single-controller limitsEach system model has configuration limits for reliable operation. Do not exceed the tested limits.

The following table lists the maximum supported value for each parameter based on testing. Allvalues are for FC, FCoE, and iSCSI unless noted.

Note: The values listed are the maximum that can be supported. For best performance, do notconfigure your system at the maximum values.

The maximum number of LUNs and the number of HBAs that can connect to an FC port is limitedby the available queue depth on the FC target ports.

Parameter 31xx 6030 or 6040 6070 or 6080

LUNs per controller 2,048 2,048 2,048

FC queue depth availableper port

1720 1720 1720

LUNs per volume 2,048 2,048 2,048

Port fan-in 64 64 64

92 | Fibre Channel and iSCSI Configuration Guide for the Data ONTAP 7.3 Release Family

Page 93: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

Parameter 31xx 6030 or 6040 6070 or 6080

Connected hosts perstorage controller (FC)

256 256 256

Connected hosts percontroller (iSCSI)

256 256 512

igroups per controller 256 256 256

Initiators per igroup 256 256 256

LUN mappings percontroller

4,096 8,192 8,192

LUN path name length 255 255 255

LUN size 16 TB (might requirededuplication and thinprovisioning)

16 TB (might requirededuplication and thinprovisioning)

16 TB (might requirededuplication and thinprovisioning)

FC target ports percontroller

Data ONTAP 7.3.0: 8

7.3.1 and later: 16

Data ONTAP 7.3.0: 12

7.3.1 and later: 16

Data ONTAP 7.3.0: 12

7.3.1 and later: 16

Related references

Configuration limit parameters and definitions on page 89

Related information

Technical Report: NetApp Storage Controllers and Fibre Channel Queue Depth - now.netapp.com/NOW/knowledge/docs/san/fcp_iscsi_config/QuickRef/Queue_Depth.pdf

60xx and 31xx active/active configuration limitsEach system model has configuration limits for reliable operation. Do not exceed the tested limits.

The following table lists the maximum supported value for each parameter based on testing. Allvalues are for FC, FCoE, and iSCSI unless noted.

Limits for active/active configuration systems are NOT double the limits for single-controllersystems. This is because one controller in the active/active configuration must be able to handle theentire system load during failover.

Note: The values listed are the maximum that can be supported. For best performance, do notconfigure your system at the maximum values.

The maximum number of LUNs and the number of HBAs that can connect to an FC port is limitedby the available queue depth on the FC target ports.

Configuration limits | 93

Page 94: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

Parameter 31xx 6030 or 6040 6070 or 6080

LUNs per active/activeconfiguration

2,048

4,096 (available on the3160A and 3170A withPVR approval)

2,048

4,096 (with PVRapproval)

2,048

4,096 (with PVRapproval)

FC queue depth availableper port

1,720 1,720 1,720

LUNs per volume 2,048 2,048 2,048

FC port fan-in 64 64 64

Connected hosts peractive/activeconfiguration (FC)

256

512 (available on the3160A and 3170A withPVR approval)

256

512 (with PVR approval)

256

512 (with PVR approval)

Maximum connectedhosts per active/activeconfiguration (iSCSI)

512 512 1,024

igroups per active/activeconfiguration

256

512 (available on the3160A and 3170A withPVR approval)

256

512 (with PVR approval)

256

512 (with PVR approval)

Initiators per igroup 256 256 256

LUN mappings peractive/activeconfiguration

4,096

8,192 (available on the3160A and 3170A withPVR approval)

8,192 8,192

LUN path name length 255 255 255

LUN size 16 TB (might requirededuplication and thinprovisioning)

16 TB (might requirededuplication and thinprovisioning)

16 TB (might requirededuplication and thinprovisioning)

FC target ports per active/active configuration

Data ONTAP 7.3.0: 16

7.3.1 and later: 32

Data ONTAP 7.3.0: 24

7.3.1 and later: 32

16Data ONTAP 7.3.0: 24

7.3.1 and later: 32

Related references

Configuration limit parameters and definitions on page 89

94 | Fibre Channel and iSCSI Configuration Guide for the Data ONTAP 7.3 Release Family

Page 95: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

Related information

Technical Report: NetApp Storage Controllers and Fibre Channel Queue Depth - now.netapp.com/NOW/knowledge/docs/san/fcp_iscsi_config/QuickRef/Queue_Depth.pdf

30xx single-controller limitsEach system model has configuration limits for reliable operation. Do not exceed the tested limits.

The following table lists the maximum supported value for each parameter based on testing. Allvalues are for FC, FCoE, and iSCSI unless noted.

Note: The values listed are the maximum that can be supported. For best performance, do notconfigure your system at the maximum values.

The maximum number of LUNs and the number of HBAs that can connect to an FC port is limitedby the available queue depth on the FC target ports.

Parameter 3020 3050 3040 and 3070

LUNs per controller 1,024 1,024 2,048

FC queue depth availableper port

1,720 1,720 1,720

LUNs per volume 1,024 1,024 2,048

Port fan-in 64 64 64

Connected hosts perstorage controller (FC)

256 256 256

Connected hosts percontroller (iSCSI)

64 128 256

igroups per controller 256 256 256

Initiators per igroup 256 256 256

LUN mappings percontroller

4,096 4,096 4,096

LUN path name length 255 255 255

LUN size 16 TB (might requirededuplication and thinprovisioning)

16 TB (might requirededuplication and thinprovisioning)

16 TB (might requirededuplication and thinprovisioning)

FC target ports percontroller

4 4 Data ONTAP 7.3.0: 8

7.3.1 and later: 12

Configuration limits | 95

Page 96: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

Related references

Configuration limit parameters and definitions on page 89

Related information

Technical Report: NetApp Storage Controllers and Fibre Channel Queue Depth - now.netapp.com/NOW/knowledge/docs/san/fcp_iscsi_config/QuickRef/Queue_Depth.pdf

30xx active/active configuration limitsEach system model has configuration limits for reliable operation. Do not exceed the tested limits.

The following table lists the maximum supported value for each parameter based on testing. Allvalues are for FC, FCoE, and iSCSI unless noted.

Limits for active/active configuration systems are NOT double the limits for single-controllersystems. This is because one controller in the active/active configuration must be able to handle theentire system load during failover.

Note: The values listed are the maximum that can be supported. For best performance, do notconfigure your system at the maximum values.

The maximum number of LUNs and the number of HBAs that can connect to an FC port is limitedby the available queue depth on the FC target ports.

Parameter 3020A 3050A 3040A and 3070A

LUNs per active/activeconfiguration

1,024 1,024 2,048

FC queue depth availableper port

1,720 1,720 1,720

LUNs per volume 1,024 1,024 2,048

FC port fan-in 64 64 64

Connected hosts peractive/activeconfiguration (FC)

256 256 256

Connected hosts peractive/activeconfiguration (iSCSI)

128 256 512

igroups per active/activeconfiguration

256 256 256

Initiators per igroup 256 256 256

96 | Fibre Channel and iSCSI Configuration Guide for the Data ONTAP 7.3 Release Family

Page 97: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

Parameter 3020A 3050A 3040A and 3070A

LUN mappings peractive/activeconfiguration

4,096 4,096 4,096

LUN path name length 255 255 255

LUN size 16 TB (might requirededuplication and thinprovisioning)

16 TB (might requirededuplication and thinprovisioning)

16 TB (might requirededuplication and thinprovisioning)

FC target ports per active/active configuration

8 8 Data ONTAP 7.3.0: 16

7.3.1: 24

Related references

Configuration limit parameters and definitions on page 89

Related information

Technical Report: NetApp Storage Controllers and Fibre Channel Queue Depth - now.netapp.com/NOW/knowledge/docs/san/fcp_iscsi_config/QuickRef/Queue_Depth.pdf

FAS20xx single-controller limitsEach system model has configuration limits for reliable operation. Do not exceed the tested limits.

The following table lists the maximum supported value for each parameter based on testing. Allvalues are for FC, FCoE, and iSCSI unless noted.

Note: The values listed are the maximum that can be supported. For best performance, do notconfigure your system at the maximum values.

The maximum number of LUNs and the number of HBAs that can connect to an FC port is limitedby the available queue depth on the FC target ports.

Parameter FAS2020 FAS2040 FAS2050

LUNs per controller 1,024 1,024 1,024

FC queue depth availableper port

737 1720 737

LUNs per volume 1,024 1,024 1,024

FC port fan-in 16 64 16

Connected hosts percontroller (FC)

24 128 32

Configuration limits | 97

Page 98: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

Parameter FAS2020 FAS2040 FAS2050

Connected hosts percontroller (iSCSI)

24 128 32

igroups per controller 256 256 256

Initiators per igroup 256 256 256

LUN mappings percontroller

4,096 4,096 4,096

LUN path name length 255 255 255

LUN size 16 TB (might requirededuplication and thinprovisioning)

16 TB (might requirededuplication and thinprovisioning)

16 TB (might requirededuplication and thinprovisioning)

FC target ports percontroller

2 2 4

Related references

Configuration limit parameters and definitions on page 89

Related information

Technical Report: NetApp Storage Controllers and Fibre Channel Queue Depth - now.netapp.com/NOW/knowledge/docs/san/fcp_iscsi_config/QuickRef/Queue_Depth.pdf

FAS20xx active/active configuration limitsEach system model has configuration limits for reliable operation. Do not exceed the tested limits.

The following table lists the maximum supported value for each parameter based on testing. Allvalues are for FC, FCoE, and iSCSI unless noted.

Limits for active/active configuration systems are NOT double the limits for single-controllersystems. This is because one controller in the active/active configuration must be able to handle theentire system load during failover.

Note: The values listed are the maximum that can be supported. For best performance, do notconfigure your system at the maximum values.

The maximum number of LUNs and the number of HBAs that can connect to an FC port is limitedby the available queue depth on the FC target ports.

98 | Fibre Channel and iSCSI Configuration Guide for the Data ONTAP 7.3 Release Family

Page 99: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

Parameter FAS2020A FAS2040A FAS2050A

LUNs per active/activeconfiguration

1,024 1,024 1,024

FC queue depth availableper port

737 1720 737

LUNs per volume 1,024 1,024 1,024

FC port fan-in 16 64 16

Connected hosts peractive/activeconfiguration (FC)

24 128 32

Connected hosts peractive/activeconfiguration (iSCSI)

24 128 32

igroups per active/activeconfiguration

256 256 256

Initiators per igroup 256 256 256

LUN mappings peractive/activeconfiguration

4,096 4,096 4,096

LUN path name length 255 255 255

LUN size 16 TB (might requirededuplication and thinprovisioning)

16 TB (might requirededuplication and thinprovisioning)

16 TB (might requirededuplication and thinprovisioning)

FC target ports per active/active configuration

4 4 8

Related references

Configuration limit parameters and definitions on page 89

Related information

Technical Report: NetApp Storage Controllers and Fibre Channel Queue Depth - now.netapp.com/NOW/knowledge/docs/san/fcp_iscsi_config/QuickRef/Queue_Depth.pdf

Configuration limits | 99

Page 100: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

FAS270/GF270 , 900 series, and R200 single-controller limitsEach system model has configuration limits for reliable operation. Do not exceed the tested limits.

The following table lists the maximum supported value for each parameter based on testing. Allvalues are for FC, FCoE, and iSCSI unless noted.

Note: The values listed are the maximum that can be supported. For best performance, do notconfigure your system at the maximum values.

The maximum number of LUNs and the number of HBAs that can connect to an FC port is limitedby the available queue depth on the FC target ports.

Parameter FAS270 andGF270

920 940 960 980 R200

LUNS percontroller

1,024 2,048 2,048 2,048 2,048 2,048

FC queuedepthavailable perport

491 1,966 1,966 1,966 1,966 491

LUNs pervolume

1,024 2,048 2,048 2,048 2,048 2,048

FC port fan-in

16 64 64 64 64 64

Connectedhosts percontroller(FC)

16 256 256 256 256 256

Connectedhosts percontroller(iSCSI)

8 32 48 64 72 64

igroups percontroller

256 256 256 256 256 256

Initiators perigroup

256 256 256 256 256 256

100 | Fibre Channel and iSCSI Configuration Guide for the Data ONTAP 7.3 Release Family

Page 101: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

Parameter FAS270 andGF270

920 940 960 980 R200

LUNmappings percontroller

4,096 8,192 8,192 8,192 8,192 8,192

LUN pathname length

255 255 255 255 255 255

LUN size 6 TB 4 TB 6 TB 12 TB 12 TB 12 TB

FC targetports percontroller

1 4 4 4 8 4

Related references

Configuration limit parameters and definitions on page 89

Related information

Technical Report: NetApp Storage Controllers and Fibre Channel Queue Depth - now.netapp.com/NOW/knowledge/docs/san/fcp_iscsi_config/QuickRef/Queue_Depth.pdf

FAS270c/GF270c and 900 series active/active configurationlimits

Each system model has configuration limits for reliable operation. Do not exceed the tested limits.

The following table lists the maximum supported value for each parameter based on testing. Allvalues are for FC, FCoE, and iSCSI unless noted.

Limits for active/active configuration systems are NOT double the limits for single-controllersystems. This is because one controller in the active/active configuration must be able to handle theentire system load during failover.

Note: The values listed are the maximum that can be supported. For best performance, do notconfigure your system at the maximum values.

The maximum number of LUNs and the number of HBAs that can connect to an FC port is limitedby the available queue depth on the FC target ports.

Configuration limits | 101

Page 102: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

Parameter FAS270c andGF270c

920 940 960 980

LUNS peractive/activeconfiguration

1,024 2,048 2,048 2,048 2,048

FC queue depthavailable perport

491 1,966 1,966 1,966 1,966

LUNs pervolume

1,024 2,048 2,048 2,048 2,048

FC port fan-in 16 64 64 64 64

Connected hostsper active/activeconfiguration(FC)

16 256 256 256 256

Connected hostsper active/activeconfiguration(iSCSI)

32 64 96 128 144

igroups peractive/activeconfiguration

256 256 256 256 256

Initiators perigroup

256 256 256 256 256

LUN mappingsper active/activeconfiguration

4,096 8,192 8,192 8,192 8,192

LUN path namelength

255 255 255 255 255

LUN size 6 TB 4 TB 6 TB 12 TB 12 TB

FC target portsper active/activeconfiguration

2 16 16 16 16

Related references

Configuration limit parameters and definitions on page 89

102 | Fibre Channel and iSCSI Configuration Guide for the Data ONTAP 7.3 Release Family

Page 103: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

Related information

Technical Report: NetApp Storage Controllers and Fibre Channel Queue Depth - now.netapp.com/NOW/knowledge/docs/san/fcp_iscsi_config/QuickRef/Queue_Depth.pdf

Configuration limits | 103

Page 104: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP
Page 105: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

Index20xx

active/active configuration limits 98single-controller limits 97

3020 and 3050direct-attached active/active configuration FC

topologies 50direct-attached single-controller FC topologies 49multifabric active/active configuration FC

topologies 47single-fabric active/active configuration FC

topologies 46single-fabric single-controller FC topologies 45

3040 and 3070direct-attached active/active configuration FC

topologies 44direct-attached single-controller FC topologies 43multifabric active/active configuration FC

topologies 42single-fabric active/active configuration FC

topologies 41single-fabric single-controller FC topologies 40

30xxFC topologies 38active/active configuration limits 96single-controller configuration limits 95target port configuration 39

31xxFC topologies 32active/active configuration limits 93direct-attached active/active configuration FC

topologies 37direct-attached single-controller FC topologies 36multifabric active/active configuration FC

topologies 35single-controller configuration limits 92single-fabric active/active configuration FC

topologies 34single-fabric single-controller FC topologies 33target port configuration 32

60xxFC topologies 24active/active configuration limits 93direct-attached active/active configuration FC

topologies 31direct-attached single-controller FC topologies 30

multifabric active/active configuration FCtopologies 28

single-controller configuration limits 92single-fabric active/active configuration FC

topologies 27single-fabric single-controller FC topologies 26target port configuration 25

900single-controller limits 100

900 seriesFC topologies 60active/active configuration limits 101direct-attached FC topologies 66multifabric active/active configuration FC

topologies 63–65single-fabric active/active configuration FC

topologies 62single-fabric single-controller FC topologies 61

A

active/active configurationiSCSI direct-attached configuration 18iSCSI multinetwork configuration 17iSCSI single-network configuration 15

AIXhost configuration limits 91

ALUAESX configurations supported 85supported AIX configurations 83supported configurations 86Windows configurations supported 87

ALUA configurations 83asymmetric logical unit access (ALUA) configurations

83

C

cfmodeoverview 23

configuration limits20xx active/active configuration storage systems 9820xx single-controller storage systems 9730xx active/active configuration storage systems 9630xx single-controller storage systems 9531xx active/active configuration storage systems 93

Index | 105

Page 106: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

31xx single-controller storage systems 9260xx active/active configuration storage systems 9360xx single-controller storage systems 92900 series active/active configuration storage

systems 101900 single-controller storage systems 100by host operating system 91FAS270 active/active configuration storage

systems 101FAS270 single-controller storage systems 100parameters defined 89R200 single-controller storage systems 100

D

DCB (data center bridging) switchfor FCoE 67

direct-attached active/active configuration FC topologies3020 and 3050 503040 and 3070 4431xx 3760xx 31FAS20xx 56

direct-attached configurationiSCSI 18

direct-attached FC topologies900 series 66FAS270/GF270c 59R200 66

direct-attached single-controller FC topologies3020 and 3050 493040 and 3070 4331xx 3660xx 30FAS20xx 55

dynamic VLANs 19

E

EMC CLARiiONshared configurations 81

ESXhost configuration limits 91supported ALUA configurations 85

expansion FC portsusage rules 22

F

FAS20xxFC topologies 51direct-attached active/active configuration FC

topologies 56direct-attached single-controller FC topologies 55multifabric active/active configuration FC

topologies 54multifabric single-controller FC topologies 53single-fabric active/active configuration FC

topologies 52single-fabric single-controller FC topologies 51

FAS270active/active configuration limits 101single-controller limits 100

FAS270/GF270cFC topologies 57direct-attached FC topologies 59multifabric active/active configuration FC

topologies 58single-fabric active/active configuration FC

topologies 57FC

30xx target port configuration 3930xx topologies 3831xx target port configuration 3231xx topologies 3260xx target port configuration 2560xx topologies 24900 series topologies 60FAS20xx topologies 51FAS270/GF270c topologies 57multifabric switch zoning 78onboard and expansion port usage rules 22R200 topologies 60single-fabric switch zoning 77supported cfmode settings 23switch configuration 23switch hop count 23switch port zoning 76switch WWN zoning 76switch zoning 75switch zoning with individual zones 76topologies overview 21

FC protocolALUA configurations 83, 86

FCoEinitiator and target combinations 67, 68supported configurations 68

106 | Fibre Channel and iSCSI Configuration Guide for the Data ONTAP 7.3 Release Family

Page 107: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

switch zoning 75FCoE topologies

FCoE initiator to FC target 69FCoE initiator to FCoE and FC mixed target 71FCoE initiator to FCoE target 70FCoE initiator to FCoE target mixed with IP traffic

73Fibre Channel over Ethernet (FCoE)

overview 67

H

hard zoningFC switch 76

heterogeneous SANusing VSAN 21

hop countfor FC switches 23

host multipathing softwarewhen required 24

HP-UXhost configuration limits 91

I

initiator FC portsonboard and expansion usage rules 22

initiatorsFCoE and FC combinations 67, 68

inter-switch links (ISLs)supported hop count 23

IP trafficin FCoE configurations 73

iSCSIdirect-attached configuration 18dynamic VLANs 19multinetwork configuration 17single-network configuration 15static VLANs 19topologies 15using VLANs 19

L

Linuxhost configuration limits 91

Linux configurationsALUA support

automatically enabled 86

asymmetric logical unit accessTarget Port Group Support 86

M

MPIOALUA configurations 83

MPIO softwarewhen required 24

MPxIOALUA configurations 86

multifabric active/active configuration FC topologies3020 and 3050 473040 and 3070 4231xx 3560xx 28900 series 63–65FAS20xx 54FAS270/GF270c 58

multifabric single-controller FC topologiesFAS20xx 53

multipathing softwarewhen required 24

N

Native OSALUA configurations 83

O

onboard FC portsusage rules 22

P

parametersconfiguration limit definitions 89

point-to-pointFC switch port topology 23

port topologyFC switch 23

port zoningFC switch 76

PowerPathwith shared configurations 81

Index | 107

Page 108: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

R

R200FC topologies 60direct-attached FC topologies 66single-controller limits 100single-fabric single-controller FC topologies 61

S

shared SAN configurations 81single-fabric active/active configuration FC topologies

3020 and 3050 463040 and 3070 4131xx 3460xx 27900 series 62FAS20xx 52FAS270/GF270c 57

single-fabric single-controller FC topologies3020 and 3050 453040 and 3070 4031xx 3360xx 26900 series 61FAS20xx 51R200 61

soft zoningFC switch 76

Solarishost configuration limits 91

static VLANs 19switch

FC configuration 23FC hop count 23FC multifabric zoning 78FC port zoning 76FC single-fabric zoning 77FC WWN zoning 76FC zoning 75FC zoning with individual zones 76FCoE zoning 75

T

target FC portsonboard and expansion usage rules 22

target port configurations30xx 3931xx 32

60xx 25targets

FCoE and FC combinations 67, 68topologies

30xx FC topologies 3831xx FC topologies 3260xx FC topologies 24900 series FC topologies 60FAS20xx FC topologies 51FAS270/GF270c FC topologies 57FC 21FCoE initiator to FC target 69FCoE initiator to FCoE and FC mixed target 71FCoE initiator to FCoE target 70FCoE initiator to FCoE target mixed with IP traffic

73iSCSI 15R200 FC topologies 60

topologies, 3020 and 3050direct-attached active/active FC configuration 50direct-attached single-controller FC topologies 49multifabric active/active FC configuration 47single-fabric active/active FC configuration 46single-fabric single-controller FC topologies 45

topologies, 3040 and 3070direct-attached active/active FC configuration 44direct-attached single-controller FC topologies 43multifabric active/active FC configuration 42single-fabric active/active FC configuration 41single-fabric single-controller FC topologies 40

topologies, 31xxdirect-attached active/active FC configuration 37direct-attached single-controller FC topologies 36multifabric active/active FC configuration 35single-fabric active/active FC configuration 34single-fabric single-controller FC topologies 33

topologies, 60xxdirect-attached active/active FC configuration 31direct-attached single-controller FC topologies 30multifabric active/active FC configuration 28single-fabric active/active FC configuration 27single-fabric single-controller FC topologies 26

topologies, 900 seriesdirect-attached FC topologies 66multifabric active/active FC configuration 63–65single-fabric active/active FC configuration 62single-fabric single-controller FC topologies 61

topologies, FAS20xxdirect-attached active/active FC configuration 56direct-attached single-controller FC topologies 55

108 | Fibre Channel and iSCSI Configuration Guide for the Data ONTAP 7.3 Release Family

Page 109: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP

multifabric active/active FC configuration 54multifabric single-controller FC topologies 53single-fabric active/active FC configuration 52single-fabric single-controller FC topologies 51

topologies, FAS270/GF270cdirect-attached FC topologies 59multifabric active/active FC configuration 58single-fabric active/active FC configuration 57

topologies, R200direct-attached FC topologies 66single-fabric single-controller FC topologies 61

V

virtual LANsreasons for using 19

VLANsdynamic 19reasons for using 19static 19

VSAN

for heterogeneous SAN 21

W

Windowshost configuration limits 91supported ALUA configurations 87

WWN zoningFC switch 76

Z

zoningFC switch 75FC switch by port 76FC switch by WWN 76FC switch multifabric 78FC switch single-fabric 77FC switch with individual zones 76FCoE switch 75

Index | 109

Page 110: Fibre Channel and iSCSI Configuration Guideolbaum.free.fr/old/log/netapp/Fibre Channel and iSCSI... · 2010. 8. 31. · Fibre Channel and iSCSI Configuration Guide for the Data ONTAP