fibrelogic flowtite engineering guidelines des m-004.pdf

Upload: sandbadbahri

Post on 01-Jun-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/9/2019 Fibrelogic Flowtite Engineering Guidelines DES M-004.pdf

    1/122

  • 8/9/2019 Fibrelogic Flowtite Engineering Guidelines DES M-004.pdf

    2/122

    Fibrelogic Pipe Systems Pty Ltd 1 

    Important Disclaimer

    The information, opinions, advice and recommendations contained in thispublication are offered only with the object of providing a better understanding oftechnical matters associated with pipeline design etc, with Fibrelogic PipeSystems Pty Ltd assuring no duty of care in respect of them. This publicationshould not be used as the sole source of information. As it does not refer to allrelevant sources of information, reference should also be made to establishedtextbooks, and other published material. Readers should not act or rely upon anyinformation contained in this publication without taking appropriate professionaladvice, which relates to their particular circumstances. Pipes and fittings are

    shown as typical configurations, however, in some cases, product dimensionsmay vary or be changed without notice. If a dimension is critical please contactFibrelogic Pipe Systems Pty Ltd for clarification.

    Document # DES M-004 4th August 2009

  • 8/9/2019 Fibrelogic Flowtite Engineering Guidelines DES M-004.pdf

    3/122

    Fibrelogic Pipe Systems Pty Ltd 2

    Contents 

    INTRODUCTION TO FIBRELOGIC FLOWTITE™ PIPES .................................................. 4 

    1.1 

    Product Benefits ........................................................................................................... 5 

    1.2  Manufacture .................................................................................................................. 6 1.3   Applications .................................................................................................................. 9 

    2  MATERIAL PROPERTIES ................................................................................................. 12 2.1

     

    Physical Properties ..................................................................................................... 12 

    2.1.1 

    Embodied Energy ................................................................................................ 12 

    2.1.2 

    Ring stiffness ....................................................................................................... 13 

    2.1.3 

     Abrasion Resistance ............................................................................................ 15 

    2.1.4  Ultraviolet solar radiation resistance .................................................................... 15 2.1.5  Weather Resistance ............................................................................................ 15 

    2.2 

    Chemical Properties ................................................................................................... 16 

    2.2.1 

    Potable water approvals ...................................................................................... 16 

    2.2.2 

    Maximum service conditions ............................................................................... 16 

    2.2.3 

    Performance in exceptional chemical environments ........................................... 16 

    SPECIFICATIONS AND TESTING .................................................................................... 17 

    3.1  Manufacturing Standards ............................................................................................ 17 3.2  Standards for Fittings .................................................................................................. 19 3.3  Test requirements for pipes ........................................................................................ 21 

    3.3.1 

    Raw Materials ...................................................................................................... 21 

    3.3.2 

    Production testing ................................................................................................ 22 

    3.3.3  Long Term Type Testing ..................................................................................... 27 4  PRODUCT RANGE ........................................................................................................... 29 

    4.1  Description and classification ..................................................................................... 29 

    4.2 

    Dimensions - pipes ..................................................................................................... 30 

    4.3  Dimensions - fittings ................................................................................................... 35 5

     

    HYDRAULIC DESIGN ....................................................................................................... 55 

    5.1  Flow and pressure capacity calculations .................................................................... 55 5.2  Economic considerations ............................................................................................ 58 5.3   Air Valves, anti-vacuum valves and scour valves ....................................................... 59 5.4  Surge Capacity ........................................................................................................... 64 5.5  Water hammer surge celerities ................................................................................... 64 5.6  Fatigue under cyclical pressure regimes .................................................................... 65 5.7  Thermal effects on pressure ratings ........................................................................... 65 5.8  Non pressure pipeline design ..................................................................................... 66 

    6  STRUCTURAL DESIGN .................................................................................................... 69 

    6.1 

     Allowable cover heights .............................................................................................. 69 6.2

     

    Thrust block design for pressure pipelines ................................................................. 82 

    6.3 

     Angular deflection of Flowtite™ coupling joint ............................................................ 85 

    6.4  Design of GRP flanges ............................................................................................... 86 6.5   Above Ground Installation .......................................................................................... 90 

    7  INSTALLATION ................................................................................................................. 94 7.1  Transportation and Storage ........................................................................................ 94 7.2

     

    Excavation and associated works ............................................................................... 95 

    7.3 

    Pipe laying .................................................................................................................. 97 

    7.4 

    Side support and overlay .......................................................................................... 104 

    7.5  Trench and embankment fill (i.e. above embedment / overlay) ................................ 105 7.6  Grouting .................................................................................................................... 105 

    7.7 

    Joints subject to differential settlement ..................................................................... 106 

    7.8 

    Cutting into or repairing installed GRP pipelines ...................................................... 109 

  • 8/9/2019 Fibrelogic Flowtite Engineering Guidelines DES M-004.pdf

    4/122

    Fibrelogic Pipe Systems Pty Ltd 3

    8  FIELD TESTING .............................................................................................................. 112 8.1  Leakage testing – pressure pipelines ....................................................................... 112 8.2  Leakage testing – non-pressure pipelines ................................................................ 114 8.3  Structural assessment on installation ....................................................................... 117 

    8.4 

    High pressure water cleaning ................................................................................... 120 

  • 8/9/2019 Fibrelogic Flowtite Engineering Guidelines DES M-004.pdf

    5/122

    Fibrelogic Pipe Systems Pty Ltd 4

    1  INTRODUCTION TO FIBRELOGIC FLOWTITE™ PIPES

    Fibrelogic Pipe Systems Pty Ltd is a company excelling in providing the ultimate in pipingsolutions to its clients.

    We are a private, wholly Australian owned company, manufacturing in Australia.

    We are able to deliver the highest standard of product by incorporating our:•  World class facilities including Flowtite™ GRP Pipe continuous winding machines,•  Extensive QA and testing laboratories•  Product Engineering and Development service•  Global knowledge-base through the Flowtite™ Group (largest GRP Pipe group in the

    world)•  Experienced, professional staff•  ...and strong ethical business principles.

    Globally, demand for Glass Reinforced Plastic (GRP) Pipe manufacturing is growingdramatically. Due to its high strength, low weight and corrosion resistance, clients arechoosing GRP over traditional coated metallic piping. Flowtite™ GRP Piping has been theleading GRP Pipe manufacturing method for nearly 40 years. The technology is now beingused worldwide on all continents with more than forty winding machines located in twentylicensed pipe factories.

    Fibrelogic Pipe Systems has licensed the Flowtite™ GRP Pipe manufacturing technology fromFlowtite™ in Norway. Flowtite™ is a progressive organisation which supports the engineering,production and development of Flowtite™ GRP Pipe worldwide.

    Corporately, we are a leading company in Australia in growth and technology, but also in

    supporting the globally underprivileged – through child sponsorship programs. It is a coreaspect of why Fibrelogic Pipe Systems exists – to help those in need, globally.

    We have a strong, passionate team of executives, management and staff that, when combinedwith our world class technology and manufacturing equipment provides a great platform foroptimum product and service.

  • 8/9/2019 Fibrelogic Flowtite Engineering Guidelines DES M-004.pdf

    6/122

    Fibrelogic Pipe Systems Pty Ltd 5

    1.1 Product Benefits

    Features  Benefits Corrosion-resistant materials  •  Long, effective service life

    •  No need for linings, coatings, cathodic

    protection, wraps or other forms of corrosionprotection•  Low maintenance costs•  Hydraulic characteristics essentially constant

    over time Electrically non-conductive •  Unaffected by stray (earth) or induced currents.

    Cathodic protection systems do not need to beconsidered for either Flowtite™ pipes orsurrounding structures.

    Light weight(1/4 weight ofductile iron1/10 weight ofconcrete)

    •  Low transport costs•  Eliminates need for expensive pipe handling

    equipmentLong standard lengths •  Standard lengths up to 12 metres with longer

    lengths available on request•  Fewer joints reduce installation time

    Dimensions compatible withexisting piping products

    •  Compatible with Hobas GRP, Series 2 PVCU,PVCM and PVCO, ductile iron and mostexisting AC pipeline applications

    Standard and custom fittingsavailable

    •  Fittings are available or can be designed to suitindividual requirements

    Extremely smooth bore •  Low friction loss means less pumping energyneeded and lower operating costs

    •  Minimum slime build-up can help lower cleaning

    costs.Precision Flowtite™ couplingwith elastomeric REKAgaskets

    •  Tight, efficient joints designed to eliminateinfiltration and exfiltration

    •  Ease of joining, reducing installation time•  Accommodates small changes in line direction

    without fittings and can accommodatedifferential settlement

    Flexible manufacturingprocess

    •  Custom diameters can be manufactured toprovide maximum flow volumes with ease ofinstallation

    High technology pipe design •  Lower wave celerity than other piping materials

    can mean less cost when designing for surgeand water hammer pressuresHigh technology pipemanufacturing system

    •  High and consistent product quality worldwidewhich ensures reliable product performance

  • 8/9/2019 Fibrelogic Flowtite Engineering Guidelines DES M-004.pdf

    7/122

    Fibrelogic Pipe Systems Pty Ltd 6

    1.2 Manufacture

    Fibrelogic Pipe Systems manufactures the Flowtite™ GRP Pipe at their purpose built facility inLonsdale, South Australia. Flowtite™ pipes can be manufactured in a number of standarddiameters ranging from DN300 up to DN3000.

    Flowtite™ pipe is manufactured using the continuous advancing mandrel process whichrepresents the state of the art in GRP pipe production. This process allows the use ofcontinuous glass fibre reinforcements in the circumferential direction. For a pressure pipe or

    buried conduit the principle stress is in the circumferential direction. Incorporating continuousreinforcements in this direction and not just chopped discontinuous roving, such as in acentrifugal casting process, yields a higher performing product at lower cost.

    Using the technology developed by Flowtite™, a very dense laminate is created thatmaximizes the contribution from the three basic raw materials, namely glass fibre, silica sandaggregate and thermosetting resin.

    Both continuous glass fibre rovings and chopped roving are incorporated for high hoopstrength and axial reinforcement. A silica sand aggregate is used to provide increasedstiffness with placement near the neutral axis in the core. Thermosetting resin, deliveredthrough a dual resin delivery system gives the equipment the capability of applying a specialinner resin liner for severe corrosive applications while utilizing a less costly resin for thestructural and outer portion of the laminate.

  • 8/9/2019 Fibrelogic Flowtite Engineering Guidelines DES M-004.pdf

    8/122

    Fibrelogic Pipe Systems Pty Ltd 7

    The raw materials are applied on the continuously advancing mandrel in specific locations toensure the optimum strength with minimum weight. The materials are applied to produce aseries of layers which give both pressure resistance as well as pipe stiffness.

    The diagram below shows the typical wall construction of a Flowtite™ pipe and the tableexplains the layers’ construction and purpose. Note that all layers contain thermosetting resin.

    Layer Construction Purpose

    Interior Liner “C” Glass tissue Protection

    Barrier Layer Chopped glass fibres ProtectionInner Structural Layer Continuous glass fibres and

    Chopped glass fibresHigh modulus structuralreinforcement

    Core Silica sand aggregate and choppedglass fibres

    Solid separating core

    Outer Structural Layer Continuous glass fibres andChopped glass fibres

    High modulus structuralreinforcement

    Exterior Surface Chopped glass and “C” glass tissueor polyester veil

    Protection

  • 8/9/2019 Fibrelogic Flowtite Engineering Guidelines DES M-004.pdf

    9/122

    Fibrelogic Pipe Systems Pty Ltd 8

     After all materials have been applied the laminate is cured completely using a number ofstrictly controlled mechanisms including heating the mandrel as well as infrared heating of theexternal surface.

    The cured laminate is cut to length as required. Standard lengths are 12 metre, 6 metre and3 metre. Intermediate lengths can also be manufactured at 1 metre increments. Longerlengths are possible but can not be pressure tested.

     All pipes are quality inspected after manufacture. Once inspected the pipe spigots arechamfered and calibrated where necessary for fitment of couplings.

    Each pipe is pressure tested to twice its nominal pressure class to verify performance.

    Couplings are cut from specially made “coupling pipes” of an appropriate diameter to allowinternal boring to create grooves for the rubber seals and central register. They are also prooftested at 2 x PN pressure on a hydrostatic testing machine.

  • 8/9/2019 Fibrelogic Flowtite Engineering Guidelines DES M-004.pdf

    10/122

    Fibrelogic Pipe Systems Pty Ltd 9

    1.3 Applications

    With the aging of the world’s infrastructure there are millions of kilometres of water and sewerpipelines needing rehabilitation. A major concern is that that the deterioration is premature anddesign lives predicted at the conceptual stage are not being realised. The prime cause of thisproblem is corrosion, typically for the following reasons:

    •  Internal attack on unprotected concrete gravity flow sewer pipes, which deterioraterapidly in the presence of sulphuric acid as a result of the hydrogen sulphide cycle. Inwater supply installations, high levels of carbon dioxide in soft water from underground

    sources can rapidly degrade cementitious liner materials

    •  External attack can be caused by aggressive soil / ground water conditions or strayelectrical currents affecting ferrous and cementitious materials. Unlike GRP, thesepipes are vulnerable when buried in poorly aerated and poorly drained soils of lowresistivity. Saline soils, the presence of chlorides, or sulphate-reducing bacteria alsoaccelerate corrosion.

    GRP pipes are not subject to any of these problems and with the latest advances inmanufacturing technology giving much higher production rates, there has been a widespreadincrease in their use for both new infrastructure and as replacements for corrosion pronematerials. The unique properties of Flowtite™ pipes with high strength, combined withcorrosion resistance and easier laying make them very attractive for use in many of the majorinfrastructure applications listed below:

      Water supply transmission and distribution mains  Irrigation  Gravity and rising main sewers  Slip lining  Submarine pipelines  Hydro-electric power station penstocks  Water and sewerage treatment plants  Desalination plants

      Thermal power station supply and cooling systems  Chemical and industrial process pipelines  Storage tanks

  • 8/9/2019 Fibrelogic Flowtite Engineering Guidelines DES M-004.pdf

    11/122

    Fibrelogic Pipe Systems Pty Ltd 10

     A range of case studies can be found on the international Flowtite™ website www.flowtite.com

    DN 250 Flowtite™ pipes for a corrosive bore watersupply pipeline for Kogan Creek power station inQueensland.

    DN1000 PN16 SN 10000 Flowtite™ pressurepipes and special long length GRP fittingsbeing installed on a major recycled waterpipeline near Wivenhoe Dam in SEQueensland.

  • 8/9/2019 Fibrelogic Flowtite Engineering Guidelines DES M-004.pdf

    12/122

    Fibrelogic Pipe Systems Pty Ltd 11

    DN1000 PN16 SN10,000Flowtite™ pressure pipestrung out along the alignmentnear Wivenhoe Dam in SEQueensland

  • 8/9/2019 Fibrelogic Flowtite Engineering Guidelines DES M-004.pdf

    13/122

    Fibrelogic Pipe Systems Pty Ltd 12

    2  MATERIAL PROPERTIES

    2.1 Physical Properties

     As the wall construction of Flowtite™ pipes vary according to pipe class and stiffness, only

    indicative material parameter values have been given below. More specific information for anyparticular pipe design should be obtained by contacting Fibrelogic’s engineers.

    Property Typical Value

    Density 1800 kg/m3 – 2100 kg/m3 Thermal coefficient of expansion (axial) 24 - 30 x10-6 m/m.K.

    Thermal conductivity 0.14 to 0.22 W/m.K

    Tensile Strength- Circumferential (hoop)

    150 –700 MPa

    Tensile Strength- Longitudinal (axial)

    25-60 MPa

    Elastic Modulus- Circumferential tensile and flexural

    17,000 MPa (low pressure pipe)–24,000 MPa (high pressure pipe)

    Elastic Modulus- Longitudinal tensile and flexural

    6000 MPa – 12,500 MPa

    Circumferential bending creep / relaxationratio

    60% retention after 50 years

    Minimum ultimate circumferential tensilestrain

    1.52% initial; 0.65% long term (at 50 years)

    Minimum ultimate circumferential bendingstrain

    2.30% initial; 1.30% long term (at 50 years)

    Poisson’s ratio 0.22 to 0.29Combustibility characteristics (AS 1530.3-1989)

    Ignitability Index (0-20) 10Spread of flame Index (0-10) 0Heat evolved Index (0-10) 2Smoke developed Index (0-10) 6

    2.1.1 Embodied EnergyThe embodied energy of Flowtite™ GRP pipes is generally lower than that of equivalent non-polymer pipe materials. For detailed information, contact Fibrelogic Pipe Systems.

  • 8/9/2019 Fibrelogic Flowtite Engineering Guidelines DES M-004.pdf

    14/122

    Fibrelogic Pipe Systems Pty Ltd 13

    2.1.2 Ring stiffness

    The stiffness of a pipe indicates the ability of the pipe to resist external soil, hydrostatic andtraffic loads together with negative internal pressures.

    It is a measure of resistance of a pipe to ring deflection determined by testing and is the valueobtained by dividing the force per unit length of a specimen by the resulting deflection at 3percent deflection.

    v Ld 

    Ff S  =   Equation 2.1

    Where:S = stiffness (Newtons / metre per metre length of pipe)F = force (N)dv = deflection (m)Dm = mean diameter (m)f = a deflection coefficient including a correction factor for ovality of the

    deformed specimen obtained as follows:

    )25001860(10   5

    m

    v

     D

    d  f    +×=   −   Equation 2.2

     According to the Australian and ISO Standards, stiffness is expressed as follows:

    3

    m D

     EI S  =   Equation 2.3

    Where S = the pipe stiffness as determined by testing in N/m per metre length of pipeE = the apparent modulus of elasticity, in Pascals.I = the second moment of area per unit length of the pipe wall section in m4 per m.Dm = mean diameter (m)

    i.e.12

    3t 

     I  =  

    Where t = wall thickness in m.

    The initial stiffness is determined using a specific test method and cannot be obtained throughcalculations using nominal values of E and t as Flowtite™ is a GRP composite.

  • 8/9/2019 Fibrelogic Flowtite Engineering Guidelines DES M-004.pdf

    15/122

    Fibrelogic Pipe Systems Pty Ltd 14

    There are also other terms in common use internationally describing pipe stiffness.

    For example according to German DIN Standards and the ATV code the ring stiffness isdefined as:

    3

    m

     R R

     EI S    =   Equation 2.4

    Where Rm  = mean radius (m). 

    This stiffness value is 8 times greater than that given by the Australian and ISO Standards, sothat in order to avoid mistakes E and SR  are expressed as N/mm

    2  (MPa) when using thisformula.

     According to American ASTM Standards the ring stiffness measured at 5% deflection, isexpressed as:

    vd 

    F   (Pounds per square inch) Equation 2.5

    Where F = load per unit length (pounds per inch)dv = vertical pipe deflection (inches)

    GRP pipes are classified by the nominal stiffness value determined from the standard initialstiffness test i.e.:

    Table 1 Nominal Stiffness / Comparison of Units

    NominalStiffness

    Unit SN 2500 SN 5000 SN 10000

    Sp (ISO & Aust.) N/m2  2500 5000 10000

    SR (DIN ATV) N/mm2  0.02 0.04 0.08

    F (ASTM)

    dv 

    psi 20 40 80

  • 8/9/2019 Fibrelogic Flowtite Engineering Guidelines DES M-004.pdf

    16/122

    Fibrelogic Pipe Systems Pty Ltd 15

    2.1.3 Abrasion Resistance

    Flowtite™ pipes are manufactured with an external layer of reinforced resin to provide scuffresistance during the handling and installation process.

    The potential for bore abrasion wear can be determined using the Darmstadt method. The testused was developed at the “Institute of Hydraulics and Hydrology” of Darmstadt, Germany andthe procedure involves axially rocking a half section of pipe through 22 degrees, so that acalibrated load of abrasive slurry slides back and forth along the invert of the pipe.

    When tested a Flowtite™ pipe specimen showed a wear rate of 0.84mm loss per 100,000cycles.

    2.1.4 Ultraviolet solar radiation resistance

    Flowtite™ pipes have a non-structural external layer of reinforced resin to provide aweathering layer when stored or installed above ground. This layer protects the structural

    layers from UV radiation but may discolour over time. If this is not acceptable, pipes may becoated with an acrylic (water based) paint.

    2.1.5 Weather Resistance

    Standard Flowtite™ pipes can be permanently stored in the open without any detrimentaleffects on the structure of the pipe due to UV radiation although some superficial rougheningand discolouration of the external and internal surfaces may occur. For periods over 6 monthsin open areas it is recommended that the rubber rings should be stored indoors.

  • 8/9/2019 Fibrelogic Flowtite Engineering Guidelines DES M-004.pdf

    17/122

    Fibrelogic Pipe Systems Pty Ltd 16

    2.2 Chemical Properties

    2.2.1 Potable water approvals

    Flowtite™ pipes and fittings meet the requirements of AS 4020.

    Flowtite™ pipe has been tested and approved for the conveyance of potable water meetingmany of the world’s leading authorities’ and testing institutes’ criteria, including:• NSF (Standard No. 61) – United States• DVGW – Germany• Lyonnaise des Eaux – France• Water Byelaws Scheme (WBS) – United Kingdom• Russia (Cert. No. 0770¨0 03515I04521A8)• Oficina Técnia De Estudios Y Controles – Spain• Pánstwowy Zaklad Higieny (National Institute of Hygiene) – Poland• OVGW – Austria• NBN.S. 29001 – Belgium

    Copies of Flowtite™ Technology qualification test reports are available on the web sitewww.flowtite.com

    2.2.2 Maximum service conditions

    Normal Flowtite™ pipes are intended for use with water, sewage and controlled industrialwastes at temperatures of up to 35°C in the pH range 3 to 9. For temperature and chemicalconditions in excess of these values Fibrelogic’s engineers should be consulted for advice onre-rating and chemical suitability.

    With the exception of chlorinated or aromatic solvents, Flowtite™ pipes have a high resistanceto chemical attack. Furthermore, special resin systems can be used to improve the chemicalresistance at elevated temperatures. In the case of some solvents, the use of a vinyl esterresin system may be recommended.

    2.2.3 Performance in exceptional chemical environments

    Flowtite™ pipes selected for use in severe environments, such as the processing industry,especially at elevated temperatures, may require special resins systems such as vinyl esters.Because of the range of factors involved, the final determination of the suitability of Flowtite™for a given environment becomes the sole responsibility of the specifier. General guidance

    can be provided by Fibrelogic Pipe Systems as to suitable applications based on informationprovided by resin suppliuers. However, this advice is not intended to imply approval for anygiven application, as neither the resin suppliers nor Fibrelogic has any control over theconditions of usage or the means of identifying all environmental conditions that may affect theselected pipes and fittings.

  • 8/9/2019 Fibrelogic Flowtite Engineering Guidelines DES M-004.pdf

    18/122

    Fibrelogic Pipe Systems Pty Ltd 17

    3  SPECIFICATIONS AND TESTING

    3.1 Manufacturing Standards

    Fibrelogic Pipe Systems complies with the requirements of AS/NZS ISO 9001:2000 Quality

    Management Systems and has been officially certified by a 3rd

     party certification body.

    Standards developed internationally apply to glass reinforced polyester (GRP) pipes,sometimes referred to as fibreglass or fibre reinforced polyester (FRP), when used forinfrastructure, including the conveyance of potable water, irrigation water, sewage andindustrial waste. Common to all modern pipe product standards is the fact that they areperformance-based documents, that is, the required performance and testing of the pipe isspecified rather than prescriptive requirements on the manufacturing process.

    Flowtite™ pipes have been appraised by the Water Association of Australia – refer to Product Appraisal 04/06 Flowtite™ GRP Pipe System for Fibrelogic Pipe Systems Pty. Ltd.

    The following list includes standards commonly used for the manufacture and testing of GRPpipes and fittings.

    ISO StandardsThe International Standards Organization (ISO) has published a suite of GRP productstandards and corresponding test methods. Flowtite™ Technology in Europe participated inthe development of these standards; thereby ensuring performance requirements will result inreliable products. The ISO Standards for GRP pipes and fittings manufacture relevant toinfrastructure works include:

    ISO 10467 “Plastics piping systems for pressure and non-pressure drainage and sewerage -Glass-reinforced thermosetting plastics (GRP) systems based on unsaturated polyester (UP)

    resin”

    ISO 10639 “Plastics piping systems for pressure and non-pressure water supply -Glass-reinforced thermosetting plastics (GRP) systems based on unsaturated polyester (UP) resin”

    These Standards are essentially the same except that the sewer pipes must comply with thestrain corrosion type test and water supply pipes with the requirements of AS 4020 for potable(drinking quality) water. All Flowtite™ pipes currently manufactured in Australia meet bothstandards.

    Australian Standards Australian practice is to use ISO based standards for GRP pipes and fittings and the followingdocuments are in the process of being revised to meet the latest ISO Standards. Flowtite™ isalready manufactured to the ISO equivalent. Existing standards are:

    GRP Pipes: -•  Australian Standard AS 3571 “Glass Filament (GRP) Pipes – Polyester Based –

    Water Supply, Sewerage and Drainage Applications”*.•  Australian Standard AS 3572 – 1989 “Plastics – Glass Filament Reinforced Plastics

    (GRP) – Methods of Test”*.

  • 8/9/2019 Fibrelogic Flowtite Engineering Guidelines DES M-004.pdf

    19/122

    Fibrelogic Pipe Systems Pty Ltd 18

    United States of America StandardsFlowtite™ pipes manufactured in Australia are designed to meet United States Standards inaddition to the ISO and AS Standards.

    Currently, there are several ASTM Product Standards in use that apply to a variety of GRPpipe applications. All product standards apply to pipes with diameter ranges of 200mm to3600mm and require the flexible joints to withstand hydrostatic testing in configurations (per ASTM D4161) that simulate exaggerated in-use conditions. These standards include variousqualification and quality control tests. ASTM D3262 ‘Standard Specification for “Fibreglass” (Glass-Fibre-Reinforced Thermosetting-Resin) Sewer Pipe” ASTM D3517 ‘Standard Specification for “Fibreglass” (Glass-Fibre-Reinforced Thermosetting-Resin) Pressure Pipe” ASTM D3754 ‘Standard Specification for “Fibreglass” (Glass-Fibre-Reinforced Thermosetting-Resin) Sewer and Industrial Pressure Pipe”

     ANSI/AWWA C950 ‘AWWA Standard for Fibreglass Pressure Pipe is one of the most

    comprehensive product standards in existence for GRP pipe. This standard for pressure waterapplications has extensive requirements for pipe and joints, concentrating on quality assuranceand prototype qualification testing. Like ASTM standards, this is a product performancestandard. Flowtite™ pipe is designed to meet the performance requirements of this standard. AWWA has recently issued a new “Fibreglass Pipe Design” manual M-45, which includeschapters on the design of GRP pipelines for buried and aboveground installations.

     AWWA C950 “Fiberglass Pressure Pipe” AWWA M-45 “Fiberglass Pipe Design Manual”

    Other StandardsStandardisation organisations such as BSI and DIN have also published performance

    specifications for GRP pipes to which Flowtite™ complies where nominated.

    DIN 16868 “Glass Fibre-Reinforced Polyester Resin Pipes”BS 5480 “Pipes and Fittings for Water and Sewage”

    Associated fittingsFittings used with Flowtite™ pipes may be of GRP or metallic materials. The followingdocuments may be relevant: -

    •  International Standards ISO 10639 & 10467.•  Ductile Iron Pressure Fittings – Australian Standard 2280 “Ductile Iron Pressure Pipes

    and Fittings”.

    •  Mild Steel Cement Lined Fittings – Australian Standard 1579 “Arc Welded Steel Pipesfor Water and Gas” and Australian Standard 1281 “The Cement Mortar Lining of SteelPipes and Fittings”.

    •  Flanged joints, specifically drilling patterns in both GRP and metal – AustralianStandards AS 4087 “Metallic flanges for waterworks purposes” , AS 2129 – “Flangesfor pipes, valves and fittings” and AS 4331.1 (ISO 7005) ‘Metallic flanges - Steelflanges” may be applicable. Note that flange thicknesses for GRP will depend on thedesign but will be greater than for metal flanges. 

  • 8/9/2019 Fibrelogic Flowtite Engineering Guidelines DES M-004.pdf

    20/122

    Fibrelogic Pipe Systems Pty Ltd 19

    3.2 Standards for Fittings

    For water supply, sewerage rising-mains, and other pressure applications a full range of GRPfittings is available. These fittings can be custom made to specific customer requirements.

    In addition to GRP pressure fittings, standard ductile iron fittings, valves and hydrants aresuitable for use with Flowtite™ pipe. The outside diameters of Flowtite™ GRP pipes arecompatible with Australian Standard PVC-U, PVC-M, PVC-O, ductile iron, and some AC pipesand fittings of the same nominal diameter.

    Where pipe tapping Flowtite™ pipe is a flexible pipe, flexible tapping bands manufactured fromgunmetal or stainless steel should be used for service connections.

    GRP Fittings

    Flowtite™ GRP pressure fittings are manufactured in Classes PN 6, 10, 16, 20, 25 and 32 foruse with Flowtite™ pipes of the corresponding class. These fittings are fabricated fromFlowtite™ pipes using proprietary wrapped laminate designs.

    Fittings are normally supplied spigot ended suitable for Flowtite™ couplings. Flanged fittingsare available and can be full-faced or, for higher operating pressures, stub flanges with steelbacking plates may be the preferred option.

    “Non pressure” (i.e. PN 1) fittings are also fabricated from Flowtite™ pipes and comply with therequirements ISO 10639 and ISO 10467. Fittings are normally supplied spigot ended suitablefor Flowtite™ couplings. Branches for sidelines can be attached to the Flowtite™ mainlineusing saddle fittings attached with epoxy adhesive applied in-situ. Adaptor couplings for saddlebranches for joining to PVC –DWV

  • 8/9/2019 Fibrelogic Flowtite Engineering Guidelines DES M-004.pdf

    21/122

    Fibrelogic Pipe Systems Pty Ltd 20

    Ductile Iron FittingsDuctile iron fittings socket joints can be used on selected Flowtite™ pipes of the same nominalsize. Conventional socketed fittings complying with AS 2280 – “Ductile Iron Pressure Pipesand Fittings” in sizes DN100 to DN750 are suitable. A complete range of bends, tees, reducersand flange-spigot pieces is available with Griptite*  or Tyton#  rubber ring sockets in sizesDN100 to DN750. Other joint designs may also be acceptable. Fibrelogic should be contactedto confirm the suitability of any particular range of fittings.

    These fittings may be protected from corrosion using various alternatives.•  Fusion bonded polymer (polyamide or epoxy) •  Cement lining and polyethylene wrap. 

    *Registered Trademark of Northern Iron and Brass Foundry.#Registered Trademark of Tyco Water.

    Examples of fusion bonded nylon coated ductile iron fittings with Griptite seals suitable for usewith Flowtite™

    Steel fittingsFabricated steel (and stainless steel) fittings fabricated from steel plate can be used withFlowtite™ pressure pipes. Normally, steel fittings are protected from corrosion externally byultra high build epoxy and internally by cement lining. Where possible these fittings aremanufactured with spigots especially sized to match Flowtite™ outside diameters, includingtolerances so that the joint can be made using standard Flowtite™ GRP couplings.

    Relevant Standards are

     AS 1594 “Hot-rolled steel flat products”

     AS 3678 “Hot-rolled structural steel plates, floor plates and slabs”

     AS 1579 ”Arc welded steel pipes and fittings for water and waste water”

     AS 1281 ”Cement mortar lining of steel pipes and fittings”

     AS 4321 “Fusion bonded medium density polyethylene coatings and linings for pipes andfittings”

     AS 2312 “ Guide to protection of iron and steel from atmospheric corrosion”

  • 8/9/2019 Fibrelogic Flowtite Engineering Guidelines DES M-004.pdf

    22/122

    Fibrelogic Pipe Systems Pty Ltd 21

    3.3 Test requirements for pipes

     A common element shared by all standards is the need for a pipe manufacturer to demonstratecompliance with the standards’ minimum performance requirements. In the case of GRP pipe,these minimum performance requirements fall into both short-term and long-term

    requirements.

    The short-term tests are conducted at manufacturing sites as part of daily quality control, whilethe latter have been conducted at Flowtite™ Technology’s laboratory or by a certified thirdparty. Results from quality control tests are part of a Flowtite™ factory’s record and retained bythe factory, while the type tests are carried out and archived by Flowtite™ Technology, whichis the international parent organisation.

    3.3.1 Raw Materials

    Flowtite™ Purchase Acceptance Standards (PAS) are common to the worldwide organisationand each factory maintains Technical Data Sheets and test reports for the raw material

    supplied.

    Raw materials are delivered with vendor certification demonstrating their compliance withFlowtite™ quality requirements. In addition, all raw materials are sample tested prior to theiruse. These tests ensure that the pipe materials comply with the stated specifications.

    ResinsFlowtite™ pipes are normally manufactured using orthophthalic polyester resins. Howeverwhere unusual environmental conditions exist, isophthalic polyester or vinyl ester can bespecified.

    Aggregate and fillers

    The quartz sand used in Flowtite™ pipes is required to meet the specific grading curve particlesizing of the Flowtite™ Purchase Acceptance Standard.

    Elastomeric sealsThe elastomeric sealing rings comply with the requirements of EN 681-1: 1996,Type WA andWC and AS 1646. Unless otherwise requested EPDM rings will be supplied. However inspecial circumstances rings may be supplied, manufactured from other polymers - seeTable 2.

    Table 2 Elastomers for Flowtite™ seals

    Polymer Abbreviation

    Ethylene propylene-diene* EPDMNitrile-butadiene NBRStyrene-butadiene rubber SBR

    * The standard polymer supplied. Other types are rarely needed and can onlyobtained as a special order.

  • 8/9/2019 Fibrelogic Flowtite Engineering Guidelines DES M-004.pdf

    23/122

    Fibrelogic Pipe Systems Pty Ltd 22

    3.3.2 Production testing

    Every pipe is subjected to the following control checks:•  Outside diameter•  Wall thickness

    •  Pipe length•  Visual inspection of all surfaces•  Hydrostatic leak tightness test (for PN6 or higher)

    On a sampling basis, the following control checks are performed:•  Pipe stiffness•  Deflection without liner cracking or structural failure•  Axial and circumferential tensile load capacity•  Barcol hardness•  Composition

    Outside diameterFlowtite™ pipes are externally controlled in accordance with Table 3 External Diameter Seriesof AS 3571. Normal tolerances are given in Table 3

    Table 3 Tolerances on spigot outside diameters

    DNOutside diameter(PN1 to PN16)

    (mm)

    Outside diameter(PN20 to PN32)

    (mm)Min Max Min Max

    300 344.0 345.0 345.0 345.5375 425.0 426.0 426.0 426.5

    450 506.0 507.0 507.0 507.5525 586.0 587.0 587.0 587.5600 666.0 667.0 667.0 667.5675 746.0 747.0 747.0 747.5750 825.0 826.0 826.0 826.5900 922.0 923.0 923.0 923.51000 1024.0 1025.0 1025.0 1025.51200 1228.0 1229.0 1229.0 1229.51400 1432.0 1433.0 1433.0 1433.51600 1636.0 1637.0 1637.0 1637.51800 1840.0 1841.0 1841.0 1841.52000 2044.0 2045.0 2045.0 2045.52200 2248.0 2249.0 2249.0 2249.52400 2452.0 2453.0 2453.0 2453.53000 3064.0 3065.0 3065.0 3065.5

    Pipe lengthsThe actual length of each pipe is equal to the nominal length with a tolerance of ± 25 mm. Theeffective (i.e. laying) length is equal to the pipe length plus 10 mm (an allowance for the centreregister in the coupling). 

    Surface quality

    The surface of the pipe shall be relatively smooth and free of exposed fibre or sharpprojections. Refer to Appendix B of AS 3571 for guidance with respect to surface defects.

  • 8/9/2019 Fibrelogic Flowtite Engineering Guidelines DES M-004.pdf

    24/122

    Fibrelogic Pipe Systems Pty Ltd 23

    Hydrostatic Leak Tightness Testing

    Every pipe PN6 or greater is pressure tested to 2 times the nominal pressure class of the pipe.The pipe is held at this pressure for 2 minutes allowing for inspection of the pipe.

  • 8/9/2019 Fibrelogic Flowtite Engineering Guidelines DES M-004.pdf

    25/122

    Fibrelogic Pipe Systems Pty Ltd 24

    Specific ring stiffness

     A test specimen from each batch is tested in accordance with ISO 7685 and the calculatedinitial stiffness shall be not less than the nominal branded stiffness. A 300mm long test pieceis taken once per shift of pipes manufactured in a single batch. A diametral load is appliedwith the pipe bearing top and bottom on flat plates. The load to achieve a 3% deflection isrecorded and used to calculate the initial stiffness.

    Specific ring deflectionWhen tested in accordance with ISO 10466, a test specimen from each production batch ofpipes must satisfy the requirements of Table 4 at the nominated deflections. The stiffness testspecimen is also used for this test.

    Table 4 Minimum test deflections

    Nominal Stiffness SN 2500 5000 10000

    No visible damage toinside layer at %deflection of: -

    15 12 9

    No structural damageat % deflection of: - 25 20 15

  • 8/9/2019 Fibrelogic Flowtite Engineering Guidelines DES M-004.pdf

    26/122

    Fibrelogic Pipe Systems Pty Ltd 25

    Initial specific longitudinal tensile testWhen an axially oriented test specimen cut from each pipe batch is tested in accordance withISO 8513, the longitudinal tensile strength indicated for the pipe shall not be less than thevalue given in Table 5. The mean elongation at rupture shall not be less than 0.4 percent forpipe Class 6 and above and 0.3 for lower classes and non-pressure pipes (i.e. PN 1).

    Table 5 Minimum axial tensile strengths (N/mm) of external circumference

    NominalDiameter

    DN

    ClassPN 1*

    ClassPN 6

    ClassPN 10

    ClassPN 16

    ClassPN 20

    ClassPN 25

    ClassPN 32

    80

    100 81 93 112

    150 96 111 133

    200 112 129 155

    250 173 198 238

    300 110 173 181 206 230 253 289375 133 192 210 245 268 305 354

    450 137 203 224 267 288 331 384

    525 138 213 239 284 311 356 417

    600 146 233 263 314 347 402 471

    675 157 258 292 353 389 453 536

    750 169 284 324 389 433 504 599

    900 182 309 352 427 476 558 6641000 194 333 381 464 518 607 7261200 219 383 440 538 603 711 8541400 245 434 498 612 688 815 981

    1600 270 485 555 6871800 296 537 614 761

    2000 321 587 672 8372200 347 637 730 9112400 372 687 789 985

    3000 449 838 962 1208

    Note: Tensile strengths shown are for SN 2500 and comply with AS 3571. Flowtite™ axial strengths will be greaterfor higher stiffness pipes.

  • 8/9/2019 Fibrelogic Flowtite Engineering Guidelines DES M-004.pdf

    27/122

    Fibrelogic Pipe Systems Pty Ltd 26

    Apparent initial circumferential tensile strengthWhen a circumferentially oriented test specimen cut from each pipe batch is tested inaccordance with ISO8521, the tensile strength it indicates for the pipe shall not be less thanthe value given in Table 6. These values may be calculated from the equation:

    m

    cu

    od 

    Pσ ×=   02.0  

    Where

    σcu = circumferential strength (N/mm) determined from ISO 8521Po = initial failure test pressure (MPa) determined by regression testing

    dm = mean diameter (m)

    Table 6 Initial (average) circumferential tensile strength

    DN Average apparent initial circumferential tensile strength pipes – N/mmPN6 PN10 PN16 PN20 PN25 PN32

    80

    100 355 367 421125 422 434 542150 488 506 645200 614 644 843250 735 771 1024300 1001 1111 1614 1913 2251 2755375 1061 1411 2027 2508 2922 3602450 1092 1560 2358 2715 3238 3980525 1125 1702 2483 3005 3573 4396

    600 1223 1909 2852 3474 4148 5096675 1405 2120 3290 3991 4806 5933750 1587 2407 3763 4560 5482 6743900 1761 2709 4167 5077 6114 75891000 1927 3018 4614 5646 6790 83721200 2290 3583 5491 6733 8088 100101400 2654 4139 6367 7766 9413 116481600 3036 4712 72531800 3389 5292 81122000 3760 5889 90152200 4124 6454 99002400 4488 7059 107593000 5580 8760 13389

    Barcol HardnessWhen tested in general accordance with ASTM Standard D2583 the surface Barcol Hardnessof the pipe shall be greater than 35. 

  • 8/9/2019 Fibrelogic Flowtite Engineering Guidelines DES M-004.pdf

    28/122

    Fibrelogic Pipe Systems Pty Ltd 27

    3.3.3 Long Term Type Testing

    In addition to daily quality control testing, ISO 10467 and ISO 10639 require type testing todetermine long term properties such as hydrostatic failure pressures, stiffness creep (orrelaxation), and strain corrosion. These tests have duration of at least 10,000 hours to enable

    extrapolation to establish design values. That is, using the methods of ISO 10928, the physicalparameters required can be determined for the specified nominal 50-year design period.

     A statistically significant number of test specimens, generally a minimum of eighteen innumber, are prepared and loaded to various degrees so as to obtain a series of ultimate load(or strain) values spread over the duration of the test period. A “log time” – “log load”regression line of best fit is established using the method of least squares. The 95% lowerconfidence limit line can then be constructed based on the 50-year minimum value. In the caseof the hydrostatic design this information is needed to set values for the short-term qualitycontrol tests.

    Rigorous joint type tests, which include the combined effect of, draw and shear loading atnormal and maximum angular deflections are also requirements of the Standards.

    Long term pressure testingFlowtite™ pressure pipe is designed on a strain basis to fulfill the requirements of ISO 10467,ISO 10639, AWWA C950, ASTM D3517 and ASTM D3754. The 50-year strain value forFlowtite™ pipe as determined in report T-95-101R, ε50, is 0,65%. Current product designscomply with this value. For example on particular pipe specimens strain measurements weremade and then using regression analysis the long-term strain of 0,0065 at 23.2 bar pressurewas determined. That is the 50-year burst pressure, p50, equaled 2.32 MPa. The analysis alsoprovided the corresponding initial value, p0 , of 6.37 MPa.

    The minimum design pressure can be computed from equation 24 in ISO 10467 and ISO10639 i.e.:

    96.101.01

    1.0%5.97,,

    ,

    ,0 ××−

    ×××

    =Y 

     R

    PN C 

     p

     LCLPN t 

     p R

    η 

     

    The Standards require that the average of the last 20 initial failure pressures during production,p0, mean to be greater than this value for the product in question.

    With6

    0

     p

     pC  =   and

    6

    50,

     p

     p R

     p R  =  this equation becomes:

    96.101.01

    1.0 %5.97,,50

    0

    ,0 ××−

    ×××=

    PN  p

     p

     p

     LCLPN t 

    η 

     

    The coefficient of variation ‘Y’, for the Flowtite™ process has been measured over a period oftime and found to be generally within the range of 2.5% to 8%. Assuming a conservative value

    of 9% the expression for p0,d becomes:

  • 8/9/2019 Fibrelogic Flowtite Engineering Guidelines DES M-004.pdf

    29/122

    Fibrelogic Pipe Systems Pty Ltd 28

     LCLPN t  LCLPN t d   PN PN  p %5.97,,%5.97,,,0   32.321.11.0

    2.23

    7.63η η    ××=××××=  

    Using the values for safety factors in Table 3.4 of ISO 10467 and ISO 10639 the values for p0,d are shown in the following Table 7:

    Table 7 Minimum long-term factors of safety

    PN32 PN25 PN20 PN16 PN10 PN6ηt,PN,97,5%LCL

    applied to to the

    long term 97.5% LCL 

    1.3 1.3 1.38 1.45 1.55 1.6

    ηt,Pnmean

    applied to to the

    long term mean

    1.6 1.6 1.8 1.83 1.9 2.0

    p0,d MPa 13.8 10.8 9.16 7.70 5.15 3.19

    Note: As the standards do not provide factors for PN20 this value has been interpolated.

    Cyclical internal hydrostatic pressure testingIn accordance with Clause 5.3 of ISO 10467 and ISO 10639 the resistance of Flowtite™pressure pipes to cyclic internal pressure has been verified through testing to ISO. The resultsare recorded in TÜV test report TÜV MP4/3338-90 and Veroc test report 13-T86. In both casespipes were subjected to one million cycles between 0.75 x PN and 1.25 PN without showingany sign of failure.

    Resistance to strain corrosion

    The strain corrosion resistance of Flowtite™ pipes has been measured to a value of 0.66%(see test report T-99-107). Using the equation in Clause 10.6 of ISO 10952 this value can beconverted to deflections and compared with the requirements. By using the thickest of thepipes in each stiffness class the following deflections are obtained:

    Stiffness class SN 2500 SN 5000 SN 10000Deflection % 14.3 11.3 9.0

    These values meet the requirements in Table 17 of ISO 10467.

    Joint systems

    Three methods of jointing Flowtite™ pipes have been tested i.e. both flexible and rigid joints,with or without end load resisting capability to meet the requirements of Clause 7 of ISO 10467and ISO 10639. The following test reports are available:

    •  Flexible non-end-load-bearing joints – test report T-93-102•  Wrapped non-end-load-bearing joints – test report T-2004-127•  Bolted non-end-load-bearing joints – test report T-2004-129

  • 8/9/2019 Fibrelogic Flowtite Engineering Guidelines DES M-004.pdf

    30/122

    Fibrelogic Pipe Systems Pty Ltd 29

    4  PRODUCT RANGE

    4.1 Description and classification

    Nominal Sizes (DN)Flowtite™ pipes are currently manufactured in Australia in the nominal size range 300 mm to3000 mm.

    Flowtite™ pipes are manufactured with the same outside diameters as ductile iron of the samenominal diameter; as a result the internal diameters are approximately 10% larger thannominal size in comparable sizes in the DN300 to DN750 ranges.

    Nominal Pressure Classes (PN)Pressure pipes are classified according to nominal pressure and nominal stiffness; non-pressure pipes by nominal stiffness only.

    Table 8Nominal pressure rating PN 1 6 10 16 20 25 32Working Pressure (MPa) 0.1 0.6 1.0 1.6 2.0 2.5 3.2Working Pressure (Bar) 1 6 10 16 20 25 32Working Head (Metres) 10 61 102 163 204 255 326Max. diameter for specific PN (mm) 3000 3000 3000 3000 3000 2400 1800

    Nominal Stiffness (SN)Standard nominal stiffness is shown in Table 9.

    Table 9

    Stiffness (SN)

    2500500010000

    Other pipe pressure or stiffness classes apart from those listed may be manufactured onrequest.

    Branding and Marking

     All pressure pipes are branded to indicate the nominal diameter, pressure class and stiffnessas shown by the following example:

    Couplings for non-pressure pipes are branded to indicate the nominal diameter. Becausecouplings are common in the non-pressure and pressure range up to Class 6 they will

    generally be branded Class 6, for example “DN900 PN6”.

  • 8/9/2019 Fibrelogic Flowtite Engineering Guidelines DES M-004.pdf

    31/122

    Fibrelogic Pipe Systems Pty Ltd

    4.2 Dimensions - pipes

    Table 10 Pipe - available sizes and classifications for SN 2500

    DNSpigot

    OD

    Pipe stiffness SN 2500PN 1 PN 6 PN 10 PN 16 PN 20

    t ID Mass t ID Mass t ID Mass t ID Mass t ID Mass

    (mm) (mm) (kg/m) (mm) (mm) (kg/m) (mm) (mm) (kg/m) (mm) (mm) (kg/m) (mm) (mm) (kg/m) (

    375 426 5.5 415 14.4 5.5 415 14.4

    450 507 6.6 494 20.8 6.6 494 20.8

    525 587 7.7 572 28.6 7.7 572 28.6

    600 667 8.7 650 36.7 8.7 650 36.7

    675 747 9.6 728 46.0 9.6 728 46.0 8.6 730 39.9

    750 826 10.5 805 55.7 10.5 805 55.7 9.5 807 48.9

    900 923 11.7 900 69.4 11.7 900 69.4 10.5 902 60.8

    1000 1025 12.9 999 85.6 12.9 999 85.6 11.5 1002 74.71200 1229 15.3 1198 122.3 15.3 1198 122.3 13.6 1202 106.5

    1400 1433 17.7 1398 165.7 17.7 1398 165.7 15.8 1401 144.2

    1600 1637 20.1 1597 215.5 20.1 1597 215.5 17.9 1601 187.5

    1800 1841 22.7 1796 274.0 22.7 1796 274.0 20.0 1801 236.3

    2000 2045 25.0 1995 336.8 25.1 1995 336.8 22.1 2001 290.8

    2200 2249 27.5 2194 406.6 27.5 2194 406.6 24.2 2201 350.8

    2400 2453 29.9 2393 483.0 29.9 2393 483.0 26.3 2400 416.3

    3000 3065 37.1 2991 751.7 37.1 2991 751.7

  • 8/9/2019 Fibrelogic Flowtite Engineering Guidelines DES M-004.pdf

    32/122

    Fibrelogic Pipe Systems Pty Ltd

    Table 11 Pipe - available sizes and classifications (SN 5000)

    DNSpigot

    OD

    Pipe stiffness SN 5000

    PN 1 PN 6 PN 10 PN 16 PN 20

    t ID Mass t ID Mass t ID Mass t ID Mass t ID Mass (mm) (mm) (kg/m) (mm) (mm) (kg/m) (mm) (mm) (kg/m) (mm) (mm) (kg/m) (mm) (mm) (kg/m) (

    300 345 See Table for SN 10000 5.1 335 10.4

    375 426 6.9 412 18.4 6.9 412 18.4 6.6 413 17.4 6.2 414 15.9 6.2 414 15.7

    450 507 8.3 490 26.5 8.3 490 26.5 7.8 491 24.6 7.3 492 22.5 7.2 493 21.9

    525 587 9.5 568 35.5 9.5 568 35.5 8.9 569 32.7 8.3 570 29.9 8.1 571 28.9

    600 667 10.7 646 45.6 10.7 646 45.6 10.0 647 42.1 9.3 648 38.3 9.1 649 37.1

    675 747 11.9 723 57.1 11.9 723 57.1 11.1 725 52.6 10.3 726 47.8 10.1 727 46.2

    750 826 13.1 800 69.7 13.1 800 69.7 12.2 802 64.2 11.3 803 58.1 11.1 804 56.1

    900 923 14.5 894 86.7 14.5 894 86.7 13.6 896 80.6 12.5 898 72.2 12.3 898 69.7

    1000 1025 16.0 993 106.3 16.0 993 106.3 15.0 995 99.1 13.8 997 88.7 13.5 998 85.5

    1200 1229 19.0 1191 151.9 19.0 1191 151.9 17.9 1193 142.0 16.3 1196 126.3 16.0 1197 121.9 1400 1433 22.1 1389 207.1 22.1 1389 207.1 20.7 1392 191.9 18.9 1395 171.1 18.5 1396 164.9

    1600 1637 25.2 1587 269.9 25.2 1587 269.9 23.5 1590 250.2 21.4 1594 222.3

    1800 1841 28.2 1785 341.3 28.2 1785 341.3 26.3 1788 315.5 24.0 1793 280.2

    2000 2045 31.2 1983 419.4 31.2 1983 419.4 29.2 1987 388.8 26.5 1992 345.1

    2200 2249 34.3 2180 507.1 34.3 2180 507.1 32.0 2185 469.4

    2400 2453 37.2 2379 601.6 37.3 2378 601.6 34.8 2383 558.3

    3000 3065 46.3 2972 937.6 46.3 2972 937.6

  • 8/9/2019 Fibrelogic Flowtite Engineering Guidelines DES M-004.pdf

    33/122

  • 8/9/2019 Fibrelogic Flowtite Engineering Guidelines DES M-004.pdf

    34/122

    Fibrelogic Pipe Systems Pty Ltd

    Table 13 Couplings - available sizes and classifications

    DN

    Coupling dimensions & Masses

    Length (mm)

    PN 1 PN 6 PN 10 PN 16 PN 20

    Cplg Cplg Cplg Cplg Cplg Cplg Cplg Cplg Cplg Cplg CpOD mass OD mass OD mass OD mass OD mass OD

    300 270 388 11.5 388 11.5 389 11.7 390 12.2 391 12.4 39

    375 270 469 14.0 469 14.0 470 14.5 471 15.0 472 15.3 47

    450 270 550 16.6 550 16.6 551 17.3 553 17.9 554 18.3 55

    525 270 630 19.1 630 19.1 631 20.0 633 21.0 634 21.3 63

    600 330 716 30.8 716 30.8 718 32.2 721 34.6 724 36.4 72

    675 330 796 34.1 796 34.1 798 36.3 802 38.6 804 40.3 80

    750 330 875 37.6 875 37.6 879 41.2 882 43.0 884 44.4 88

    900 330 973 42.8 973 42.8 977 47.1 980 49.6 983 51.6 98

    1000 330 1076 48.4 1076 48.4 1080 53.5 1084 56.6 1087 59.4 110

    1200 330 1281 59.4 1281 59.4 1287 66.5 1291 71.5 1300 82.3 1311400 330 1486 70.5 1486 70.5 1492 79.4 1500 89.5 1512 107.1 152

    1600 330 1691 81.9 1691 81.9 1698 93.1 1710 112.5

    1800 330 1896 93.3 1896 93.3 1903 107.0 1918 134.4

    2000 330 2100 105.2 2100 105.2 2110 125.3 2126 156.3

    2200 330 2305 117.4 2305 117.4 2317 143.8

    2400 330 2510 129.7 2510 129.7 2523 162.5

    3000 360 3144 248.4 3144 248.4

  • 8/9/2019 Fibrelogic Flowtite Engineering Guidelines DES M-004.pdf

    35/122

    Fibrelogic Pipe Systems Pty Ltd

    Table 14 Pipe spigot ends - dimensional details

    Nominal diameter(DN)

    Witness MarkP

    Calibration LengthCL

    Chamfe

    300 130 mm 140 mm 10

    375 130mm 140 mm 15

    450 -525 130 mm 150mm 20

    600 to 3000 160 mm 190 mm 20

  • 8/9/2019 Fibrelogic Flowtite Engineering Guidelines DES M-004.pdf

    36/122

    Fibrelogic Pipe Systems Pty Ltd 35 

    4.3 Dimensions - fittings(Note that overall dimensions are subject to change without notice)

    Table 15PN 1, PN 10 & PN 16

    Nominal Radius 11.250  22.50  300 

    Diameter of Bend Length Approx Length Approx Length Approx

    DN R BL Mass BL Mass BL Mass(mm) (mm) (mm) (kg) (mm) (kg) (mm) (kg)

    300 450 400 10 400 13 400 13

    375 600 450 18 450 20 450 20

    450 675 450 29 500 32 500 32

    525 750 450 39 500 43 500 43

    600 900 400 51 400 45 450 51

    675 1050 400 57 450 64 450 64

    750 1200 450 70 450 78 500 87

    900 1350 450 97 500 108 550 119

    1000 1500 450 120 500 133 550 147

    1200 1800 500 191 600 229 600 229

    1400 2100 600 311 650 337 700 363

    1600 2400 650 439 750 506 800 540

    1800 2700 700 554 800 681 850 724

    2000 3000 700 734 800 838 900 943

    2200 3300 700 887 800 1014 900 1140

    2400 3600 700 1053 800 1203 1000 1503

    11.25°, 22.5° & 30° BENDS

  • 8/9/2019 Fibrelogic Flowtite Engineering Guidelines DES M-004.pdf

    37/122

    Fibrelogic Pipe Systems Pty Ltd 36 

    Table 16

    PN 1, PN 10 & PN 16

    Nominal Radius 450  600  900 

    Diameter of Bend Length Approx Length Approx Length Approx

    DN R BL Mass BL Mass BL Mass(mm) (mm) (mm) (kg) (mm) (kg) (mm) (kg)

    300 450 500 16 550 17 750 22

    375 600 600 26 650 28 900 35

    450 675 600 38 700 43 1000 56

    525 750 650 55 750 62 1050 78600 900 600 66 700 75 1100 104

    675 1050 650 90 800 107 1200 141

    750 1200 700 118 850 139 1350 194

    900 1350 800 168 950 193 1500 266

    1000 1500 850 220 1000 250 1650 362

    1200 1800 950 352 1200 430 1950 611

    1400 2100 1100 553 1350 655 2250 953

    1600 2400 1250 818 1550 979 2550 1404

    1800 2700 1350 1113 1700 1353 2850 1977

    2000 3000 1450 1469 1800 1755 3100 2631

    2200 3300 1550 1896 1950 2296 3350 3423

    2400 3600 1550 2242 2100 2932 3600 4349

    45° & 60° BEND 90° BEND

  • 8/9/2019 Fibrelogic Flowtite Engineering Guidelines DES M-004.pdf

    38/122

    Fibrelogic Pipe Systems Pty Ltd 37 

    Table 17

    PN 1 PN 6 & PN 10 PN 16

    Nom DiaBodyDN

    (mm)

    Nom DiaBranch

    DN(mm)

    BodyLength

    L(mm)

    BranchLength

    H(mm)

    ApproxMass

    (kg)

    BodyLength

    L(mm)

    BranchLength

    H(mm)

    ApproxMass

    (kg)

    BodyLength

    L(mm)

    BranchLength

    H(mm)

    ApproxMass

    (kg)

    300

    100 700 400 12 1000 550 18 1300 700 23150 700 400 13 1200 650 23 1600 850 30

    200 800 400 16 1300 650 26 1700 850 34

    250 800 400 18 1300 650 29 1700 850 37

    300 900 450 21 1400 700 34 1800 900 44

    375

    100 700 450 17 1100 650 26 1500 850 33

    150 700 450 18 1200 700 30 1600 850 37

    200 800 450 21 1500 800 39 2000 1050 49

    250 800 450 23 1500 800 42 2100 1100 56

    300 900 500 28 1600 850 49 2100 1100 61

    375 1000 500 33 1700 850 57 2300 1150 71

    TEES sp, sp & sp

  • 8/9/2019 Fibrelogic Flowtite Engineering Guidelines DES M-004.pdf

    39/122

    Fibrelogic Pipe Systems Pty Ltd 38 

    PN 1 PN 6 & PN 10 PN 16

    Nom DiaBodyDN

    (mm)

    Nom DiaBranch

    DN(mm)

    BodyLength

    L(mm)

    BranchLength

    H(mm)

    ApproxMass

    (kg)

    BodyLength

    L(mm)

    BranchLength

    H(mm)

    ApproxMass

    (kg)

    BodyLength

    L(mm)

    BranchLength

    H(mm)

    ApproxMass

    (kg)

    450

    100 700 450 24 1200 700 40 1600 900 48

    150 700 450 25 1300 750 45 1700 950 54

    200 800 450 29 1500 800 54 1900 1050 63

    250 800 450 31 1500 800 57 2000 1050 70

    300 900 500 37 1700 900 69 2200 1200 83

    375 1000 500 43 1800 900 78 2400 1250 95

    450 1100 550 53 1900 1000 93 1500 1300 81

    525

    100 700 500 31 1300 800 58 1700 1000 69150 700 500 33 1400 800 64 1800 1050 75

    200 800 500 38 1400 850 67 1900 1050 82

    250 800 500 40 1800 950 70 2400 1300 86

    300 900 550 43 1800 1000 93 2500 1350 115

    375 1000 550 55 1900 1000 104 2600 1350 129

    450 1100 550 65 1900 1000 114 2600 1350 140

    525 1200 600 78 2000 1000 130 2700 1350 158

    600

    300 900 600 60 1100 700 73 1400 800 83

    375 1100 600 75 1400 750 95 1700 900 104

    450 1100 600 81 1400 750 102 1700 900 111

    525 1200 600 93 1500 750 116 1800 900 125

    600 1300 650 109 1700 850 143 1900 950 143

    675 300 900 650 74 1200 750 97 1500 900 108

      375 1100 650 92 1500 850 125 1800 1000 133

      450 1100 650 99 1500 850 133 1800 1000 141

      525 1200 700 115 1600 850 150 1900 1000 158

      600 1300 700 131 1700 900 170 2000 1050 178

      675 1400 700 149 1900 900 198 2100 1050 197

    750 300 900 700 89 1300 850 126 1600 1000 138  375 1100 700 111 1400 850 140 1700 1000 150

      450 1100 750 119 1600 900 167 1900 1100 177

      525 1200 750 136 1700 950 188 2000 1150 197

      600 1400 750 163 1800 1000 212 2100 1150 218

      675 1500 800 186 1900 1000 235 2200 1150 239

      750 1600 800 208 2100 1050 272 2300 1150 263

    TEES sp, sp & sp

  • 8/9/2019 Fibrelogic Flowtite Engineering Guidelines DES M-004.pdf

    40/122

    Fibrelogic Pipe Systems Pty Ltd 39 

    PN 1 PN 6 & PN 10 PN 16

    Nom Dia Nom Dia Body Branch Approx Body Branch Approx Body Branch Approx

    Body Branch Length Length Mass Length Length Mass Length Length Mass

    DN DN L H L H L H(mm) (mm) (mm) (mm) (kg) (mm) (mm) (kg) (mm) (mm) (kg)

    900

    300 900 750 109 1400 950 166 1600 1100 170

    375 1100 750 135 1500 950 182 1800 1100 194

    450 1100 750 142 1600 950 202 2000 1200 224

    525 1200 800 163 1700 1000 226 2100 1250 248600 1400 850 198 1900 1050 263 2200 1300 274

    675 1500 850 221 2000 1050 289 2400 1300 309

    750 1600 850 245 2100 1100 321 2500 1300 336

    900 1700 850 274 2300 1150 370 2600 1300 370

    1000

    300 900 800 133 1400 1000 202 1700 1200 218

    375 1100 800 164 1500 1000 221 1800 1200 235

    450 1100 800 172 1500 1000 231 1900 1200 256

    525 1200 850 196 1600 1000 256 2000 1200 280

    600 1400 900 236 1900 1150 317 2400 1400 350

    675 1500 900 263 2000 1150 347 2500 1400 379750 1600 900 290 2200 1200 396 2600 1400 410

    900 1800 950 341 2300 1200 434 2800 1400 459

    1000 1900 950 378 2500 1250 498 2900 1400 501

    1200

    300 1000 900 205 1500 1200 305 1800 1350 322

    375 1100 950 231 1600 1200 331 2000 1350 362

    450 1100 950 240 1600 1200 343 2000 1350 373

    525 1200 950 270 1700 1200 376 2100 1350 403

    600 1400 1000 323 1800 1200 410 2200 1400 437

    675 1600 1000 376 2200 1350 514 2700 1600 551

    750 1700 1050 415 2300 1350 555 2800 1600 589

    900 1800 1050 456 2400 1350 602 2900 1600 636

    1000 1900 1100 508 2500 1350 655 3000 1600 687

    1200 2200 1100 629 2800 1400 800 3200 1600 801

    TEES sp, sp & sp

  • 8/9/2019 Fibrelogic Flowtite Engineering Guidelines DES M-004.pdf

    41/122

    Fibrelogic Pipe Systems Pty Ltd 40 

    PN 1 PN 6 & PN 10

    Nom Dia Nom Dia Body Branch Approx Body Branch ApproxBody Branch Length Length Mass Length Length Mass

    DN DN L H L H(mm) (mm) (mm) (mm) (kg) (mm) (mm) (kg)

    1400

    300 1000 1000 275 1600 1350 436

    375 1100 1050 308 1700 1350 469

    450 1200 1050 344 1700 1350 483

    525 1300 1050 381 1800 1350 524

    600 1400 1100 424 2000 1400 595

    675 1500 1100 466 2100 1400 642

    750 1700 1150 539 2400 1500 750

    900 1900 1150 615 2500 1500 807

    1000 2000 1200 676 2600 1500 871

    1200 2200 1200 797 2900 1550 1045

    1400 2500 1250 969 3200 1600 1241

    1600

    300 1000 1150 356 1700 1500 597

    375 1200 1150 430 1800 1500 639

    450 1200 1150 441 1900 1500 688

    525 1300 1200 490 2000 1500 738

    600 1400 1200 539 2100 1550 794675 1600 1250 627 2200 1550 850

    750 1700 1250 681 2300 1550 908

    900 1800 1300 746 2700 1700 1092

    1000 2000 1300 846 2800 1700 1168

    1200 2300 1350 1032 3100 1750 1377

    1400 2500 1350 1191 3400 1800 1610

    1600 2800 1400 1414 3600 1800 1818

    1800

    300 1000 1250 445

    375 1200 1250 538

    450 1200 1250 550

    525 1300 1300 608

    600 1400 1300 668

    675 1600 1350 775

    750 1700 1350 839

    900 1800 1350 910

    1000 2100 1450 1085

    1200 2300 1450 1253

    1400 2600 1500 1492

    1600 2800 1500 16951800 3100 1550 1975

    TEES sp, sp & sp

  • 8/9/2019 Fibrelogic Flowtite Engineering Guidelines DES M-004.pdf

    42/122

    Fibrelogic Pipe Systems Pty Ltd 41 

    Table 18

    PN 1, PN 6 & PN 10 PN 16

    Nom Dia Nom Dia Body Branch Approx Body Branch Approx

    Body Branch Length Length Mass Length Length Mass

    DN DN L H L H(mm) (mm) (mm) (mm) (kg) (mm) (mm) (kg)

    300 100 1000 550 21 1300 550 26

    375 100 1100 650 29 1500 650 36

    450100 1200 750 43 1600 750 51

    150 1200 750 48 1600 750 56

    525100 1300 800 61 1700 800 71

    150 1400 800 70 1800 800 80

    600

    100 1100 700 66 1400 700 75

    150 1100 700 71 1400 700 80

    200 1100 700 75 1400 700 85

    675

    100 1200 750 90 1500 750 99

    150 1200 750 94 1500 750 104

    200 1200 750 99 1500 750 109

    750

    100 1300 800 117 1600 800 127

    150 1300 800 122 1600 800 132

    200 1300 800 127 1600 800 137

    250 1300 800 135 1600 800 146

    900

    100 1400 800 155 1600 800 157

    150 1400 900 160 1600 900 163

    200 1400 900 165 1600 900 168

    250 1400 900 174 1600 900 177

    1000

    100 1400 900 191 1700 900 204

    150 1400 900 196 1700 900 209

    200 1400 900 201 1700 900 214250 1400 900 209 1700 900 224

    1200

    100 1500 1000 291 1800 1000 306

    150 1500 1000 296 1800 1000 312

    200 1500 1000 302 1800 1000 317

    250 1500 1000 310 1800 1000 327

    1400

    100 1600 1100 419 2100 1100 481

    150 1600 1100 425 2100 1100 487

    200 1600 1100 430 2100 1100 492

    250 1600 1100 439 2100 1100 502

    AIR VALVE TEES – sp, sp & fl(Drilling to AS 4087 Class PN 16)

  • 8/9/2019 Fibrelogic Flowtite Engineering Guidelines DES M-004.pdf

    43/122

    Fibrelogic Pipe Systems Pty Ltd 42 

    PN 1, PN 6 & PN 10 PN 16

    Nom Dia  Nom Dia Body Branch Approx Body Branch Approx

    Body Branch Length Length Mass Length Length Mass

    DN DN L H L H(mm) (mm) (mm) (mm) (kg) (mm) (mm) (kg)

    1600

    100 1700 1200 578 2400 1200 713

    150 1700 1200 584 2400 1200 719

    200 1700 1200 590 2400 1200 725

    250 1700 1200 599 2400 1200 735

    1800

    100 2700 1300 1153 2700 1300 1010150 2700 1300 1159 2700 1300 1016

    200 2700 1300 1165 2700 1300 1023

    250 2700 1300 1175 2700 1300 1033

    2000

    100 3000 1400 1574 3000 1400 1379

    150 3000 1400 1580 3000 1400 1386

    200 3000 1400 1587 3000 1400 1392

    250 3000 1400 1597 3000 1400 1403

    2200

    100 3300 1500 2092

    150 3300 1500 2098

    200 3300 1500 2105

    250 3300 1500 2116

    2400

    100 3600 1600 2706

    150 3600 1600 2713

    200 3600 1600 2720

    250 3600 1600 2731

    AIR VALVE TEES – sp, sp & fl

  • 8/9/2019 Fibrelogic Flowtite Engineering Guidelines DES M-004.pdf

    44/122

  • 8/9/2019 Fibrelogic Flowtite Engineering Guidelines DES M-004.pdf

    45/122

    Fibrelogic Pipe Systems Pty Ltd 44 

    PN 1, PN 6 & PN 10 PN 16

    Nom Dia Nom Dia Body Branch Approx Body Branch Approx

    Body Branch Length Length Mass Length Length Mass

    DN DN L H L H(mm) (mm) (mm) (mm) (kg) (mm) (mm) (kg)

    1200

    100 1500 1000 291 1800 1000 306

    150 1500 1000 296 1800 1000 312

    200 1500 1000 302 1800 1000 317

    250 1500 1000 310 1800 1000 327

    1400

    100 1600 1100 419 2100 1100 481

    150 1600 1100 425 2100 1100 487

    200 1600 1100 430 2100 1100 492

    250 1600 1100 439 2100 1100 502

    1600

    100 1700 1200 578 2400 1200 713

    150 1700 1200 584 2400 1200 719

    200 1700 1200 590 2400 1200 725

    250 1700 1200 599 2400 1200 735

    1800

    100 2700 1300 1153 2700 1300 1010

    150 2700 1300 1159 2700 1300 1016

    200 2700 1300 1165 2700 1300 1023

    250 2700 1300 1175 2700 1300 1033

    2000

    100 3000 1400 1574 3000 1400 1379

    150 3000 1400 1580 3000 14001386

    200 3000 1400 1587 3000 1400 1392

    250 3000 1400 1597 3000 1400 1403

    2200

    100 3300 1500 2092

    150 3300 1500 2098

    200 3300 1500 2105

    250 3300 1500 2116

    2400

    100 3300 1500 2706

    150 3300 1500 2713

    200 3300 1500 2720

    250 3300 1500 2731

    SCOUR TEES – sp, sp & fl

  • 8/9/2019 Fibrelogic Flowtite Engineering Guidelines DES M-004.pdf

    46/122

    Fibrelogic Pipe Systems Pty Ltd 45 

    Table 20

    Non pressure PN 1 (only)Nom Dia

    BodyDN

    (mm)

    Nom DiaBranch

    DN(mm)

    BodyLength

    L(mm)

    BranchLength

    E(mm)

    LengthF

    (mm)

    BranchHeight

    H(mm)

    ApproxMass

    (kg)

    100 100 600 420 350 300 2.6150 100 600 420 375 300 4.1

    150 700 420 425 300 5.6200 100 600 420 400 300 5.6

    150 700 500 450 350 7.8200 800 500 500 350 9.8

    250 100 600 500 425 350 8.2150 700 500 475 350 10.6200 800 570 525 400 13.5250 900 570 575 400 16.9

    300 100 700 500 500 350 12.7150 800 570 550 400 15.9200 900 570 600 400 19.3250 1000 640 650 450 23.9300 1100 710 700 500 29.5

    375 100 700 570 550 400 16.9150 800 640 600 450 20.7200 900 640 650 450 24.8250 1000 710 700 500 30.2300 1100 780 750 550 36.7375 1300 850 850 600 47.7

    450 100 700 640 600 200 24.0150 800 710 650 500 29.1200 900 710 700 500 34.1250 1000 780 750 550 40.6300 1100 850 800 600 48.3375 1300 920 900 650 61.6450 1400 920 950 650 74.3

    SLOPE JUNCTIONS

  • 8/9/2019 Fibrelogic Flowtite Engineering Guidelines DES M-004.pdf

    47/122

    Fibrelogic Pipe Systems Pty Ltd 46 

    Non pressure PN 1 onlyNom Dia

    BodyDN

    (mm)

    Nom DiaBranch

    DN(mm)

    BodyLength

    L(mm)

    BranchLength

    E(mm)

    LengthF

    (mm)

    BranchHeight

    H(mm)

    ApproxMass

    (kg)

    525 100 700 710 600 500 32150 800 710 650 500 38200 900 780 700 550 45250 1000 780 750 550 52

    300 1100 850 800 600 61375 1300 920 900 650 77450 1400 990 950 700 91525 1500 990 1000 700 108

    600 300 1100 920 850 650 77375 1300 990 950 700 95450 1400 990 1000 700 112525 1500 1060 1050 750 130600 1600 1130 1100 800 153

    675 300 1100 990 900 700 94375 1300 1060 1000 750 116450 1400 1060 1050 750 134

    525 1500 1130 1100 800 155600 1700 1200 1200 850 188675 1900 1270 1300 900 225

    750 300 1100 1060 950 750 113375 1300 1130 1050 800 138450 1400 1130 1100 800 158525 1500 1200 1150 850 182600 1700 1270 1250 900 218675 1900 1340 1350 950 259750 2100 1410 1450 1000 304

    SLOPE JUNCTIONS

  • 8/9/2019 Fibrelogic Flowtite Engineering Guidelines DES M-004.pdf

    48/122

    Fibrelogic Pipe Systems Pty Ltd 47 

    Table 21

    Nominal Diameter Dimensions Approx. Mass

    DNLargeEnd(DL)(mm)

    DNSmallEnd(DS)

    (mm)

    Taperlength

    (L)

    (mm)

    Spigotlengths(A & B)

    (mm)

    OverallLength

    (mm)

    PN1 PN6 &PN10

    PN16

    (kg)

    150 100 125 300 725 4 4 4200 100 250 300 850 6 6 7200 150 125 300 725 6 7 8250 150 250 300 850 8 11 13250 200 125 300 725 9 12 14300 200 250 400 1050 15 17 23300 250 125 400 925 16 18 24375 300 188 400 988 22 29 44450 375 188 400 988 29 39 59525 375 375 400 1175 36 54 76525 450 188 400 988 39 55 75600 450 375 400 1175 50 71 89

    600 525 188 400 988 53 72 87675 525 375 400 1175 68 100 120675 600 188 400 988 67 95 106750 600 375 400 1175 85 130 174750 675 188 400 988 83 121 155900 675 563 400 1363 106 167 242900 750 375 400 1175 102 152 2171000 750 625 400 1425 129 206 2981000 900 250 400 1050 125 188 2651200 1000 500 500 1500 222 360 5121400 1200 500 500 1500 313 557 7401600 1400 500 600 1700 473 820 1166

    1800 1600 500 600 1700 615 1078 14952000 1800 500 600 1700 757 1347 18212200 2000 500 600 1700 927 16412400 2200 500 600 1700 1108 1928

    TAPERS & ECCENTRIC REDUCERS

  • 8/9/2019 Fibrelogic Flowtite Engineering Guidelines DES M-004.pdf

    49/122

  • 8/9/2019 Fibrelogic Flowtite Engineering Guidelines DES M-004.pdf

    50/122

    Fibrelogic Pipe Systems Pty Ltd 49 

    Table 23

    Nom DiameterDN

    (mm)

    FlangeOD

    (mm)

    PN 10 PN 16

    Length Approx Length Approx

    L Mass L Mass

    (mm) (kg) (mm) (kg)

    100 230 350 2.7 400 3.3

    150 305 400 5.4 400 6.4

    200 370 400 8.4 400 9.3

    250 430 400 13.1 450 15.1

    300 490 400 16.1 400 17.1

    375 610 450 26.4 450 27.8

    450 675 450 35.1 450 36.4

    525 785 450 43.1 450 46.9

    600 850 500 62.0 500 68.1

    675 935 550 85.7 550 88.5

    750 1015 550 113.1 550 117.3

    900 1185 600 145.1 600 151.1

    1000 1275 600 186.2 650 198.9

    1200 1530 700 303.7 750 326.0

    1400 1750* 750 437.6 800 459.11600 1960* 800 605.5 850 729.1

    1800 2160* 900 844.4 950 892.4

    2000 2395* 950 1101.5 1000 1140.8

    2200 2610* 1050 1470.8

    2400 2825* 1100 1799.6

    FLANGE SPIGOT CONNECTORS

  • 8/9/2019 Fibrelogic Flowtite Engineering Guidelines DES M-004.pdf

    51/122

    Fibrelogic Pipe Systems Pty Ltd 50 

    Table 24

    Nom DiaDN

    (mm)

    Non pressure PN 1

    CouplingOD

    (mm)

    LengthL

    (mm)

    ApproxMass(kg)

    80 134 157 1.4

    100 157 157 1.7

    125 175 157 2.0

    150 212 157 2.4

    200 278 182 4.6

    250 332 182 6.5

    300 402 277 13.3

    375 483 277 16.4

    450 564 277 19.8

    525 644 277 23.2

    600 732 338 36.7

    675 812 338 41.3

    750 893 339 47.1

    900 993 340 55.8

    1000 1098 341 66.0

    1200 1307 343 88.6

    1400 1516 345 116.0

    1600 1725 347 149.0

    1800 1934 349 187.02000 2144 352 239.9

    2200 2353 354 293.4

    2400 2562 356 356.3

    3000 3208 392 685.1

    CLOSED COUPLINGS

  • 8/9/2019 Fibrelogic Flowtite Engineering Guidelines DES M-004.pdf

    52/122

  • 8/9/2019 Fibrelogic Flowtite Engineering Guidelines DES M-004.pdf

    53/122

    Fibrelogic Pipe Systems Pty Ltd 52 

    Nom Dia Nom Dia Branch Body Body Approx Body Body Approx

    Body Branch Length Length Width Mass Length Width MassDN DN H L W L W

    (mm) (mm) (mm) (mm) (mm) (kg) (mm) (mm) (kg)

    1000

    100 400 400 260 47 260 260 30

    150 400 450 315 63 310 315 44

    225 400 570 410 104 400 410 73

    300 400 670 490 147 470 490 103

    1200

    100 400 400 260 54 260 260 35

    150 400 450 315 73 310 315 51

    225 400 570 410 121 400 410 85

    300 400 670 490 170 470 490 119

    1400

    100 400 400 260 54 260 260 35

    150 400 450 315 74 310 315 51

    225 400 570 410 122 400 410 86

    300 400 670 490 172 470 490 121

    1600

    100 400 400 260 56 260 260 36

    150 400 450 315 76 310 315 52

    225 400 570 410 125 400 410 88

    300 400 670 490 176 470 490 123

    1800

    100 400 400 260 57 260 260 37150 400 450 315 77 310 315 53

    225 400 570 410 128 400 410 90

    300 400 670 490 179 470 490 126

    2000

    100 400 400 260 59 260 260 38

    150 400 450 315 80 310 315 55

    225 400 570 410 132 400 410 92

    300 400 670 490 185 470 490 130

    2200

    100 400 400 260 61 260 260 40

    150 400 450 315 83 310 315 57

    225 400 570 410 137 400 410 96

    300 400 670 490 193 470 490 135

    2400

    100 400 400 260 64 260 260 42

    150 400 450 315 87 310 315 60

    225 400 570 410 144 400 410 101

    300 400 670 490 202 470 490 141

    3000

    100 400 400 260 71 260 260 46

    150 400 450 315 97 310 315 67

    225 400 570 410 160 400 410 112

    300 400 670 490 225 470 490 158

    SADDLE JUNCTIONS

  • 8/9/2019 Fibrelogic Flowtite Engineering Guidelines DES M-004.pdf

    54/122

    Fibrelogic Pipe Systems Pty Ltd 53 

    Table 26

    Nom DiaDN

    (mm)

    Non pressure PN 1Length Offset Centreline Approx

    L B Height F Mass(mm) (mm) (mm) (kg)

    300 1780 890 890 50

    375 1939 969 969 73

    450 1877 939 939 103

    525 2233 1117 1117 164

    600 2380 1190 1190 225

    675 2784 1392 1392 333

    750 3000 1500 1500 439

    MANHOLE DROP JUNCTIONS

  • 8/9/2019 Fibrelogic Flowtite Engineering Guidelines DES M-004.pdf

    55/122

    Fibrelogic Pipe Systems Pty Ltd 54 

    Table 27

    Nom DiaDN(mm)

    Non pressure PN 1 

    Offset Centreline Approx

    B Height B Mass(mm) (mm) (kg)

    300 890 890 31

    375 969 969 44

    450 939 939 61

    525 1117 1117 96

    600 1190 1190 129

    675 1392 1392 185

    750 1500 1500 240

    MANHOLE DROP BENDS

  • 8/9/2019 Fibrelogic Flowtite Engineering Guidelines DES M-004.pdf

    56/122

    Fibrelogic Pipe Systems Pty Ltd 55 

    5  HYDRAULIC DESIGN

    5.1 Flow and pressure capacity calculations

    Flowtite™ pipelines have exceptionally good hydraulic performance when new, asthey fall in the “smooth” polymer pipe category. However, these may in someinstances be affected by various adverse service factors including:

    •  Growth of slime (varies with age of the pipeline and available nutrient in thewater)

    •  Siltation or settlement of suspended particulate matter•  Fittings types and configurations

    The flow resistance chart has been provided – see Figures 5.1. It is based on thefollowing parameters.

    •  Operating temperature of 20°C which corresponds to a kinematic viscosity ofwater υ = 1.01 x 10-6 m2/s

    •  Equivalent roughness k= 0.020 ± 0.015 mm

     An approximate allowance for the effect of variation in water temperature on the chartvalues an be made by increasing the chart value of the head loss by 1% for each 3ºCbelow 20º and by decreasing it by 1% for each 3ºC in excess of 20º of pressurerating 

    The notation used for the equations in this section follows:

    d = internal diameter (m)f = Darcy friction co-efficientg = acceleration due to gravity (m/sec2)HL  = friction head loss (m)H = Total (pumping) headi = annual interest rate j = annual interest rate including inflationk = equivalent hydraulic roughness (m)m = assumed inflation raten = Manning “n”N = planned life of system (years)Q = flow or discharge (L/s)

    Qp  = most probable peak flow (L/s)Qf   = flow or discharge - pipe flowing full (L/s)R = hydraulic mean radius i.e. flow area/perimeter (m)Rp  = hydraulic mean radius for partly full pipe (m)Rf = hydraulic mean radius for full pipe i.e. d/4 (m)S = hydraulic gradient, also slope of gravity flow sewer

    (m/m)V = mean velocity (m/sec)Vp  = mean velocity in part full pipe (m/s)Vf   = mean velocity - pipe flowing full (m/s)

    T = duration of pump operation (hours/year)

    y = depth of flow above pipe invert (m)ρ  = fluid density (kg/m3)

  • 8/9/2019 Fibrelogic Flowtite Engineering Guidelines DES M-004.pdf

    57/122

    Fibrelogic Pipe Systems Pty Ltd 56 

    ν  = kinematic viscosity (m2/sec)2θ  = angle (radians) subtended at pipe centre by water

    surface in invert - see Figure 3.4τ  = average boundary shear stress (Pa)

    The chart is based on calculations using the Colebrook White Transition Equation -see equation 5.1. For pipes flowing full this equation takes into account, liquidviscosity and pipe roughness, and is recognised as being one of the most accurate ingeneral use but requires iterative solutions. The Colebrook-White transition equationis as follows:

    V = ⎟⎟ ⎠

     ⎞⎜⎜⎝ 

    ⎛ +−

    gdS d d 

    k gdS 

    2

    51.2

    7.3log22

      ν   Equation 5.1 

    When comparing Flowtite™ with other pipe systems, designers should take into

    account both the smooth bore and the anticipated pipeline service. Differentapplications may require a variation of the values of roughness coefficients chosen toconform to accepted practice. In the case of sewerage, it may be considerednecessary to allow for slime development. Generally smooth pipe materials have aColebrook White ‘k’ value equal to less than one fifth of the value used for therougher materials such as cement lined, concrete and vitrified clay pipes used for thesame purpose.

    Empirical formulae, exponential in form, have been in engineering use over manyyears. Being relatively easy to use they are still favoured by some engineers.

    For water supply applications, Hazen Williams’ equation is frequently used i.e.

    Q = 278 C d 2.63 S 0.54  Equation 5.2

    Using the Norwegian experimental data the derived value of Hazen WilliamsCoefficient for Flowtite™ of ‘C’ between 152 and 155.

    The Manning Equation is the most common for non-pressure gravity flow.

    Q = 40004

    83 1

    2

    n

    d S π 

    ⎛ ⎝ ⎜  ⎞ ⎠⎟

      Equation 5.3

    For Flowtite™ “n” may be taken as 0.01 for a clean pipeline. Again this isconservative compared with Australian Standard AS 2200 that gives the range of “n”for polymeric materials of 0.008 to 0.009.

  • 8/9/2019 Fibrelogic Flowtite Engineering Guidelines DES M-004.pdf

    58/122

    Fibrelogic Pipe Systems Pty Ltd 57 

    Figure 5.1

  • 8/9/2019 Fibrelogic Flowtite Engineering Guidelines DES M-004.pdf

    59/122

    Fibrelogic Pipe Systems Pty Ltd 58 

    Design flow velocities

    The Water Services Association of Australia Code WSA O3 design recommendationsmay be applied to Flowtite™ pipe installations. In pumped transmission mains capitalcost and discounted running costs should be determined – see Section 5.2. Howeveras a guide the Code suggests that the most economic design is likely to havevelocities in the range 0.8 to 1.4 m/s. In some circumstances it also suggests that 2.0m/s may be acceptable or 4.0 m/s for short periods with 6.0 m/s as the maximum.Generally head losses should not exceed 3 m/km (or 5m/km for pipes less than DN200). Where the water is carrying abrasive material the design velocity should notexceed 4.0 m/s.

    5.2 Economic considerations

    Since energy consumption is a significant factor in pumped pipelines an economicanalysis is necessary of optimize the cost of capital involved in building a pipeline

    and the present worth of the anticipated energy consumption over the life of thepipeline

     An example of a typical present worth calculation to determine the optimum pipediameter for a particular project is shown in Table 28 where 16 km long pipeline isrequired to carry a flow of 350 L/s. The overall capital cost is combined with thepresent worth of the annual pumping costs over the 25-year life of the system todetermine the least expensive option.

    The equations needed for these calculations are:

     Annual pumping cost ‘Y’

    efficiency pump

    T C  H QY 

      ××××=

      0098.0  Equation 5.4

    Present value of annuity ‘A’ can be calculated from:

    i

    iY  A

    n ))1(1(   −+−×=   Equation 5.5

    Where the rate of inflation is to be included, then

     j

     jY  A

    n ))1(1(   −+−×=   Equation 5.6

    The adjusted interest rate ‘j’ is calculated from

    )1(

    )(

    m

    mi j

    +−

    =   Equation 5.7

    Note that in the special case where i = m then the value of A = n x Y

    Table 5.1 shows the calculations for optimizing the pipe size for a major transmission

    main. It can be concluded from the table that for the assumptions made a DN 525pipeline would be the best option for a minimum present worth cost.

  • 8/9/2019 Fibrelogic Flowtite Engineering Guidelines DES M-004.pdf

    60/122

    Fibrelogic Pipe Systems Pty Ltd 59 

    Table 28 Example optimizing pipe size on financial basis

    Pipe Description: Flowtite™ Flowtite™ Flowtite™ Flowtite™

     DN45010/5000

    DN52510/5000

    DN60010/5000

    DN67510/5000

    Input information

    Flow [L/s] 350 350 350 350Length [metres] 16000 16000 16000 16000

    Static lift [m] 30 30 30 30

    Cost of Pipeline [$/m] $232.00 $284.00 $354.00 $433.00

    Viscosity [m/s2] 1.0100E-06 1.0100E-06 1.0100E-06 1.0100E-06

    Internal diameter [m] 0.487 0.569 0.647 0.725

    Roughness "k" [mm] 0.02 0.02 0.02 0.02

    Results of calculation

    Head loss due to flow resistance [m/m] 0.00449 0.002173 0.001155 0.000665

    Total flow resistance head [m] 71.82 34.77 18.48 10.64

    Pump efficiency[%] 65.0 65.0 65.0 65.0Power reqd.[kW] 537.3 341.8 255.8 214.5

    Cost per kWh [$/kWh] $0.12 $0.12 $0.12 $0.12

    Op. hours/year 7000 7000 7000 7000

    Op. cost [$/year] $451,347 $287,092 $214,893 $180,141

    Return on investment [%/yr] 10.00 10.00 10.00 10.00

    Life of scheme [years] 25 25 25 25

    Present value pumping

    cost [w/o inflation]:- $4,096,891 $2,605,942 $1,950,594 $1,635,152

    Total P V [w/o infl.] $7,808,891 $7,149,942 $7,614,594 $8,563,152

     Annual inflation rate [%] 3.00 3.00 3.00 3.00

    Resulting effective interest rate [%] 6.80 6.80 6.80 6.80Present value of pumping

    cost [including inflation] $5,357,841 $3,408,004 $2,550,952 $2,138,422

    Total present worth [including inflation] $9,069,841 $7,952,004 $8,214,952 $9,066,422 Table 28 shows that the DN 525 pipeline is likely to be the best option. This may besubject to a sensitivity analysis to cover the effect of varying some of the less certainassumptions made.

    5.3 Air Valves, anti-vacuum valves and scour valves

     Air must be expelled from a pressure pipeline during the filling operation and alsoallowed to enter a pipeline if it is being emptied for any reason. Also, because mostwater is saturated w