fig. 13-0. fig. 13-0a fig. 13-0b fig. 13-0c fig. 13-1a

49
Fig. 13-0

Upload: dylan-jefferson

Post on 17-Jan-2016

247 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Fig. 13-0. Fig. 13-0a Fig. 13-0b Fig. 13-0c Fig. 13-1a

Fig. 13-0

Page 2: Fig. 13-0. Fig. 13-0a Fig. 13-0b Fig. 13-0c Fig. 13-1a

Fig. 13-0a

Page 3: Fig. 13-0. Fig. 13-0a Fig. 13-0b Fig. 13-0c Fig. 13-1a

Fig. 13-0b

Page 4: Fig. 13-0. Fig. 13-0a Fig. 13-0b Fig. 13-0c Fig. 13-1a

Fig. 13-0c

Page 5: Fig. 13-0. Fig. 13-0a Fig. 13-0b Fig. 13-0c Fig. 13-1a

Fig. 13-1a

Page 6: Fig. 13-0. Fig. 13-0a Fig. 13-0b Fig. 13-0c Fig. 13-1a

Fig. 13-1b

Page 7: Fig. 13-0. Fig. 13-0a Fig. 13-0b Fig. 13-0c Fig. 13-1a

Fig. 13-1c

NorthAmerica

ATLANTICOCEAN

GreatBritain

Brazil

TheGalápagosIslands

PACIFICOCEANPinta

MarchenaGenovesa

Santiago

Fernandina Pinzón

IsabelaSan

Cristobal

EspañolaFlorenza

DaphneIslands

SantaCruz

SantaFe

40 miles

Equator

40 km0

0

Europe

Africa

SouthAmerica

An

des

Argentina

Cape Horn

Cape ofGood Hope

PACIFICOCEAN

Equator

NewZealand

Australia

Tasmania

Page 8: Fig. 13-0. Fig. 13-0a Fig. 13-0b Fig. 13-0c Fig. 13-1a

Fig. 13-1ca

Page 9: Fig. 13-0. Fig. 13-0a Fig. 13-0b Fig. 13-0c Fig. 13-1a

Fig. 13-1cb

Page 10: Fig. 13-0. Fig. 13-0a Fig. 13-0b Fig. 13-0c Fig. 13-1a

Fig. 13-1cc

NorthAmerica

ATLANTICOCEAN

GreatBritain

Brazil

Europe

Africa

SouthAmerica

An

des

Argentina

Cape Horn

Cape ofGood Hope

PACIFICOCEAN

Equator

NewZealand

Australia

Tasmania

Page 11: Fig. 13-0. Fig. 13-0a Fig. 13-0b Fig. 13-0c Fig. 13-1a

Fig. 13-1cd

TheGalápagosIslands

PACIFICOCEANPinta

MarchenaGenovesa

Santiago

Fernandina Pinzón

IsabelaSan

Cristobal

EspañolaFlorenza

DaphneIslands

SantaCruz

SantaFe

40 miles

Equator

40 km0

0

Page 12: Fig. 13-0. Fig. 13-0a Fig. 13-0b Fig. 13-0c Fig. 13-1a

Fig. 13-2

Terminalbud

Lateralbuds

Leaves

Kale

Stem

Brussels sprouts

Cauliflower

Cabbage

Kohlrabi

Wild mustard

Flowerclusters

Flowersand stems

Broccoli

Page 13: Fig. 13-0. Fig. 13-0a Fig. 13-0b Fig. 13-0c Fig. 13-1a

Fig. 13-3aa

A flower mantidin Malaysia

Page 14: Fig. 13-0. Fig. 13-0a Fig. 13-0b Fig. 13-0c Fig. 13-1a

Fig. 13-3ab

A leaf mantid in Costa Rica

Page 15: Fig. 13-0. Fig. 13-0a Fig. 13-0b Fig. 13-0c Fig. 13-1a

Fig. 13-3b

Chromosome with alleleconferring resistanceto pesticide

Additionalapplications willbe less effective, andthe frequency ofresistant insects inthe populationwill grow

Survivors

Pesticide application

Page 16: Fig. 13-0. Fig. 13-0a Fig. 13-0b Fig. 13-0c Fig. 13-1a

Fig. 13-4

A Skull of Homo erectus B Ammonite casts C Dinosaur tracks

Fossilized organicmatter of a leaf

E Insect in amberF “Ice Man”

D

Page 17: Fig. 13-0. Fig. 13-0a Fig. 13-0b Fig. 13-0c Fig. 13-1a

Fig. 13-4a

A Skull of Homo erectus

Page 18: Fig. 13-0. Fig. 13-0a Fig. 13-0b Fig. 13-0c Fig. 13-1a

Fig. 13-4b

B Ammonite casts

Page 19: Fig. 13-0. Fig. 13-0a Fig. 13-0b Fig. 13-0c Fig. 13-1a

Fig. 13-4c

C Dinosaur tracks

Page 20: Fig. 13-0. Fig. 13-0a Fig. 13-0b Fig. 13-0c Fig. 13-1a

Fig. 13-4d

D Fossilized organic matter of a leaf

Page 21: Fig. 13-0. Fig. 13-0a Fig. 13-0b Fig. 13-0c Fig. 13-1a

Fig. 13-4e

E Insect in amber

Page 22: Fig. 13-0. Fig. 13-0a Fig. 13-0b Fig. 13-0c Fig. 13-1a

Fig. 13-4f

F “Ice Man”

Page 23: Fig. 13-0. Fig. 13-0a Fig. 13-0b Fig. 13-0c Fig. 13-1a

Fig. 13-4g

Page 24: Fig. 13-0. Fig. 13-0a Fig. 13-0b Fig. 13-0c Fig. 13-1a

Fig. 13-4h

Pelvis andhind limb

Rhodocetus (predominantly aquatic)

Pakicetus (terrestrial)

Dorudon (fully aquatic)

Balaena (recent whale ancestor)

Pelvis andhind limb

Page 25: Fig. 13-0. Fig. 13-0a Fig. 13-0b Fig. 13-0c Fig. 13-1a

Fig. 13-4ha

Rhodocetus (predominantly aquatic)

Pakicetus (terrestrial)

Page 26: Fig. 13-0. Fig. 13-0a Fig. 13-0b Fig. 13-0c Fig. 13-1a

Fig. 13-4hb

Pelvis andhind limb

Dorudon (fully aquatic)

Balaena (recent whale ancestor)

Pelvis andhind limb

Page 27: Fig. 13-0. Fig. 13-0a Fig. 13-0b Fig. 13-0c Fig. 13-1a

Fig. 13-5a

Humerus

Radius

Ulna

Carpals

MetacarpalsPhalanges

Human Cat Whale Bat

Page 28: Fig. 13-0. Fig. 13-0a Fig. 13-0b Fig. 13-0c Fig. 13-1a

Fig. 13-5b

Pharyngealpouches

Post-analtail

Chick embryo Human embryo

Page 29: Fig. 13-0. Fig. 13-0a Fig. 13-0b Fig. 13-0c Fig. 13-1a

Fig. 13-6

Tetrapod limbs

Amnion

Lungfishes

Feathers

Amphibians

Mammals

Lizardsand snakes

2

Hawks andother birds

Ostriches

Crocodiles

1

3

4

5

6

Am

nio

tes

Tetrap

od

s

Bird

s

Page 30: Fig. 13-0. Fig. 13-0a Fig. 13-0b Fig. 13-0c Fig. 13-1a

Fig. 13-7

Page 31: Fig. 13-0. Fig. 13-0a Fig. 13-0b Fig. 13-0c Fig. 13-1a

Fig. 13-8

Parents

Offspring,with newcombinationsof alleles

Gametes

Meiosis

and

A1

Randomfertilization

A1 A2 A3

A1 A2 A3

A3A1A2A1

Page 32: Fig. 13-0. Fig. 13-0a Fig. 13-0b Fig. 13-0c Fig. 13-1a

Fig. 13-9a

Webbing No webbing

Page 33: Fig. 13-0. Fig. 13-0a Fig. 13-0b Fig. 13-0c Fig. 13-1a

Fig. 13-9b

Phenotypes

320–––500

Genotypes

Number of animals(total = 500)

Genotype frequencies

Number of allelesin gene pool(total = 1,000)

Allele frequencies

WW Ww ww

320 160 20

= 0.64 160–––500 = 0.32 20–––

500 = 0.04

40 w160 W + 160 w640 W

8001,000 = 0.8 W 200

1,000 = 0.2 w

Page 34: Fig. 13-0. Fig. 13-0a Fig. 13-0b Fig. 13-0c Fig. 13-1a

Fig. 13-9c

Gametes reflectallele frequenciesof parental gene pool

W eggp = 0.8

Sperm

w eggq = 0.2

W spermp = 0.8

Eggs

Allele frequencies

Genotype frequencies

Next generation:

w spermq = 0.8

WWp2 = 0.64

wwq2 = 0.04

wWqp = 0.16

Wwpq = 0.16

0.64 WW 0.32 Ww 0.04 ww

0.8 W 0.2 w

Page 35: Fig. 13-0. Fig. 13-0a Fig. 13-0b Fig. 13-0c Fig. 13-1a

Fig. 13-11a-1

Originalpopulation

Page 36: Fig. 13-0. Fig. 13-0a Fig. 13-0b Fig. 13-0c Fig. 13-1a

Fig. 13-11a-2

Originalpopulation

Bottleneckingevent

Page 37: Fig. 13-0. Fig. 13-0a Fig. 13-0b Fig. 13-0c Fig. 13-1a

Fig. 13-11a-3

Originalpopulation

Bottleneckingevent

Survivingpopulation

Page 38: Fig. 13-0. Fig. 13-0a Fig. 13-0b Fig. 13-0c Fig. 13-1a

Fig. 13-11b

Page 39: Fig. 13-0. Fig. 13-0a Fig. 13-0b Fig. 13-0c Fig. 13-1a

Fig. 13-12

Page 40: Fig. 13-0. Fig. 13-0a Fig. 13-0b Fig. 13-0c Fig. 13-1a

Fig. 13-13

Originalpopulation

Fre

qu

ency

of

ind

ivid

ual

sOriginalpopulation

Evolvedpopulation

Phenotypes (fur color)

Stabilizing selection Directional selection Disruptive selection

Page 41: Fig. 13-0. Fig. 13-0a Fig. 13-0b Fig. 13-0c Fig. 13-1a

Fig. 13-14a

Page 42: Fig. 13-0. Fig. 13-0a Fig. 13-0b Fig. 13-0c Fig. 13-1a

Fig. 13-14b

Page 43: Fig. 13-0. Fig. 13-0a Fig. 13-0b Fig. 13-0c Fig. 13-1a

Fig. 13-14c

Page 44: Fig. 13-0. Fig. 13-0a Fig. 13-0b Fig. 13-0c Fig. 13-1a

Fig. 13-16

“Right-mouthed”

“Left-mouthed”

1.0

0.5

01981’82 ’83 ’84 ’85 ’86 ’87 ’88 ’89 ’90

Sample year

Fre

qu

ency

of

“lef

t-m

ou

thed

” in

div

idu

als

Page 45: Fig. 13-0. Fig. 13-0a Fig. 13-0b Fig. 13-0c Fig. 13-1a

Fig. 13-UN1

Observations

Heritable variationsin individuals

Overproductionof offspring

Over time, favorable traitsaccumulate in the population

Individuals well-suited to theenvironment tend to leavemore offspring

Inferences

Page 46: Fig. 13-0. Fig. 13-0a Fig. 13-0b Fig. 13-0c Fig. 13-1a

Fig. 13-UN2

Allele frequencies

Genotype frequencies

Dominanthomozygotes

Heterozygotes Recessivehomozygotes

p + q = 1

p2 + 2pq + q2 = 1

Page 47: Fig. 13-0. Fig. 13-0a Fig. 13-0b Fig. 13-0c Fig. 13-1a

Fig. 13-UN3

Originalpopulation

Pressure ofnatural selection

Evolvedpopulation

Stabilizing selection Directional selection Disruptive selection

Page 48: Fig. 13-0. Fig. 13-0a Fig. 13-0b Fig. 13-0c Fig. 13-1a

Fig. 13-UN4

Microevolution

(a)

may result fromchange in allelefrequencies in a

population

is the

(g)

(c)(b)

(d)

(e) (f)

individualsor gametes

best adaptedto environment

adaptiveevolution

random fluctuationsmore likely in a

due tomovement of

may be result of

leads todue to

of individuals

Page 49: Fig. 13-0. Fig. 13-0a Fig. 13-0b Fig. 13-0c Fig. 13-1a

Fig. 13-UN5