filter bank multicarrier with lapped transforms - … · filter bank multicarrier with lapped...

31
FILTER BANK MULTICARRIER WITH LAPPED TRANSFORMS Maurice Bellanger, CNAM Davide Mattera, Mario Tanda, Univ.Napoli March 2015

Upload: others

Post on 11-Mar-2020

10 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: FILTER BANK MULTICARRIER WITH LAPPED TRANSFORMS - … · FILTER BANK MULTICARRIER WITH LAPPED TRANSFORMS Maurice Bellanger, CNAM Davide Mattera, Mario Tanda, Univ.Napoli March 2015

FILTER BANK MULTICARRIER WITH LAPPED TRANSFORMS

Maurice Bellanger, CNAM

Davide Mattera, Mario Tanda, Univ.Napoli

March 2015

Page 2: FILTER BANK MULTICARRIER WITH LAPPED TRANSFORMS - … · FILTER BANK MULTICARRIER WITH LAPPED TRANSFORMS Maurice Bellanger, CNAM Davide Mattera, Mario Tanda, Univ.Napoli March 2015

Objectives

A multicarrier approach to

• improve on OFDM for future wireless systems- asynchronous multi-user access

- spectral separation for coexistence

- robustness to channel impairments – CFO

• keep most of OFDM features- spectral efficiency

- minimum delay

- simplicity of concept

- low computational complexity

Page 3: FILTER BANK MULTICARRIER WITH LAPPED TRANSFORMS - … · FILTER BANK MULTICARRIER WITH LAPPED TRANSFORMS Maurice Bellanger, CNAM Davide Mattera, Mario Tanda, Univ.Napoli March 2015

Outline

• Lapped Transform: - definition

- implementation

• Transmission system performance- signal characteristics

- channel equalization

• Complex lapped transform for FBMC- implementation

- channel equalization

- carrier frequency offset compensation

• Open issues

Page 4: FILTER BANK MULTICARRIER WITH LAPPED TRANSFORMS - … · FILTER BANK MULTICARRIER WITH LAPPED TRANSFORMS Maurice Bellanger, CNAM Davide Mattera, Mario Tanda, Univ.Napoli March 2015

Lapped transform

Introduced decades ago to improve the discrimination of critical spectral

components in signal compression

n: time domain ; k: frequency domain

• perfect decomposition-reconstruction

• overlapping factor: K=2

• real processing

novelty in communications: frequency domain equalization

])21)(

221cos[()(),(

MkMnnhknT π−+−=

MkMn ≤≤≤≤ 1;21

]2

)21sin[()(

Mnnh π−−=

Page 5: FILTER BANK MULTICARRIER WITH LAPPED TRANSFORMS - … · FILTER BANK MULTICARRIER WITH LAPPED TRANSFORMS Maurice Bellanger, CNAM Davide Mattera, Mario Tanda, Univ.Napoli March 2015

LT in communications

• Real lapped transform – QAM modulation

Lapped-OFDM

• Complex lapped transform – PAM modulation

FBMC-PAM

MnkenhknTc MkMnj

2,1;)(),()

21)(

221( ≤≤= −+− π

Page 6: FILTER BANK MULTICARRIER WITH LAPPED TRANSFORMS - … · FILTER BANK MULTICARRIER WITH LAPPED TRANSFORMS Maurice Bellanger, CNAM Davide Mattera, Mario Tanda, Univ.Napoli March 2015

Frequency response

Response of sine filter h(n):

• M pairs of symmetrical carriers instead of M carriers for the DFT

2)22(1)2cos(2)(

MfMffH L −= π

π

0 5 10 15 20 25 30-90

-80

-70

-60

-50

-40

-30

-20

-10

0Amplitude

dB

Frequency (unit=sub-carrier spacing)

OFDM

Lapped-OFDM

Page 7: FILTER BANK MULTICARRIER WITH LAPPED TRANSFORMS - … · FILTER BANK MULTICARRIER WITH LAPPED TRANSFORMS Maurice Bellanger, CNAM Davide Mattera, Mario Tanda, Univ.Napoli March 2015

LT in transmission

Multi-carrier transmission with T(n,k)

• QAM modulation can be used- independent real processing of real and imaginary parts of data

• FBMC scheme with overlapping K=2- delay: 2 M

• equalization in the receiver can be performed in the frequency domain (no additional delay)

• frequency domain residual CFO compensation in

multi-user scenario

Page 8: FILTER BANK MULTICARRIER WITH LAPPED TRANSFORMS - … · FILTER BANK MULTICARRIER WITH LAPPED TRANSFORMS Maurice Bellanger, CNAM Davide Mattera, Mario Tanda, Univ.Napoli March 2015

Implementation

Objective: use a 2M-DFT for frequency domain equalization

Expression of the transform

and

2M-DFT + frequency domain filtering + phase shifts

( coefficients [1 –1] )

]][[4

),()

21)(

221()

21)(

221(

2)

21(

2)

21(

MkMnj

MkMnj

Mnj

Mnj

eeeejknTππππ −+−−−+−−−− +−=

]][

][[4

),(

)1()1(222

)2

1(

)1()1(222

)2

1(

Mkjnk

Mj

Mjnkk

Mjkj

Mkjnk

Mj

Mjnkk

Mjkj

eeeee

eeeeej

knT

πππππ

πππππ

−−−−−−

−−−−−

−−

−=

Page 9: FILTER BANK MULTICARRIER WITH LAPPED TRANSFORMS - … · FILTER BANK MULTICARRIER WITH LAPPED TRANSFORMS Maurice Bellanger, CNAM Davide Mattera, Mario Tanda, Univ.Napoli March 2015

Transceiver structure

• emitted symbols of 2M samples overlap by M samples

• symbol rate: 1/M

• equalization at FFT output

data

out

S/P

+

QAM

Transpose

Lapped

Transform

Overlap

/ add

+

P/S

S

/

P

FFT(2M)

Equalization

Sine

filter

Post

process.

QAM

detect+P/S

data

in

channel

Transmitter Receiver

Lapped Transform

Page 10: FILTER BANK MULTICARRIER WITH LAPPED TRANSFORMS - … · FILTER BANK MULTICARRIER WITH LAPPED TRANSFORMS Maurice Bellanger, CNAM Davide Mattera, Mario Tanda, Univ.Napoli March 2015

Emitted spectrum

• The lapped transform defines 2M sub-carriers- a sub-channel consists of 2 parts: k and 2M-k

• Spectrum: continuous / fragmented

0 11/2

A

fk/2M 1-k/2M

f1 f2 1-f2 1-f2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5Amplitude

Frequency 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5Amplitude

Frequency

Page 11: FILTER BANK MULTICARRIER WITH LAPPED TRANSFORMS - … · FILTER BANK MULTICARRIER WITH LAPPED TRANSFORMS Maurice Bellanger, CNAM Davide Mattera, Mario Tanda, Univ.Napoli March 2015

Transmission system performance

Page 12: FILTER BANK MULTICARRIER WITH LAPPED TRANSFORMS - … · FILTER BANK MULTICARRIER WITH LAPPED TRANSFORMS Maurice Bellanger, CNAM Davide Mattera, Mario Tanda, Univ.Napoli March 2015

Impact of timing offset

Envelop of emitted signal

Timing offset: to ; signal-to-interference ratio

OFDM:(GT: guard time)

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 00

0 . 2

0 . 4

0 . 6

0 . 8

1

1 . 2

M T O

t i m e

a m p li tu d e

ππ 2/)2/2sin(2/2/1

MtoMtoSIRL −=

MGTtoSIROFDM /)(

2/1−=

Page 13: FILTER BANK MULTICARRIER WITH LAPPED TRANSFORMS - … · FILTER BANK MULTICARRIER WITH LAPPED TRANSFORMS Maurice Bellanger, CNAM Davide Mattera, Mario Tanda, Univ.Napoli March 2015

Half rate schemes

Signal-to-interference ratio – half rate

Emitted signal envelop

full rate half rate

)/2sin(161)/sin(2

183

2/1MtoMto

Mto

SIR LHRππππ +−

=

0 1 00 2 00 30 0 4 00 5 00 60 00

0 .2

0 .4

0 .6

0 .8

1

1 .2A m p litud e

tim e

re a l im a g ina ry

0 100 200 300 400 500 6000

0.2

0.4

0.6

0.8

1

1.2A m plitude

tim e

M

Page 14: FILTER BANK MULTICARRIER WITH LAPPED TRANSFORMS - … · FILTER BANK MULTICARRIER WITH LAPPED TRANSFORMS Maurice Bellanger, CNAM Davide Mattera, Mario Tanda, Univ.Napoli March 2015

SIR curves

Signal-to-interference ratio

Max. to = M/2 SIR = 7.4 dB BER = 0.015 (4-QAM)

0 20 40 60 80 100 1200

5

10

15

20

25

30

35

40SIR

dB

Timing offset (M=256)

OFDM-GT=16 (1/16)

OFDM-GT=32 (1/8)

Lapped-OFDM-half rate

Lapped-OFDM

Page 15: FILTER BANK MULTICARRIER WITH LAPPED TRANSFORMS - … · FILTER BANK MULTICARRIER WITH LAPPED TRANSFORMS Maurice Bellanger, CNAM Davide Mattera, Mario Tanda, Univ.Napoli March 2015

Multipath channel equalization

channel transfer function

interference power

SNR: multiply interference+noise by equalizer response

iP

ii ZcZC −

=∑=

0

)(

)]1()([2

1

−−= ∑ ∑= =

jfjfcPP

i

P

ijjiP

ππ 2/)2/2sin(2/)( MiMiif −=

Page 16: FILTER BANK MULTICARRIER WITH LAPPED TRANSFORMS - … · FILTER BANK MULTICARRIER WITH LAPPED TRANSFORMS Maurice Bellanger, CNAM Davide Mattera, Mario Tanda, Univ.Napoli March 2015

Bit error rate

• M=256 sub-channels

• Channel: ITU-R veh.B – max.delay: 0.22M (< M/4)

• Profile: delay: 0 1 25 36 48 56

ampl.: 0.75 1 0.23 0.316 0.055 0.16

4-QAM 64-QAM

Page 17: FILTER BANK MULTICARRIER WITH LAPPED TRANSFORMS - … · FILTER BANK MULTICARRIER WITH LAPPED TRANSFORMS Maurice Bellanger, CNAM Davide Mattera, Mario Tanda, Univ.Napoli March 2015

Asynchronous access

• OFDM – CP = 64 (1/4)

• One-tap FBMC: OQAM ; single tap equalizer ; K=2

• FS-FBMC: OQAM ; frequency domain equalization

• OFDM-lap: QAM ; lapped transform

Channel ITU-R

veh.B

Eb/No=20 dB

4-QAM

Symmetry

Page 18: FILTER BANK MULTICARRIER WITH LAPPED TRANSFORMS - … · FILTER BANK MULTICARRIER WITH LAPPED TRANSFORMS Maurice Bellanger, CNAM Davide Mattera, Mario Tanda, Univ.Napoli March 2015

PAPR

• Peak-to-average power ratio

• Complementary cumulative distribution function

1.5 2 2.5 3 3.5 4 4.5 5-30

-25

-20

-15

-10

-5

0

5

amplitude

CCDF

dB

L-OFDMreal data

L-OFDMreal/imaginary data

L-OFDM complex data(full rate)

OFDM

Page 19: FILTER BANK MULTICARRIER WITH LAPPED TRANSFORMS - … · FILTER BANK MULTICARRIER WITH LAPPED TRANSFORMS Maurice Bellanger, CNAM Davide Mattera, Mario Tanda, Univ.Napoli March 2015

Complex lapped transform for FBMC

Page 20: FILTER BANK MULTICARRIER WITH LAPPED TRANSFORMS - … · FILTER BANK MULTICARRIER WITH LAPPED TRANSFORMS Maurice Bellanger, CNAM Davide Mattera, Mario Tanda, Univ.Napoli March 2015

Complex transform and implementation

Definition

Factorization

Implementation

• Phase shifts by multiples of π/2

• Frequency domain filtering , coefficients: [1 –1]

• Multiply by (time shift: ½)

• Inverse FFT of size 2M

• Overlap and add (overlapping factor K=2)

MnkeM

nknTc MkMnj

2,1;]2

)21sin[(),(

)21)(

221(

≤≤−=−+− ππ

2)

23(

22)1(

2)1(

22

2 ][21),(

πππππ −−−−− −= kjM

kjnM

kjM

jnkM

jkeeeeeknTc

Mkj

e 2)1( π−−

Page 21: FILTER BANK MULTICARRIER WITH LAPPED TRANSFORMS - … · FILTER BANK MULTICARRIER WITH LAPPED TRANSFORMS Maurice Bellanger, CNAM Davide Mattera, Mario Tanda, Univ.Napoli March 2015

Transmitter structure

Multicarrier transmitter

• PAM modulation

• Multicarrier symbol length:2M

• Symbol rate: M

Phase

shifts

Filter

iFFT

(2M)

overlap+add

d(k)

(real)

S/P

(2M)

P/S

(M)

y(n)

(channel)

Page 22: FILTER BANK MULTICARRIER WITH LAPPED TRANSFORMS - … · FILTER BANK MULTICARRIER WITH LAPPED TRANSFORMS Maurice Bellanger, CNAM Davide Mattera, Mario Tanda, Univ.Napoli March 2015

Emitted spectrum

M=256 ; Number of used sub-channels: 230x2 ;

binary data ; 460 bits per symbol ; rate: 1/M

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4Amplitude

Frequency

Page 23: FILTER BANK MULTICARRIER WITH LAPPED TRANSFORMS - … · FILTER BANK MULTICARRIER WITH LAPPED TRANSFORMS Maurice Bellanger, CNAM Davide Mattera, Mario Tanda, Univ.Napoli March 2015

Receiver structure

Multicarrier receiver

• Frequency domain equalization

• Sub-channel filtering after equalization

• CFO compensation: interpolated filter coefficients

phase

shifts

filter

FFT

(2M)

detection

S/P

(M)

y(n) d(k)

input

buffer

equalizer

P/S

(2M)

Page 24: FILTER BANK MULTICARRIER WITH LAPPED TRANSFORMS - … · FILTER BANK MULTICARRIER WITH LAPPED TRANSFORMS Maurice Bellanger, CNAM Davide Mattera, Mario Tanda, Univ.Napoli March 2015

System impulse response

frequency

time

Total imaginary interference power: unity

-0.021 j0.106 j-0.25 j0.318 j-0.25 j0.106 j-0.021 jn+1

000.5 j1-0.5 j00 n

0.021 j-0.106 j-0.25 j-0.318 j-0.25 j-0.106 j0.021 jn-1

k+4k+2k+1kk-1k-2k-4

Page 25: FILTER BANK MULTICARRIER WITH LAPPED TRANSFORMS - … · FILTER BANK MULTICARRIER WITH LAPPED TRANSFORMS Maurice Bellanger, CNAM Davide Mattera, Mario Tanda, Univ.Napoli March 2015

SIR curves

Signal-to-interference ratio / timing offset

Maximum timing offset: M/2 ; BER = 0.015 (binary data)

asynchronous access

0 20 40 60 80 100 1200

5

10

15

20

25

30

35

40SIR

Timing offset (M=256)

dB OFD M -GT=16 (1/16)

OFD M-GT=32 (1/8)

FBMC -PAM

Page 26: FILTER BANK MULTICARRIER WITH LAPPED TRANSFORMS - … · FILTER BANK MULTICARRIER WITH LAPPED TRANSFORMS Maurice Bellanger, CNAM Davide Mattera, Mario Tanda, Univ.Napoli March 2015

Bit error rate

• M=256 sub-channels

• Channel: ITU-R veh.B – max.delay: 0.22M (< M/4)

• Profile: delay: 0 1 25 36 48 56

ampl.: 0.75 1 0.23 0.316 0.055 0.16

4-QAM / 2-PAM 64-QAM / 8-PAM

Page 27: FILTER BANK MULTICARRIER WITH LAPPED TRANSFORMS - … · FILTER BANK MULTICARRIER WITH LAPPED TRANSFORMS Maurice Bellanger, CNAM Davide Mattera, Mario Tanda, Univ.Napoli March 2015

Carrier frequency offset

Compensation at sub-channel level in multi-user scenario

• CFO = δf ; Filter output at time n0

• for n0 = Mm0 + (M+1)/2

• Receiver filter coefficients (time domain)

In the frequency domain: interpolation of initial set [1 –1]

)(20

12

00

0)()( infjr

M

irir einxhny −

=

−= ∑δπ

ifjr

M

Miri

nfjr einxheny δπδπ 2

0

2/1

2/1

20 )()( 0 −= ∑

+−=

Mnnhenh fMnjCFO 21;)()( )2/1(2 ≤≤= −− δπ

Page 28: FILTER BANK MULTICARRIER WITH LAPPED TRANSFORMS - … · FILTER BANK MULTICARRIER WITH LAPPED TRANSFORMS Maurice Bellanger, CNAM Davide Mattera, Mario Tanda, Univ.Napoli March 2015

CFO compensation

Compensation per sub-channel or group of sub-channels

Phase shift + interpolated filter coefficients

0 0.05 0.1 0.15 0.2 0.250

5

10

15

20

25

30

35

40

45

50 SIR

dB

CFO (unit:sub-carrier spacing)

interpolation:6 coefficients

interpolation:4 coefficients

no filter coefficient interpolation

OFDM

Page 29: FILTER BANK MULTICARRIER WITH LAPPED TRANSFORMS - … · FILTER BANK MULTICARRIER WITH LAPPED TRANSFORMS Maurice Bellanger, CNAM Davide Mattera, Mario Tanda, Univ.Napoli March 2015

BER versus CFO

Performance of OFDM, lapped OFDM, FBMC-PAM

4-QAM/2-PAM

Eb/No = 8dB

Normalized CFO

C: full compensation

C3: 3 coefficients

C5: 5 coefficients

C7: 7 coefficients

Page 30: FILTER BANK MULTICARRIER WITH LAPPED TRANSFORMS - … · FILTER BANK MULTICARRIER WITH LAPPED TRANSFORMS Maurice Bellanger, CNAM Davide Mattera, Mario Tanda, Univ.Napoli March 2015

Open issues

Algorithmic aspects

• Generalization – extended lapped transform

• Other system options and parameter selection

• Optimization of the structure

• Efficient implementation – minimal complexity

• Performance analysis – multiple asynchronous users

• Comparison with enhanced OFDM techniques

(filtered OFDM, universal filtered multicarrier, generalized FDM)

Page 31: FILTER BANK MULTICARRIER WITH LAPPED TRANSFORMS - … · FILTER BANK MULTICARRIER WITH LAPPED TRANSFORMS Maurice Bellanger, CNAM Davide Mattera, Mario Tanda, Univ.Napoli March 2015

Open issues

Networking aspects

• Single carrier techniques

• Preamble and pilots for burst transmission

• Duplexing: TDD, FDD, full duplex

• MIMO and massive MIMO

• Compatibility with OFDM

• Capability to meet 5G performance objectives(100 µs time budget for PHY, 55 dB ACLR, short bursts, …)