final

87
Cost estimation and design of interior wiring and distribution networks for large housing complex including bill of quantity According to British Standard 1

Upload: aya-adel

Post on 14-Apr-2017

14 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: FINAL

1

Cost estimation and design of interior wiring and distribution

networks for large housing complex including bill of quantity

According toBritish Standard

Page 2: FINAL

2

Prof. Dr. Eng. Almoataz Abdelaziz

Dr. Eng. Mahmoud Abdallah

Supervisors

Page 3: FINAL

3

Ahmed Abdelshafy Mohamed Ahmed Khaled Afifi Aya Mohamed Adel Aya Mostafa Mohamed Kareem Hamdy Sakr Ziad Adel Gad

Project Team

Page 4: FINAL

4

Generation Transmission Distribution

Introduction

Page 5: FINAL

5

Residential Model Pillar and Transformer Voltage Drop Short Circuit Earthing System Street Lighting Cost Estimation Bill of Quantity

Outlines

Page 6: FINAL

6

Residential Model Sockets

Ahmed Khaled

Page 7: FINAL

7

1. Normal Sockets

Residential ModelSockets

Room Purpose Minimum Number of sockets (Twin)

Living room 4Dining room 3

Kitchen 5Bedroom 3Corridor 1Terrace 1Garage 1

Page 8: FINAL

8

Residential ModelSockets

Page 9: FINAL

9

for domestic loads: 100% of the largest point + 40% of the remainder.

For example

Circuit(LS1): Reception (area1) & Terrace (area10)

I(LS1)=1+0.4(1*9))=4.6 A I(C.B)= ≈ 10A .:. C.S.A = 2mm² C.S.A = 4mm²

Residential ModelSockets

Grouping FactorTemp. Factor

Page 10: FINAL

10

Circuit No.

Current C.B C.S.A

LS1 4.6 10A 4mm²LS2 4.6 10A 4mm²LS3 4.6 10A 4mm²LS4 4.6 10A 4mm²LS5 4.6 10A 4mm²

Residential ModelSocketsSummary

Page 11: FINAL

11

2. Power Sockets For example

Circuit (LP1): Bedroom(area7)

I(LP1)==19.08 A P.F=0.85 , Eff=0.8 , V=230 I(C.B)=A ≈ 40A .:. C.S.A = 10mm² Summary

Residential ModelSockets

LP1 19.08 40A 10mm²

LP2 10.23 26A 6mm²

Page 12: FINAL

12

Residential ModelSockets

Page 13: FINAL

13

Residential ModelLighting

Aya Mohamed Adel

Page 14: FINAL

14

Area Illumination Level [lux]

Salon 150Bedroom 100Bathroom 200Kitchen 300Corridor 100Terrace 100

Residential ModelLighting

Page 15: FINAL

15

Residential ModelLightingLighting calculation approach1. Manual N= I(LL)=

Page 16: FINAL

16

Residential ModelLighting K=

  

K

0.70.50.2

0.70.30.2

0.75 0.38 0.32

1.00 0.44 0.38

Page 17: FINAL

17

Residential ModelLighting

Page 18: FINAL

18

For example

Circuit (LL1): Reception(area1) +Terrace(area10) +Corridor(area9)+Kitchen(area3)+Bedroom(area4)

Reception (Area1)N = = 3.3 =4 Luminaires

 

Residential ModelLighting

Page 19: FINAL

19

Corridor (Area9)K = =0.34 ≈0.75.:. UF = 0.38N = = 1.4 = 2 

Residential ModelLighting

Page 20: FINAL

20

2. Dialux

Residential ModelLighting

Page 21: FINAL

21

Residential ModelLighting

Page 22: FINAL

22

Residential ModelLighting

Page 23: FINAL

23

Residential ModelLighting

Page 24: FINAL

24

Residential ModelLighting

Page 25: FINAL

25

Residential ModelLighting

Page 26: FINAL

26

I(LL1)= = 8.45AI(C.B)= = 15 ≈ 16A .:. C.S.A =2.5 mm²

C.S.A = 3mm²

Residential ModelLighting

Circuit No.

Current

C.B C.S.A

LL1 8.45 16A 3mm²LL2 8.33 16A 3mm²LL3 8.225 16A 3mm²

Page 27: FINAL

27

Residential ModelLighting

Page 28: FINAL

28

Residential ModelPower Factor

Aya Mohamed Adel

Page 29: FINAL

29

, 2000 watt , 0 , , , = Then we get , , , then we get and finally

≈ 0.85

Residential ModelPower Factor

Page 30: FINAL

30

Residential ModelMain Current Calculations

Aya Mostafa Eldeeb

Page 31: FINAL

31

Phase

Lines Total Current

A LP1LL3 27.3A

 B

LS1LS2LS3LP2

24.03A

 C

LL1LL2LS4LS5

25.98A

Residential ModelMain Current Calculations

Page 32: FINAL

32

Panel BalanceAverage loading = = 25.77Deviation PHA = 27.3 – 25.77 = 1.53Deviation PHB = 24.03 – 25.77 = -1.74Deviation PHC = 25.98 – 25.77 = 0.21%unbalance= ≤ 10% = x 100% = 6.75%

I(CB)= 27.307*1.25 = 34.1 ≈ 40A∴ CSA= (4x16mm²)+16 mm² (TNCS)S = 3*V*I = 3*230*27.3 = 19 KVA

Residential ModelMain Current Calculations

Page 33: FINAL

33

Residential ModelEnergy Meter

Page 34: FINAL

34

High efficiency

Residential ModelEnergy Meter

Pre paid meter

Page 35: FINAL

35

Pillars & Transformers

Aya Mostafa Eldeeb

Page 36: FINAL

36

I(feeder)= current of flat x no. of floor flats x no. of floors x no. of buildings x diversity

S (apparent power)= 3 x V x I

Pillars & Transformers

Page 37: FINAL

37

I(feeder)= 32.5 x 12 x 1x 0.41 = 159.9A S = 3 x V x I= 3 x 230 x 99.7 = 110 KVA

I(feeder)= 32.5 x12 x 2 x 0.35 = 273 AS = 3 x V x I= 3 x 230 x 273= 188.4 KVA I(cable)=310 ACable rating between Pillar & Building = 3*300mm²+150mm²

Pillars & Transformers

Page 38: FINAL

38

All pillars rating is 200 KVA

All transformers rating is 1 MVA

Pillars & Transformers

Page 39: FINAL

39

Pillars & Transformers

Page 40: FINAL

40

Pillars & Transformers

Page 41: FINAL

41

Point of view Egyptian code British codeDiversity Factor

For lighting circuit=0.5

For normal sockets=0.4

For heater<3000watt=1

For air conditioner=0.5

I feeder=current of flat x no. of floor flats x no. of floors x no. of buildings x diversity 

Pillars & Transformers

Page 42: FINAL

42

Voltage DropAhmed Abdelshafy

Page 43: FINAL

43

Voltage drop =, if CSA Voltage drop = , if CSA

Voltage Drop

Page 44: FINAL

44

Socket Circuit

CSA= 3x4 , L= 20 m, mV/A/M=9.5 =4.5 A

VD = VD% = = 0.37% ≤ 2%

Voltage Drop

Page 45: FINAL

45

Summary

Voltage Drop

Cable Length(m) Voltage Drop(v)

Voltage Drop

%I(LS1) (3*4) 20m 0.87 0.37%I(LS2) (3*4) 14m 0.61 0.26%I(LS3) (3*4) 15m 0.65 0.28%I(LS4) (3*4) 25m 1.09 0.47%I(LS5) (3*4) 17m 0.74 0.32%I(LL1) (3*3) 20m 2.52 1.09%I(LL2) (3*3) 20m 2.49 1.08%I(LL3) (3*3) 25m 3.07 1.33%I(LP1) (3*10)

13m0.94 0.40%

I(LP2) (3*6) 8m 0.52 0.42%

Page 46: FINAL

46

Short CircuitAhmed Abdelshafy

Page 47: FINAL

47

Short circuit level at transformer = 500MVA = 1.05

Determination of impedances:

1. Transformers impedance:From tables: Transformer of rating 1 MVA: Rtr = 1.94milli-ohm Xtr = 7.76 milli-ohm

Short Circuit

Page 48: FINAL

48

2. Aluminum cable from transformer to pillar:

Type of cable 2(4*300 mm²) and length equals (24.7 m)

R=1.3585 (m.ohm) X= 1.729 (m.ohm)

Short Circuit

Page 49: FINAL

49

3. Aluminum cable from pillar to coffree:

Type of cable (4*300 mm²) and length equals (46 m)

R= 5.06 (m.ohm) X= 3.22 (m.ohm)

Short Circuit

Page 50: FINAL

50

4. Aluminum cable from coffree to distribution board:

Type of cable (4*16 mm²) and length equals (13 m)

R= 26.8 (m.ohm) X is Neglected as C.S.A is smaller than 25 mm²

Short Circuit

Page 51: FINAL

51

Short circuit current calculation: 1. Calculation of s.c current just after transformer.

Ztransformer=8(m.ohm) Itransf= =30.1875 ≈31 KA

Short Circuit

Page 52: FINAL

52

2. Calculation of s.c current from transformer to pillar.

(Impedance of transformer + impedance of first Al cable) =A

Za==10.05(m.ohm) IscA==24 KA

Short Circuit

Page 53: FINAL

53

3. Calculation of s.c current from pillar to coffree.(Impedance of transformer + impedance of first Al cable + impedance of second Al cable) =B

Zb=(m.ohm) IscB==15.87 ≈16 KA

Short Circuit

Page 54: FINAL

54

4. Calculation of s.c current from coffree to riser.(Impedance of transformer + impedance of first Al cable + impedance of second Al cable+ impedance of riser) =C

Zc=(m.ohm) IscC==7.6≈ 10KA

Short Circuit

Page 55: FINAL

55

Earthing System Ahmed Abdelshafy

Page 56: FINAL

56

Earthing System We are using TNC-S earthing system which

gathers safety and cost

Page 57: FINAL

57

Pillars & Transformers

Page 58: FINAL

58

Street LightingKareem Hamdy

Page 59: FINAL

59

Purpose

Types of lamp and poles

Street Lighting

Page 60: FINAL

60

SODIUM LAMPAdvantages:High efficacy

Low power consumption

Low cost consumption

Street Lighting

Page 61: FINAL

61

Normal pole

6m : Side streets, public gardens8m&10m : Traffic routes12m&15m : High speed dual carriageways

High mast

18M or more : Airports, stadiums and large industrial areas

Street Lighting

Page 62: FINAL

62

Factors affecting street lighting design

A. Distance between poles

B. Height(1)

C. Overhang(2)

D. Boom angle(3)

E. Setback(4)

Street Lighting

Page 63: FINAL

63

Design speed (Km/h)

Setback (m) Height (m)

50 0.8 5 or 680 1 8 or 10

100 1.5 12 or 15

Street Lighting

According to British standard code:

How to calculate setback, arm length , overhang?

Page 64: FINAL

64

Arm length = height of pole

Overhang = Arm length-setback

Street Lighting

Page 65: FINAL

65

Cont. Factors affecting street lighting design

Street Lighting

Page 66: FINAL

66

Street Lighting Feeder Pillar

Responsible for feeding street lighting circuits

Contains three phase breakers connected on 4 core cable to feed poles

Contains a Photocell/Timer

Street Lighting

Page 67: FINAL

67

Design using DIALux

Street Lighting

Page 68: FINAL

68

File ⊲ Wizards ⊲ Quick Street PlanningStreet Lighting

Page 69: FINAL

69

Street Lighting

Page 70: FINAL

70

Dialux select the class of street lighting according to:

How high is the typical speed of the main user of the street?

Weather type ?

How many vehicles are there per day ?

Does a conflict zone exist ?

How is the street connected to other streets ?

Street Lighting

Page 71: FINAL

71

Street Lighting

Page 72: FINAL

72

Street Lighting requirementsA. Average luminance (L)

B. Overall uniformity (U0)

C. Longitudinal uniformity (U1)

D. Threshold increment (TI)

E. Surrounding ratio (SR)

These requirements depends on Road Type

Street Lighting

Page 73: FINAL

73

Select luminaire

Street Lighting

Page 74: FINAL

74

Street Lighting

Page 75: FINAL

75

Street Lighting

Page 76: FINAL

76

Street Lighting

Page 77: FINAL

77

Street Lighting Summery Street Lighting

CSA(mm²)

I(feeder)

S(KVA)

P(kw)

No of colum

ns

Pillar

Transformer

16 25.46 17.64 7.5 30 P5 T516 26.3 18.2 15.5 62 P1 T816 17.8 12.3 10.5 42 P2 T816 41.1 28.5 24.2 97 P1 T1016 37.35 25.8 22 90 P1 T1116 24.19 16.76 14.2

557 P3 T12

16 28.43 19.7 16.75

67 P4 T14

Total number of poles used = 445 poles

Page 78: FINAL

78

Cost Estimation

Page 79: FINAL

79

Example(1):Indoor Lighting Circuit

Cost Estimation

Page 80: FINAL

80

Example(2):Outdoor Cables

Cost Estimation

Page 81: FINAL

81

Bill of QuantitySummary

Page 82: FINAL

82

Bill of Quantity

Page 83: FINAL

83

Bill of Quantity

Page 84: FINAL

84

Bill of Quantity

Page 85: FINAL

85

Bill of Quantity

Page 86: FINAL

86

البريطانى للكود السعر اعمال نموذج16,462574 Type A6,178850 Type B11,572256 Type C8,600368 Type D24,999214 Layout67,813263 للمشروع االجمالى السعر

Bill of Quantity

Page 87: FINAL

87

Thank You