final exam formula sheet

1
Quadratic Surfaces Multiple Integration Average Value Riemann Sum Jacobians β€’ Polar: β€’ Cylindrical: β€’ Spherical: Mean Value Theorem Center of Mass = = 2 = β€’ Rewrite as product of limits: β€’ Lines to Test β€’ Convert to Polar if β€’ Plug in values β€’ Squeeze Theorem Limits Limit Definitions Equation of a Tangent Plane Linear Approximation Chain Rule for Paths Chain Rule (Generalized) Directional Derivatives Multivariable Differentiation Optimization β€’ β€’ Global Optimization Second Derivative Test Lagrange Multipliers Vector-Valued Functions Properties Arc Length Tangent Line Parametrization Flux Stokes’ Theorem Surface Independence β€’ = Green’s Theorem General Form Vector Form β€’ = β€’ Parametrizing Surfaces β€’ β€’ β€’ β€’ β€’ β€’ β€’ β€’ β€’ β€’ Common Surfaces Surface Integrals Β± Vector (Flux) Surface Integral Scalar Surface Integral Scalar Line Integral Vector Line Integral Vector Line Integral (Flux) Line Integrals Conservative Vector Fields A vector field F on domain D is conservative if: β€’ 0 β€’ and D is simply connected Path independence: βˆ™ β…† = ( )βˆ™ β…†, =< βˆ’ β€² , β€² > = β…† = = βˆ™ Applied Vector Geometry Divergence Theorem β€’ =

Upload: michael-yee

Post on 10-Apr-2016

251 views

Category:

Documents


2 download

DESCRIPTION

Formula sheet for a Calc III course at Cornell University

TRANSCRIPT

Page 1: Final Exam Formula Sheet

Quadratic Surfaces

Multiple Integration

Average Value

Riemann Sum

Jacobiansβ€’ Polar:

β€’ Cylindrical:

β€’ Spherical:

Mean Value Theorem

Center of Mass

𝑦 = π‘šπ‘₯

𝑦 = π‘šπ‘₯2

𝑦 = π‘š π‘₯

β€’ Rewrite as product of limits:

β€’ Lines to Test

β€’ Convert to Polar if

β€’ Plug in values

β€’ Squeeze Theorem

Limits

Limit Definitions

Equation of a Tangent Plane

Linear Approximation

Chain Rule for Paths

Chain Rule (Generalized)

Directional Derivatives

Multivariable Differentiation

Optimization

β€’

β€’

Global Optimization

Second Derivative Test

Lagrange Multipliers

Vector-Valued Functions

Properties

Arc Length

Tangent Line Parametrization

Flux

Stokes’ Theorem

Surface Independence

β€’ π‘ͺ𝒖𝒓𝒍 =π‘ͺπ’Šπ’“π’„π’–π’π’‚π’•π’Šπ’π’

π‘Όπ’π’Šπ’• 𝑨𝒓𝒆𝒂

Green’s Theorem

General Form

Vector Form

β€’ =π‘ͺπ’Šπ’“π’„π’–π’π’‚π’•π’Šπ’π’

π‘Όπ’π’Šπ’• 𝑨𝒓𝒆𝒂

β€’

Parametrizing Surfaces

β€’β€’

β€’

β€’

β€’β€’

β€’

β€’

β€’

β€’

Common Surfaces

Surface Integrals

Β±

Vector (Flux) Surface Integral

Scalar Surface Integral

Scalar Line Integral

Vector Line Integral

Vector Line Integral (Flux)

Line Integrals

Conservative Vector Fields

A vector field F on domain D is conservative if:

β€’

0β€’ and D is simply connected

Path independence:

𝐢 𝐹 βˆ™ 𝑛 ⅆ𝑆 = π‘Ž

𝑏𝑣(π‘Ÿ 𝑑 ) βˆ™ 𝑁 𝑑 ⅆ𝑑, 𝑁 𝑑 =< βˆ’π‘¦β€² 𝑑 , π‘₯β€² 𝑑 >

π΄π‘Ÿπ‘’π‘Ž π‘ƒπ‘Žπ‘Ÿπ‘Žπ‘™π‘™π‘’π‘™π‘œπ‘”π‘Ÿπ‘Žπ‘š =

π‘‰π‘œπ‘™π‘’π‘šπ‘’ π‘ƒπ‘Žπ‘Ÿπ‘Žπ‘™π‘™π‘’π‘™π‘œπ‘π‘–π‘π‘’β…† =

𝐹𝑙𝑒π‘₯ = 𝑆𝒏 βˆ™ 𝒗

Applied Vector Geometry

Divergence Theorem

β€’ =𝑭𝒍𝒖𝒙

π‘Όπ’π’Šπ’• π‘½π’π’π’–π’Žπ’†