finit element method chapter 1

Upload: khaledallouch

Post on 07-Apr-2018

227 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/6/2019 finit element method Chapter 1

    1/25

    Universit de SfaxEcole Nationale

    dIngnieurs de SfaxUniversity of Sfax

    National Engineering

    School of SfaxMthodes des

    lments finis

    Finite Element

    MethodPrpar par Prepared by

    Dr. Slim Choura

  • 8/6/2019 finit element method Chapter 1

    2/25

    Finite Element Method Dr. Slim ChouraPage 1

    1Finite element analysis

    of one-dimensionalproblems

  • 8/6/2019 finit element method Chapter 1

    3/25

    Finite Element Method Dr. Slim ChouraPage 2

    The Finite Element Method (FEM) is a technique in which a given spatial domain is represented as a

    collection of simple domains, calledfinite elements.

    Basic steps

    1. Domain discretization.a. Construct the finite element mesh.

    b. Number the nodes and elements.

    c. Generate the geometric properties (e.g., coordinates and cross-sectional areas)

    2. Derivation of element equations.a. Construct the variational formulation of the given differential equation over the typical

    element.

    b. Assume that a typical dependent variable u is of the form

    1

    n

    i i

    i

    u u

    =

    = and substitute it into Step 2a to obtain the element equations in the matrix form

    { } { }e eeK u F = .

    c. Derive or select element interpolation functionsi

    and compute the element matrices.

    3 Assembly of element equations.a. Identify the interelement continuity conditions among the primary variables by relating

    element nodes to global nodes.b. Identify the equilibrium conditions among the secondary variables.c. Assemble element equations using Steps 3a and 3b.

    4 Imposition of the boundary conditions.a. Identify the specified global primary degrees of freedom.

    b. Identify the specified global secondary degrees of freedom (if not already done in Step

    3b)

    5 Solution of the assembled equations.

    6 Post processing.a. Compute the gradient of the solution or other desired quantities from the primary

    degrees of freedom computed in Step 5.b. Represent the results in tabular/or graphical form.

    Table 1.1 Steps involved in the finite element analysis of a typical problem

  • 8/6/2019 finit element method Chapter 1

    4/25

    Finite Element Method Dr. Slim ChouraPage 3

    1.1. Model of second-order boundary value problems:

    Consider the differential equation describing the axial deformation in a bar shown in Figure 1.1

    ( ) ( ) ( ) 0 for 0d du

    a x c x u q x x Ldx dx

    + = <

  • 8/6/2019 finit element method Chapter 1

    5/25

    Finite Element Method Dr. Slim ChouraPage 4

    The polynomial approximation of the solution:

    ( )

    1

    n

    e e e

    j j

    j

    U u x

    =

    = (1. 3)e

    ju are the values of the solution at the nodes and e

    j are the approximation functions.

    Equation (1.1) in a in a weighted-integral form:

    0

    B

    A

    x

    x

    d duw a cu q dx

    dx dx

    = + (1. 4)

    ( )w x is the weight function. Equation (1.4) reduces to

    0

    BB

    AA

    x x

    xx

    dw du dua c wu wq dx wa

    dx dx dx

    = + (1. 5)

    ( ) ( )0B

    A

    x

    A A B B

    x

    dw dua cwu wq dx w x Q w x Q

    dx dx

    = +

    (1. 6)where

    A

    A

    x

    duQ adx

    =

    ,

    B

    B

    x

    duQ adx

    =

    (1. 7)

    Step 3: Approximations of the Solution:

    Linear approximation

    ( ) ( )

    2

    1

    e e e

    j j

    j

    U x x u

    =

    =

    (1. 8)

    where

    ( )1 1e

    e

    xx

    h = ( )2

    e

    e

    xx

    h = (1. 9)

    where

    A ex x x x x= =

  • 8/6/2019 finit element method Chapter 1

    6/25

    Finite Element Method Dr. Slim ChouraPage 5

    Quadratic approximation

    ( ) ( )

    3

    1

    e e e

    j j

    j

    U x x u

    =

    =

    (1. 10)

    ( ) ( )( )

    ( )( )

    1 2 3

    1 1 11 1 ; 1 ; 1

    1 1

    e e ex x x x x xx x xh h h h h h

    = = =

    (1. 11)

    where 0 1< < and 2 1e e

    ex x h= + (i.e.; the second node is chosen arbitrarily at the interior of the

    element). For21= (node 2 is at midpoint):

    ( ) ( ) ( )( )

    1 2 31 1 2 4 1 1 21

    e e ex x x x x xx x xh h h h h h

    = = =

    (1. 12)

    Note that1

    e is equal to 1 at node i and zero at the other two nodes, but varies quadratically

    between the nodes.

    Step 4: Finite Element Model:

    The model can be developed for an arbitrary degree of interpolation:

    ( )

    1

    n

    e e e

    j j

    j

    u U u x

    =

    = (1. 13)Following the Rayleigh-Ritz procedure, we substitute (1.13) for u and 1

    e , 2e , , en for w into

    the weak form (1.6) to obtain n algebraic equations:

    ( ) ( )1

    1 1 1

    1 1 1

    0

    B

    A

    n n nx eeje e e e e e e e

    j j j j j

    xj j i

    dd

    a u c u x q dx x Qdx dx

    = = =

    = +

    ( ) ( )2 2 2 21 1 1

    0

    B

    A

    n n nx eeje e e e e e e e

    j j j j j

    xj j i

    dda u c u x q dx x Q

    dx dx

    = = =

    = +

  • 8/6/2019 finit element method Chapter 1

    7/25

    Finite Element Method Dr. Slim ChouraPage 6

    ( ) ( )1 1 1

    0

    B

    A

    n n nx eeje e e e e e e ei

    j i j j i i j j

    xj j i

    dda u c u x q dx x Q

    dx dx

    = = =

    = +

    ( ) ( )1 1 1

    0

    B

    A

    n n nx eeje e e e e e e en

    j n j j n n j j

    xj j i

    dda u c u x q dx x Q

    dx dx

    = = =

    = + (1. 14)

    The ith algebraic equation can be written as

    ( )1

    1, 2, ... ,

    n

    e e e eij j i i

    j

    K u f Q i n

    =

    = + =

    (1. 15)

    ( )( ) ( )

    ( ) ( ) ( )0

    eh ee

    jie e e

    ij i j

    d xd xK a x c x x x dx

    dx dx

    = +

    , ( ) ( )0eh

    e e

    i if q x x dx= (1. 16)

    or in matrix form

    { } { } { }e e e eK u f Q = + (1. 17)

    eK is symmetric (coefficient matrix orstiffness matrix in structural mechanics applications)

    { }ef (source vector orforce vector in structural mechanics applications).

    Linear element:

    Special case 1: constant eq

    { }

    1 1 2 1 1

    1 1 1 2 16 2

    e ee e e e e

    e

    a c h q h

    K fh

    = + =

    (1. 18)

    Special case 2: ea a x= and ec c= ,

    11 1 2 1

    1 1 1 22 6

    e e e e e e

    e

    a x x c hK

    h

    + +

    = +

    (1. 19)

    Special case 3: a and q are element-wise-constant and 0=c

    1 1

    2 2

    1 1 1

    1 1 12

    e e

    e e e

    e e

    e

    u Qa q h

    h u Q

    = +

    (1. 20)

  • 8/6/2019 finit element method Chapter 1

    8/25

    Finite Element Method Dr. Slim ChouraPage 7

    Quadratic element:

    Special case: a , c and q are element-wise constant

    7 8 1 4 2 1

    8 16 8 2 16 2303

    1 8 7 1 2 4

    e e e e

    e

    a c hK

    h

    = +

    { }1

    46

    1

    e e eq h

    f

    =

    (1. 21)

    Connectivity of Elements:

    The assembly of elements is carried out by imposing the following conditions:

    1. Continuity of primary variables at connecting nodes:

    1

    1

    e e

    nu u+

    = (1. 22)

    2. Balance of secondary variables at connecting nodes:

    1

    1

    0 0

    0 if no external point source is applied

    if an external point source of magnitude is applied

    e e

    nQ QQ Q

    +

    + =

    (1. 23)

    Continuity of the primary variables

    1

    1 1u U= 1 2

    2 1 2u u U= = 2 3

    2 1 3u u U= = 1

    2 1

    E E

    Eu u U

    = = 2 1E

    Eu U += (1. 24)

    To obtain 11

    e e

    nQ Q ++ , we must add the n

    th equation of element e to the first equation of element

    1e+ , that is, we add

    1

    n

    e e e e

    nj j n n

    j

    K u f Q

    =

    = + and 1 1 1 11 1 11

    n

    e e e e

    j j

    j

    K u f Q+ + + +

    =

    = + to give

    eQ1

    21

    e

    21

    1e+ e

    eQ2 1

    1+e

    Q 12+

    eQ

    ( )xUe

    12

    +eu 1

    1+eu

    21

    1+eU

    e

    21

    e+1

    2+eU

    eU

    eu2

    eu1

    e e+1 e+1 e+2

    ( )xUe 1+

  • 8/6/2019 finit element method Chapter 1

    9/25

    Finite Element Method Dr. Slim ChouraPage 8

    ( ) ( )1 1 1 11 1 11

    n

    e e e e e e e e

    nj j j j n n

    j

    K u K u f f Q Q+ + + +

    =

    + = + + + 11 0e enf f Q+= + + (1. 25)For a mesh ofElinear elements ( 2=n ), we have

    1 1 1

    11 12 1 1

    1 1 2 2 1 2

    21 22 11 12 2 2 1

    2 2 3 2 3

    21 22 11 3 2 1

    1 1

    22 11 12 2 1

    21 22 1 2

    0 0 0

    0 0

    0 0 0

    0 0 0

    0 0 0

    E E E E E

    E

    E E E

    E

    K K U f

    K K K K U f f

    K K K U f f

    K K K U f f

    K K U f

    +

    + + + +

    = + +

    1

    1

    1 2

    2 1

    2 3

    2 1

    1

    2 1

    2

    E E

    E

    Q

    Q Q

    Q Q

    Q Q

    Q

    + +

    + +

    (1. 26)Recall that the above discussion of assembly is based on the assumption that the elements are

    connected in series.

    Consider the following structure:

    Continuity and force balance conditions:

    1 3 2

    2 1 2 3u u u U = = = 1 3 2

    2 1 2 2Q Q Q P+ + = (1. 27)

    To enforce these conditions:

    1

    1 1u U= 2

    1 2u U= 1 3 2

    2 1 2 3u u u U = = = 3

    2 4u U=

    ( ) ( ) ( )1 1 1 1 3 3 3 3 2 2 2 2 1 3 2 1 3 221 1 22 2 11 1 12 2 21 1 22 2 2 1 2 2 1 2K u K u K u K u K u K u f f f Q Q Q+ + + + + = + + + + + (1. 28)

    h2

    h1

    P

    P

    h3

    1

    2 3

    3

    3

    4

    Rigid bar

    (constrained to move horizontally)

    h2 = h1

    2

    1

    3

  • 8/6/2019 finit element method Chapter 1

    10/25

    Finite Element Method Dr. Slim ChouraPage 9

    The assembled equations are:

    1 1 1 1

    111 12 1 1

    2 2 2 2

    211 12 1 1

    1 2 1 3 2 3 1 3 2 1 3 2

    321 21 22 11 22 12 2 1 2 2 1 2

    3 3 3 3

    421 22 2 2

    0 0

    0 0

    0 0

    UK K f Q

    UK K f QUK K K K K K f f f Q Q Q

    UK K f Q

    = + + + + + + +

    (1. 29)

    Step 6: Imposition of Boundary Conditions:

    1

    1 1 0u U= = 2

    1 2 0u U= = 3

    2 4 0u U= = (1. 30)

    1 3 2

    2 1 2 2Q Q Q P+ + = (1. 31)

    The displacement 3U and the forces11Q ,

    21Q and

    32Q are unknown. We obtain

    1 1 1

    111 12 1

    2 2 2

    211 12 1

    1 2 1 3 2 3

    321 21 22 11 22 12

    3 3 3

    421 22 2

    0 0 0

    0 0 0

    2

    0 0 0

    UK K Q

    UK K Q

    PUK K K K K K

    UK K Q

    =

    = = + + =

    (1. 32)

    Step 5: Solution of Equations:

    Condensed equation

    ( ) ( )1 3 2 1 2 322 11 22 3 21 1 21 2 12 42K K K U P K U K U K U + + = + + (1. 33)

    Hence,( )

    3 1 3 2

    22 11 22

    2PU

    K K K=

    + +

    (1. 34)

    The remaining equations can be assembled as:

    1 111 11 12 311 12

    2 222 21 12 311 12

    3 333 32 21 321 22

    4

    0 0

    0 0

    0 0

    UQ K UK KU

    Q K UK KU

    Q K UK KU

    = =

    (1. 35)

    Step 6: Post Processing of the Solution:

    The solution u as a continuous function of position x is:

  • 8/6/2019 finit element method Chapter 1

    11/25

    Finite Element Method Dr. Slim ChouraPage 10

    ( )

    ( ) ( )

    ( ) ( )

    ( ) ( )

    1 1 1

    1

    2 2 2

    1

    1

    n

    j j

    j

    n

    j j

    j

    n

    N N N

    j j

    j

    U x u x

    U x u xu x

    U x u x

    =

    =

    =

    =

    =

    =

    (1. 36)

    Depending on the value ofx , the corresponding element equation from (1.66) is used. The derivative

    of the solution is obtained by differentiating (1.66):

    1

    1

    1

    2

    2

    1

    1

    n

    j

    j

    j

    n

    j

    j

    j

    nN

    jNj

    j

    du

    dx

    dudu

    dxdx

    dudx

    =

    =

    =

    (1. 37)

    1.2. Model of Fourth Order Boundary Value Problem (Bending of Beams) :

    1.2.1. The Euler-Bernoulli Beam Element:1.2.1.1. Governing equation:

    Transverse deflection w of the beam

    L

    w

    M0

    f(x)F0

  • 8/6/2019 finit element method Chapter 1

    12/25

    Finite Element Method Dr. Slim ChouraPage 11

    ( ) ( )2 2

    2 2

    d d wb x f x

    dx dx

    =

    for 0

  • 8/6/2019 finit element method Chapter 1

    13/25

    Finite Element Method Dr. Slim ChouraPage 12

    ( ) ( )1 1

    1

    2 2

    1 2 1 3 42 20

    e e

    e ee e

    x x

    e e e e

    e e

    x xx x

    d v d w dv dvb dx vfdx v x Q Q v x Q Q

    dx dxdx dx

    + +

    +

    +

    =

    (1. 40)

    2

    1 2

    e

    e

    x

    d wdQ b

    dx dx

    2

    2 2

    e

    e

    x

    d wQ b

    dx

    1

    2

    3 2

    e

    e

    x

    d wdQ b

    dx dx+

    1

    2

    4 2

    e

    e

    x

    d wQ b

    dx+

    (1. 41)

    Interpolation Functions

    In the local coordinate system, the Hermite cubic interpolation functions are

    2 3 2 2 3 2

    1 2 3 41 3 2 1 3 2e e e e

    e e e e e e e

    x x x x x x xx x

    h h h h h h h

    = + = = =

    (1. 42)

    Finite Element Model

    The thi algebraic equation of the finite element model is (for ei

    v = )

    1 14

    22

    2 2

    1

    0

    e e

    e e

    x xeej e e ei

    j i i

    x xj

    ddb dx u fdx Q

    dx dx

    + +

    =

    =

    (1. 43)or

    4

    1

    0e e eij j i

    j

    K u F

    =

    = (1. 44)where

    1 122

    2 2

    e e

    e e

    x xeeje e e ei

    ij i i i

    x x

    ddK b dx F fdx Q

    dx dx

    + +

    = = + (1. 45)The coefficients e

    ijK are symmetric (e e

    ij jiK K= ). In matrix notation (1.43) can be written as:

    11 12 13 14 1 1 1

    21 22 23 24 2 2 2

    31 32 33 34 3 3 3

    41 42 43 44 4 4 4

    e e e e e e e

    e e e e e e e

    e e e e e e e

    e e e e e e e

    K K K K u f Q

    K K K K u f Q

    K K K K u f Q

    K K K K u f Q

    = +

    (1. 46)

    For the case in which ( )b EI= and f are constant over an element

  • 8/6/2019 finit element method Chapter 1

    14/25

    Finite Element Method Dr. Slim ChouraPage 13

    { }

    1

    2 2

    2

    3

    3

    2 24

    6 6 63 3

    3 2 32

    6 6 6123 3

    3 3 2

    e

    e e

    e

    e ee e e e ee

    e

    e e e

    ee e e e e

    h h Q

    h h h h h QfhbK F

    h h h Q

    h h h h h Q

    = = +

    (1. 47)

    Assembly of Element Equations

    Continuity conditions:

    1 1 1 2

    1 1 2 2 3 1 3

    1 2 2 2

    4 2 4 3 5 4 6

    u U u U u u U

    u u U u U u U

    = = = =

    = = = =(1. 48)

    Equilibrium conditions:

    3 1

    4 2

    applied external point force

    applied external bending moment

    e f

    e f

    Q Q

    Q Q

    + =

    + =

    (1. 49)

    Forces are taken positive acting upward and moments are taken positive acting clockwise.

    To impose the equilibrium equations (1.47), we add the third (fourth) equation of the first element to

    the first (second) equation of the second element.

    1

    1 unknownQ = 01 =U

    1

    2 unknownQ = 2 0U =

    3U 1 2

    3 10Q Q+ =

    4U 1 2

    4 20Q Q+ =

    2

    3 0Q F= 5U

    2

    4 0Q M= 6U

    1

    3u

    1

    4u

    1

    4Q

    1

    3Q

    1

    1u

    1

    2u

    1

    2Q

    1

    1Q

    Element 1

    23u

    2

    4u

    2

    4Q

    2

    3Q

    2

    1u

    2

    2u

    2

    2Q

    2

    1Q

    Element 2

  • 8/6/2019 finit element method Chapter 1

    15/25

    Finite Element Method Dr. Slim ChouraPage 14

    [ ]

    3

    2

    1

    3

    2

    1

    2

    44

    2

    43

    234

    233

    2

    42

    2

    41

    232

    231

    224

    223

    214

    213

    222

    144

    221

    143

    212

    134

    211

    133

    142

    141

    132

    131

    124123

    114

    113

    122121

    112

    111

    ++

    ++=

    KK

    KK

    KK

    KK

    KK

    KK

    KKKK

    KKKK

    KK

    KK

    KK

    KK

    KK

    KK

    K

    (1. 50)

    { }

    11

    12

    1 23 1

    1 24 2

    23

    24

    F

    F

    F FF

    F F

    F

    F

    + =

    +

    (1. 51)

    Imposition of Boundary Conditions

    Let us consider a two-element cantilever beam

    For a mesh of two elements with1 2

    1

    2h h L h= = = , and constant EI and f

    0M

    0F 0f

    L

    z

    1 2 3

    Global

    nodes

  • 8/6/2019 finit element method Chapter 1

    16/25

    Finite Element Method Dr. Slim ChouraPage 15

    1

    1 1

    2 2 1

    2 2

    1 2

    3 3 10

    3 2 2 2 2 1 24 4 2

    2

    5 3

    2 2

    6

    6 -3 6 3 0 0 6

    3 3 0 02

    6 3 6 6 3 3 6 3 6 62

    3 3 3 3 122 20 0 6 3 6 3 6

    0 0 3 3 2

    h h U Q

    h h hUh h Q

    h h h h U Q Qf hEI

    h h h h h hh Uh h h h Q Q

    h h U Q

    h h hUh h

    + + +

    = + + +

    2

    4Q

    (1. 52)

    It can be seen that

    1 2 1 2

    3 1 4 20 0Q Q Q Q+ = + = (1. 53)

    2

    2

    3 02

    x L

    d wdQ EI F

    dx dx=

    =

    2

    2

    4 02

    x L

    d wQ EI M

    dx=

    =

    (1. 54)

    1 1

    1 1 1 0u w U= = = 1 1

    2 1 2 0dw

    u Udx

    = = = =

    (1. 55)

    Using (1.99)-(1.101) into (1.98) yields:

    1

    1 1

    12 2

    2 2

    3 03 2 2 2

    4

    5 0

    2 2

    6 0

    606 3 6 3 0 0

    03 2 3 0 0

    12 06 3 12 0 6 32 012 03 0 4 3

    60 0 6 3 6 3

    0 0 3 3 2

    U Qh h

    hU Qh h h h

    Uh h f hEIh Uh h h h h

    U Fh h

    hU Mh h h h

    =

    = = +

    (1. 56)

    Solution

    { }

    2 3

    0 0 03

    22 40 0 0

    2 35

    0 0 026

    0 0 0

    175 3

    4

    9 6 76

    16 12 1212 12 8

    h F hM f hU

    U hhF M f hU

    EIU

    h F hM f hUhF M f h

    + +

    = =

    + +

    (1. 57)

    { }( )

    ( )

    10 0

    1 1

    1

    2 0 0 0

    2

    2

    F f hQF

    Q h F f h M

    + = =

    + +

    (1. 58)

    Post-processing of the solution

    The finite element solution as a function of position x is given by

  • 8/6/2019 finit element method Chapter 1

    17/25

    Finite Element Method Dr. Slim ChouraPage 16

    ( )1 1

    3 3 4 4

    2 2 3 4

    3 1 4 2 5 2 6 2

    for 0

    for 2e

    x hU Uw x

    h x hU U U U

    +=

    + + +(1. 59)

    2 3 2 3

    1 13 4

    2 3 2

    2 2

    1 2

    2 3 3 2

    2 2

    3 4

    3 2

    1 3 1 2 1 1 2

    3 1 2 1 1 1

    x x x xhh h h h

    x x x xh

    h h h h

    x x x xh

    h h h h

    = =

    = =

    = + = +

    (1. 60)

    Exact solution

    ( ) ( )

    ( ) ( )

    ( ) ( )

    4 3 2 2

    0 0 0 0 0 0

    3 2 2

    0 0 0 0 0 0

    2 2

    0 0 0 0 0 0

    1 1 1 1

    24 6 2 2

    1 1 1for 0

    6 2 2

    1 1

    2 2

    EIw x f x F f L x M F L f L x

    EI x f x F f L x M F L f L x x L

    M x f x F f L x M F L f L

    = + + + +

    = + + + +

    = + + + +

    (1. 61)

    10 mkN24 -f = , kN060 =F , m3=L ,

    mkN00 =M ,26 mkN10002 -E = , 46 mm1092 =I

    As expected, the finite element solution for w and coincides with the exact solution at the nodes.

    At other points, the difference is less than 2%.

    w (m) - M/EI(kN m)

    x (m) FEM Exact FEM Exact FEM Exact

    0.00 0.00 0.00 0.00 0.00 0.0489 0.0497

    0.1875 0.0008 0.0008 0.0088 0.0089 0.0452 0.04550.3750 0.0033 0.0033 0.0169 0.0171 0.0415 0.0414

    0.5625 0.0071 0.0072 0.0244 0.0245 0.0378 0.03750.7500 0.0124 0.0124 0.0311 0.0311 0.0341 0.0338

    0.9375 0.0188 0.0188 0.0372 0.0371 0.0305 0.0301

    1.1250 0.0263 0.0263 0.0426 0.0425 0.0268 0.02661.3125 0.0347 0.0347 0.0472 0.0471 0.0231 0.0234

    1.5000 0.0439 0.0439 0.0512 0.0512 0.0194 0.0202

    1.6875 0.0539 0.0539 0.0546 0.0547 0.0169 0.01711.8750 0.0644 0.0644 0.0575 0.0576 0.0144 0.0143

    2.0625 0.0754 0.0755 0.0600 0.0600 0.0118 0.0115

    2.2500 0.0868 0.0869 0.0620 0.0620 0.0093 0.0089

    2.4375 0.0986 0.0987 0.0635 0.0634 0.0068 0.0065

    2.6250 0.1106 0.1107 0.0645 0.0644 0.0043 0.0042

    2.8025 0.1228 0.1228 0.0651 0.0650 0.0017 0.0020

    3.0000 0.1350 0.1350 0.0652 0.0652 -0.0008 0.0000

  • 8/6/2019 finit element method Chapter 1

    18/25

    Finite Element Method Dr. Slim ChouraPage 17

    1.2.2. Plane Truss and Euler-Bernoulli Frame Elements:Structures composed of bar elements and beam elements are classified as truss and frame structures.

    Truss structure:

    Frame structure:

    Element degrees of freedom Global degrees of freedom

    x

    z

    VF

    HF

    x

    oF

    A pin connection

    Members rotatez

    F

    0f

    x

    z

    z

    x

    2u

    5u

    1u

    4u

    3u

    6u

    x

    z

    z

    x

    2u

    5u

    1u

    4u

    3u

    6u

    x

    z

  • 8/6/2019 finit element method Chapter 1

    19/25

    Finite Element Method Dr. Slim ChouraPage 18

    { } { }e e eK u F = (1. 62)

    { }

    1

    1

    1

    2

    2

    2

    e

    u

    w

    uu

    w

    =

    , { }

    1

    2

    2

    3

    4

    5

    2

    6

    1/ 2

    1/ 2

    1/12

    1/ 2

    1/ 2

    1/12

    e

    e

    e

    e

    e

    e

    e

    qh Q

    fh Q

    fh QF

    qh Q

    fh Q

    fh Q

    = +

    (1. 63)

    and 0qq = and 0ff = are constants over an element:

    2 2

    3

    2 2

    0 0 0 0

    0 6 3 0 6 3

    0 3 2 0 32

    0 0 0 0

    0 6 3 0 6 3

    0 3 0 3 2

    e

    h h

    h h h hEIK

    h

    h h

    h h h h

    =

    ,2

    2

    Ah

    I = (1. 64)

    Let u and w denote the axial and transverse displacements referred to the local coordinate system

    ( )zyx ,, :

    cos 0 sin

    0 1 0

    sin 0 cos

    x x

    y y

    z z

    =

    (1. 65)

    where the angle is measured counter-clockwise from the x axis to the x axis. In addition

    cos sin 0sin cos 0

    0 0 1

    u uw w

    =

    (1. 66)

    Therefore,

  • 8/6/2019 finit element method Chapter 1

    20/25

    Finite Element Method Dr. Slim ChouraPage 19

    1 1

    2 2

    3 3

    4 4

    5 5

    6 6

    cos sin 0 0 0 0

    sin cos 0 0 0 0

    0 0 1 0 0 0

    0 0 0 cos sin 0

    0 0 0 sin cos 0

    0 0 0 0 0 1

    e e

    u u

    u u

    u u

    u u

    u u

    u u

    =

    (1. 67)

    or

    { } { }e e eu T u = (1. 68)

    Analogously

    { } { }e e eF T F = (1. 69)

    Using (1.67) and (1.68) in the element equations

    { } { }e e eK u F = (1. 70)

    we obtain

    { } { }T

    e e e e eT K T u F = (1. 71)

    which gives the element stiffness matrix

    { } { }=T T

    e e e e e e eK T K T F T F = (1. 72)

    It can be shown that the above matrix has the following form:

    ( )

    ( ) ( )

    ( ) ( ) ( )

    2 2

    2 2

    2

    2 2 2 23

    2 2 2

    cos 6sin

    6 cos sin sin 6cos symmetric

    3 sin 3 cos 22

    cos 6sin 6 cos sin 3 sin cos 6sin

    6 cos sin sin 6cos 3 cos 6 cos sin sin

    e

    h h hEI

    Khh

    h

    +

    +

    = + +

    + 2

    2 2

    6cos

    3 sin 3 cos 3 sin 3 cos 2

    e

    h h h h h h

    +

    (1. 73)

    { }

    1 2

    1 2

    2

    3

    4 5

    4 5

    6

    cos sin

    sin cos

    2 cos sin

    sin cos

    e

    ee e

    e

    e

    F F

    F F

    FA hF

    I F F

    F F

    F

    +

    = =

    +

    (1. 74)

  • 8/6/2019 finit element method Chapter 1

    21/25

    Finite Element Method Dr. Slim ChouraPage 20

    Example 1:

    Consider the three-member truss shown in Figure 1. 15(a). All members of the truss have identical

    cross-sectional areaA and modulusE. We wish to determine the horizontal and vertical

    displacements at the joint 3 and the forces in each member of the structure.

    (a)

    (b)

    Figure 1.15. (a) Geometry and loading (b) element numbers, global node numbers of element nodes

    and element nodal forces in the element coordinates

    2P

    P

    x

    z

    2

    1

    3

    L

    L 3

    1

    2

    45o

    90o

    6U

    5U

    2U

    1U

    4U

    3U 4

    3

    2

    1

    3

    4

    2

    1

    2

    1

    3

    4

    1

    23

    2

    1

    1

    3

    32

  • 8/6/2019 finit element method Chapter 1

    22/25

    Finite Element Method Dr. Slim ChouraPage 21

    Since all joints are hinged, and the applied forces are acting at the nodes, the members are subjected

    to only axial forces. Hence, the structure is a truss. We use three finite elements to model the

    structure. Any further subdivision of the members does not add to the accuracy, because for all truss

    problems the finite element solutions are exact. This is a consequence of the fact that all truss

    members with constant cross-section are governed by the homogeneous differential equation

    2

    20

    d uEA

    dx= (1. 75)

    whose solution is of the form ( ) 1 2u x c x c= + . Thus, linear interpolation of the displacements should

    give the exact result.

    There are two degrees of freedom, horizontal and vertical displacements, at each node of the

    element. The element stiffness matrix in the local coordinate system is:

    1 0 1 0

    0 0 0 0

    1 0 1 0

    0 0 0 0

    e e e

    e

    A EK

    h

    =

    (1. 76)

    The transformed stiffness matrix of the elemente

    in the global coordinate system is given by:

    2 2

    2 2

    2 2

    2 2 2

    cos cos sin cos cos sin

    cos sin sin cos sin sin

    cos cos sin cos cos sin

    cos sin sin cos sin sin

    e e e

    e

    E AK

    h

    =

    (1. 77)

    which is obtained from (1.127) by deleting the rows and columns corresponding to the bending

    degrees of freedom and setting all bending stiffnesses to zero.

    The element data for the problem are as follows:

    Elementnumber

    Global nodesof the element

    Geometricproperties

    Materialproperty

    Orientation

    1 2 3 A, Lh =1 EO0=

    2 1 3 A, Lh 22 = EO45=

    3 1 2 A, Lh =1 EO90=

    The assembled stiffness and force coefficients are given by:

  • 8/6/2019 finit element method Chapter 1

    23/25

    Finite Element Method Dr. Slim ChouraPage 22

    [ ]

    2 3 2 3 3 3 2 2

    11 11 12 12 13 14 13 14

    2 3 3 3 2 2

    22 22 23 24 23 24

    3 1 3 1 1 1

    33 11 34 12 13 143 1 1 1

    44 22 23 24

    2 1 2 1

    33 33 34 34

    2 1

    4 44

    symmetric

    K K K K K K K K

    K K K K K K

    K K K K K K K

    K K K K

    K K K K

    K K

    + +

    + + +

    = + + +

    +

    (1. 78)

    The force vector can be written:

    { }

    3 2

    1 1

    3 2

    2 2

    3 1

    3 1

    3 1

    4 21 2

    3 3

    1 2

    4 4

    Q Q

    Q Q

    Q QF

    Q Q

    Q Q

    Q Q

    +

    + +

    = +

    +

    +

    (1. 79)

    Substituting the element data into (1.132), we get:

    [ ]

    0.3536 0.3536 0 0 0.3536 0.3536

    1.3536 0 1 0.3536 0.3536

    1 0 1 0

    1 0 0

    symmetric 1.3536 0.3536

    0.3536

    K

    =

    (1. 80)

    The specified displacement degrees of freedom are

    1 2 3 4 0U U U U = = = = (1. 81)

    The condensed equations for the unknown displacements and forces are

    5

    6

    1.3536 0.3536 2

    0.3536 0.3536

    PUEA

    PL U

    =

    (1. 82)

    3 2

    1 1

    3 2

    52 2

    3 1

    63 1

    3 1

    4 2

    0.3536 0.3536

    0.3536 0.3536

    1 0

    0 0

    Q Q

    UQ Q EA

    L UQ Q

    Q Q

    + +

    = +

    +

    (1. 83)

    where, for example, 3 21 1Q Q+ is the horizontal force and

    3 2

    2 2Q Q+ the vertical force at node 1.

    Solving (1.136) and (1.137) yields:

    P2

    P

  • 8/6/2019 finit element method Chapter 1

    24/25

    Finite Element Method Dr. Slim ChouraPage 23

    5

    3PLU

    EA= ( )6 3 2 2 5.828

    PL PLU

    EA EA= + =

    2 3

    1 1 1 F Q Q P= + = 2 F P= 3 3F P= 4 0F = (1. 84)

    Example 2:

    The frame structure shown in Figure 1.16 is to be analyzed for displacements and forces.

    (a) (b)

    Figure 1.16. (a) geometry and loading (b) finite element discretization

    The geometric and material properties of each element are as follows:

    Element 1:

    L = 144 in, A = 10 in2, I= 10 in

    4, 0cos = , 1sin = ,E= 10

    6psi, Pf

    7211 = lb in

    -1.

    Element 2:

    L = 180 in, A = 10 in2, I= 10 in4, 0.8cos = , 0.6sin = ,E= 106 psi, 02 =f .

    The assembled stiffness matrix and force vectors are obtained by superimposing the last three rows

    and columns of element 1 on the first three rows and columns of element 2; i.e., the 33 submatrix

    associated with rows and columns 4, 5 and 6 of element 1, and 33 submatrix associated with rows

    and columns 1, 2 and 3 of element 2 overlap in the global stiffness matrix.

    The known geometric boundary conditions are:

    21Q

    16Q

    4P

    )ft(lb

    6

    1 1P

    2P

    x

    y

    1

    2

    3

    6 ft

    12 ft

    9 ft

    12 ft1

    2

    3

    1 3

    14Q

    15Q

    11Q

    12Q 1

    3Q

    2

    4

    2

    23Q

    22Q

    25Q

    24Q

    2

    6

    Q

  • 8/6/2019 finit element method Chapter 1

    25/25

    Finite Element Method Dr. Slim ChouraPage 24

    01 =U , 02 =U , 03 =U , 07 =U , 08 =U , 09 =U (1. 85)

    The force boundary conditions are

    1 24 1 0Q Q+ = , 1 25 2 2Q Q P+ = , 1 26 3 0Q Q+ = (1. 86)

    Since all specified values of the known boundary conditions on the primary variables are zero, the

    condensed equations for the unknown global displacement degrees of freedom are:

    4

    5

    5

    6

    0.3560 0.2666 0.0178 1

    10 0.2666 0.8846 0.0148 4

    0.0178 0.0148 5.0000 48

    U

    U P

    U

    =

    (1. 87)

    whose solution is

    ( )in100.839 44 PU = ( )in100.681 45 PU = ( )rad100.961 44 PU = (1. 88)

    The reactions and forces in each member in the global coordinates can be computed from the

    element equations

    { } { } { }e e e eQ K u f = (1. 89)

    The forces eQ can be transformed to those in the element coordinate system by means of

    { } { }e e eQ T Q = (1. 90)

    we obtain

    { }1

    4.731

    0.725

    10.900

    4.731

    1.275

    50.450

    Q P

    =

    , { }2

    1.458

    0.180

    21.550

    1.458

    0.180

    10.870

    Q P

    =

    (1. 91)