finite element approximation of eigenvalue problems

303
Finite element approximation of eigenvalue problems Daniele Boffi Dipartimento di Matematica “F. Casorati”, Università di Pavia http://www-dimat.unipv.it/boffi

Upload: others

Post on 28-Oct-2021

34 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Finite element approximation of eigenvalue problems

Finite element approximation of eigenvalueproblems

Daniele Boffi

Dipartimento di Matematica “F. Casorati”, Università di Paviahttp://www-dimat.unipv.it/boffi

Page 2: Finite element approximation of eigenvalue problems

Outline of the course

References

Some computations

Simple theory

Babuška–Osborn theory

Theory for mixed problems

page 1

Page 3: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

General theory and surveys

I. Babuška and J. Osborn (1991), Eigenvalue problems, inHandbook of numerical analysis, Vol. II, Handb. Numer. Anal., II,North-Holland, Amsterdam, pp. 641–787

D. Boffi, Finite element approximation of eigenvalue problems,Acta Numerica, 19 (2010), 1–120

D. Boffi, F. Gardini, and L. Gastaldi, Some remarks on eigenvalueapproximation by finite elements, In Frontiers in NumericalAnalysis – Durham 2010, Springer Lecture Notes inComputational Science and Engineering, 85 (2012), 1–77

D. Boffi, F. Brezzi, and M. Fortin, Mixed Finite Element Methodsand Applications, Springer Series in Comp. Math., Vol. 44, 2013

R. Hiptmair (2002b), ‘Finite elements in computationalelectromagnetism’, Acta Numer. 11, 237–339

P. Monk (2003), Finite element methods for Maxwell’s equations,Numerical Mathematics and Scientific Computation, OxfordUniversity Press, New York page 2

Page 4: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

References for ellipic problems

G. Strang, G.J. Fix, An analysis of the finite element method.Prentice-Hall Series in Automatic Computation, Prentice-Hall, Inc.,Englewood Cliffs, N. J., 1973

I. Babuška and J. E. Osborn (1989), ‘Finite element-Galerkinapproximation of the eigenvalues and eigenvectors of selfadjointproblems’, Math. Comp. 52(186), 275–297

J. H. Bramble and J. E. Osborn (1973), ‘Rate of convergenceestimates for nonselfadjoint eigenvalue approximations’, Math.Comp. 27, 525–549

W. G. Kolata (1978), ‘Approximation in variationally posedeigenvalue problems’, Numer. Math. 29(2), 159–171

A. V. Knyazev and J. E. Osborn (2006), ‘New a priori FEM errorestimates for eigenvalues’, SIAM J. Numer. Anal.43(6), 2647–2667

page 3

Page 5: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

References for mixed formulation

R. S. Falk and J. E. Osborn (1980), ‘Error estimates for mixedmethods’, RAIRO Anal. Numér. 14(3), 249–277

B. Mercier, J. Osborn, J. Rappaz and P.-A. Raviart (1981),‘Eigenvalue approximation by mixed and hybrid methods’, Math.Comp. 36(154), 427–453

D. Boffi, F. Brezzi and L. Gastaldi (1997), ‘On the convergence ofeigenvalues for mixed formulations’, Ann. Scuola Norm. Sup. PisaCl. Sci. (4) 25(1-2), 131–154 (1998)

D. Boffi, F. Brezzi and L. Gastaldi (2000a), ‘On the problem ofspurious eigenvalues in the approximation of linear ellipticproblems in mixed form’, Math. Comp. 69(229), 121–140

page 4

Page 6: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Maxwell’s eigenvalues I

F. Kikuchi (1987), ‘Mixed and penalty formulations for finiteelement analysis of an eigenvalue problem in electromagnetism’,Comput. Methods Appl. Mech. Engrg. 64(1-3), 509–521

F. Kikuchi (1989), ‘On a discrete compactness property for theNédélec finite elements’, J. Fac. Sci. Univ. Tokyo Sect. IA Math.36(3), 479–490

D. Boffi, P. Fernandes, L. Gastaldi and I. Perugia (1999b),‘Computational models of electromagnetic resonators: analysis ofedge element approximation’, SIAM J. Numer. Anal.36(4), 1264–1290

D. Boffi (2000), ‘Fortin operator and discrete compactness foredge elements’, Numer. Math. 87(2), 229–246

D. Boffi (2001), ‘A note on the de Rham complex and a discretecompactness property’, Appl. Math. Lett. 14(1), 33–38

page 5

Page 7: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Maxwell’s eigenvalues II

P. Monk and L. Demkowicz (2001a), ‘Discrete compactness andthe approximation of Maxwell’s equations in R3’, Math. Comp.70(234), 507–523

D. Boffi, L. Demkowicz and M. Costabel (2003), ‘Discretecompactness for p and hp 2D edge finite elements’, Math. ModelsMethods Appl. Sci. 13(11), 1673–1687

D. Boffi, M. Costabel, M. Dauge and L. Demkowicz (2006b),‘Discrete compactness for the hp version of rectangular edge finiteelements’, SIAM J. Numer. Anal. 44(3), 979–1004

D. Boffi, M. Costabel, M. Dauge, L. Demkowicz, R. Hiptmair,Discrete compactness for the p-version of discrete differentialforms. SIAM J. Numer. Anal. 49 (2011), no. 1, 135–158

page 6

Page 8: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Other papers related to the course

Spurious modes in the square

D. Boffi, R. G. Durán and L. Gastaldi (1999a), ‘A remark onspurious eigenvalues in a square’, Appl. Math. Lett.12(3), 107–114

Equivalence of DCP and mixed conditions

D. Boffi (2007), ‘Approximation of eigenvalues in mixedform, discrete compactness property, and application to hpmixed finite elements’, Comput. Methods Appl. Mech. Engrg.196(37-40), 3672–3681

Finite Element Exterior Calculus

D.N. Arnold, R.S. Falk, R. Winther, Finite element exteriorcalculus: from Hodge theory to numerical stability. Bull.Amer. Math. Soc. (N.S.) 47 (2010), no. 2, 281–354

page 7

Page 9: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Some initial computations

1D Laplacian

− u′′(t) = λu(t) t ∈ [0, π]

u(0) = u(π) = 0

Find λ ∈ R and non-vanishing u ∈ H10(0, π) such that∫ π

0u′(t)v′(t) dt = λ

∫ π

0u(t)v(t) dt ∀v ∈ H1

0(0, π)

Exact solution:

λk = k2

uk(t) = sin(kt)(k = 1,2,3, . . . )

page 9

Page 10: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Discretization

Conforming approximation Vh ⊂ V = H10(0, π)

Find λh ∈ R and non-vanishing uh ∈ Vh such that∫ π

0u′h(t)v′(t) dt = λh

∫ π

0uh(t)v(t) dt ∀v ∈ Vh

Ax = λMx

page 10

Page 11: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation with p/w linear finite elements

n = 8 n = 16 n = 32

1 1.0129160450588 1.0032168743567 1.00080344825624 4.2095474481529 4.0516641802355 4.01286749742729 10.0802909335883 9.2631305555446 9.0652448637285

16 19.4536672593288 16.8381897926118 16.206656720942325 33.2628304890884 27.0649225609802 25.5059230069702

n = 64 n = 128 n = 256

1 1.0002008137390 1.0000502004122 1.00001254991614 4.0032137930241 4.0008032549556 4.00020080164149 9.0162763381719 9.0040668861371 9.0010165838380

16 16.0514699897078 16.0128551720960 16.003213019825125 25.1257489536113 25.0313903532369 25.0078446408520

page 11

Page 12: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation with quadratic finite elements

Computed eigenvalue (rate)

n = 8 n = 16 n = 32 n = 64 n = 1281 1.0000 1.0000 (4.0) 1.0000 (4.0) 1.0000 (4.0) 1.0000 (4.0)4 4.0020 4.0001 (4.0) 4.0000 (4.0) 4.0000 (4.0) 4.0000 (4.0)9 9.0225 9.0015 (3.9) 9.0001 (4.0) 9.0000 (4.0) 9.0000 (4.0)

16 16.1204 16.0082 (3.9) 16.0005 (4.0) 16.0000 (4.0) 16.0000 (4.0)25 25.4327 25.0307 (3.8) 25.0020 (3.9) 25.0001 (4.0) 25.0000 (4.0)36 37.1989 36.0899 (3.7) 36.0059 (3.9) 36.0004 (4.0) 36.0000 (4.0)49 51.6607 49.2217 (3.6) 49.0148 (3.9) 49.0009 (4.0) 49.0001 (4.0)64 64.8456 64.4814 (0.8) 64.0328 (3.9) 64.0021 (4.0) 64.0001 (4.0)81 95.7798 81.9488 (4.0) 81.0659 (3.8) 81.0042 (4.0) 81.0003 (4.0)

100 124.9301 101.7308 (3.8) 100.1229 (3.8) 100.0080 (3.9) 100.0005 (4.0)# 15 31 63 127 255

Remark

Convergence from aboveDouble order of convergence (w.r.t. approximation properties inenergy norm)

page 12

Page 13: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Spectral elements

Exponential convergence

5 10 15 2010

−15

10−10

10−5

100

page 13

Page 14: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Spectral method

Convergence of fifth eigenvalue

p DOF Computed

7 5 35.55935553780418 6 35.55935553780419 7 25.7779168651921

10 8 25.777916865192111 9 25.030660512713312 10 25.030660512713213 11 25.000494505292914 12 25.000494505292915 13 25.000003773425016 14 25.000003773425017 15 25.000000015675418 16 25.000000015675619 17 25.000000000038920 18 25.0000000000389

page 14

Page 15: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Two dimensional Laplacian

−∆u = λu in Ω =]0, π[×]0, π[

u = 0 on ∂Ω

Find λ ∈ R and non-vanishing u ∈ H10(Ω) such that

(∇ u ·∇ v) = λ(u, v) ∀v ∈ H10(Ω)

Exact solution:

λm,n = m2 + n2

um,n(x, y) = sin(mx) sin(ny)(m,n = 1,2,3, . . . )

page 15

Page 16: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation with p/w linear finite elements

Unstructured mesh

Computed eigenvalue (rate)

N = 4 N = 8 N = 16 N = 32 N = 642 2.2468 2.0463 (2.4) 2.0106 (2.1) 2.0025 (2.1) 2.0006 (2.0)5 6.5866 5.2732 (2.5) 5.0638 (2.1) 5.0154 (2.0) 5.0038 (2.0)5 6.6230 5.2859 (2.5) 5.0643 (2.2) 5.0156 (2.0) 5.0038 (2.0)8 10.2738 8.7064 (1.7) 8.1686 (2.1) 8.0402 (2.1) 8.0099 (2.0)

10 12.7165 11.0903 (1.3) 10.2550 (2.1) 10.0610 (2.1) 10.0152 (2.0)10 14.3630 11.1308 (1.9) 10.2595 (2.1) 10.0622 (2.1) 10.0153 (2.0)13 19.7789 14.8941 (1.8) 13.4370 (2.1) 13.1046 (2.1) 13.0258 (2.0)13 24.2262 14.9689 (2.5) 13.4435 (2.2) 13.1053 (2.1) 13.0258 (2.0)17 34.0569 20.1284 (2.4) 17.7468 (2.1) 17.1771 (2.1) 17.0440 (2.0)17 20.2113 17.7528 (2.1) 17.1798 (2.1) 17.0443 (2.0)# 9 56 257 1106 4573

page 16

Page 17: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Multiple eigenfunctions

Exact solutions (5 = 12 + 22 = 22 + 12)

page 17

Page 18: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Multiple eigenfunctions (discrete)

0 0.5 1 1.5 2 2.5 30

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 30

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 30

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 30

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 30

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 30

0.5

1

1.5

2

2.5

3

page 18

Page 19: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Uniform mesh

Computed eigenvalue (rate)

N = 4 N = 8 N = 16 N = 32 N = 642 2.3168 2.0776 (2.0) 2.0193 (2.0) 2.0048 (2.0) 2.0012 (2.0)5 6.3387 5.3325 (2.0) 5.0829 (2.0) 5.0207 (2.0) 5.0052 (2.0)5 7.2502 5.5325 (2.1) 5.1302 (2.0) 5.0324 (2.0) 5.0081 (2.0)8 12.2145 9.1826 (1.8) 8.3054 (2.0) 8.0769 (2.0) 8.0193 (2.0)

10 15.5629 11.5492 (1.8) 10.3814 (2.0) 10.0949 (2.0) 10.0237 (2.0)10 16.7643 11.6879 (2.0) 10.3900 (2.1) 10.0955 (2.0) 10.0237 (2.0)13 20.8965 15.2270 (1.8) 13.5716 (2.0) 13.1443 (2.0) 13.0362 (2.0)13 26.0989 17.0125 (1.7) 13.9825 (2.0) 13.2432 (2.0) 13.0606 (2.0)17 32.4184 21.3374 (1.8) 18.0416 (2.1) 17.2562 (2.0) 17.0638 (2.0)17 21.5751 18.0705 (2.1) 17.2626 (2.0) 17.0653 (2.0)# 9 49 225 961 3969

page 19

Page 20: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Multiple eigenfunctions (uniform meshes)

Uniform mesh

0 0.5 1 1.5 2 2.5 30

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 30

0.5

1

1.5

2

2.5

3

Uniform mesh (reversed)

0 0.5 1 1.5 2 2.5 30

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 30

0.5

1

1.5

2

2.5

3

page 20

Page 21: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Multiple eigenfunctions (symmetric mesh)

Criss-cross mesh

Exact Computed eigenvalue (rate)

N = 4 N = 8 N = 16 N = 32 N = 642 2.0880 2.0216 (2.0) 2.0054 (2.0) 2.0013 (2.0) 2.0003 (2.0)5 5.6811 5.1651 (2.0) 5.0408 (2.0) 5.0102 (2.0) 5.0025 (2.0)5 5.6811 5.1651 (2.0) 5.0408 (2.0) 5.0102 (2.0) 5.0025 (2.0)8 9.4962 8.3521 (2.1) 8.0863 (2.0) 8.0215 (2.0) 8.0054 (2.0)

10 12.9691 10.7578 (2.0) 10.1865 (2.0) 10.0464 (2.0) 10.0116 (2.0)10 12.9691 10.7578 (2.0) 10.1865 (2.0) 10.0464 (2.0) 10.0116 (2.0)13 17.1879 14.0237 (2.0) 13.2489 (2.0) 13.0617 (2.0) 13.0154 (2.0)13 17.1879 14.0237 (2.0) 13.2489 (2.0) 13.0617 (2.0) 13.0154 (2.0)17 25.1471 19.3348 (1.8) 17.5733 (2.0) 17.1423 (2.0) 17.0355 (2.0)17 38.9073 19.3348 (3.2) 17.5733 (2.0) 17.1423 (2.0) 17.0355 (2.0)18 38.9073 19.8363 (3.5) 18.4405 (2.1) 18.1089 (2.0) 18.0271 (2.0)20 38.9073 22.7243 (2.8) 20.6603 (2.0) 20.1634 (2.0) 20.0407 (2.0)20 38.9073 22.7243 (2.8) 20.6603 (2.0) 20.1634 (2.0) 20.0407 (2.0)25 38.9073 28.7526 (1.9) 25.8940 (2.1) 25.2201 (2.0) 25.0548 (2.0)25 38.9073 28.7526 (1.9) 25.8940 (2.1) 25.2201 (2.0) 25.0548 (2.0)

DOF 25 113 481 1985 8065

page 21

Page 22: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Babuška–Osborn example

−(

1ϕ′(x)

u′(x)

)′= λϕ′(x)u(x) in (−π, π)

u(−π) = u(π)

1ϕ′(−π)

u′(−π) =1

ϕ′(π)u′(π)

ϕ(x) = π−α|x|1+αsign(x), 0 < α < 1

page 22

Page 23: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Exact solution

λ = 0 (u(x) ≡ 1)

λ = k2 (k = 1,2, . . . ) double eigenvalues

u(x) = sin(kϕ(x)) regularity (3 + α)/2u(x) = cos(kϕ(x)) regularity (5 + 3α)/2

page 23

Page 24: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

α = .9

Exact Relative error (rate)

N = 64 N = 128 N = 256 N = 512 N = 10241 1.7e-03 4.2e-04 (2.00) 1.0e-04 (2.00) 2.6e-05 (2.00) 6.6e-06 (1.98)1 4.6e-03 1.3e-03 (1.88) 3.4e-04 (1.88) 9.2e-05 (1.88) 2.5e-05 (1.88)4 6.2e-03 1.5e-03 (2.00) 3.9e-04 (2.00) 9.7e-05 (2.00) 2.4e-05 (2.00)4 9.0e-03 2.4e-03 (1.94) 6.2e-04 (1.94) 1.6e-04 (1.93) 4.2e-05 (1.93)9 1.4e-02 3.4e-03 (2.00) 8.5e-04 (2.00) 2.1e-04 (2.00) 5.3e-05 (2.00)9 1.7e-02 4.2e-03 (1.97) 1.1e-03 (1.96) 2.8e-04 (1.96) 7.1e-05 (1.96)

16 2.4e-02 6.0e-03 (2.00) 1.5e-03 (2.00) 3.8e-04 (2.00) 9.4e-05 (2.00)16 2.7e-02 6.8e-03 (1.98) 1.7e-03 (1.98) 4.4e-04 (1.98) 1.1e-04 (1.97)25 3.7e-02 9.4e-03 (2.00) 2.3e-03 (2.00) 5.9e-04 (2.00) 1.5e-04 (2.00)25 4.0e-02 1.0e-02 (1.99) 2.6e-03 (1.99) 6.5e-04 (1.98) 1.6e-04 (1.98)

DOF 64 128 256 512 1024

Table: Error in the eigenvalues computed with linear elements and α = 0.9.

page 24

Page 25: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

α = .5

Exact Relative error (rate)

N = 64 N = 128 N = 256 N = 512 N = 10241 1.2e-03 3.0e-04 (2.00) 7.4e-05 (2.00) 1.9e-05 (2.00) 4.7e-06 (2.00)1 4.3e-03 1.4e-03 (1.59) 4.8e-04 (1.57) 1.7e-04 (1.55) 5.7e-05 (1.53)4 4.5e-03 1.1e-03 (2.00) 2.8e-04 (2.00) 7.0e-05 (2.00) 1.8e-05 (2.00)4 7.5e-03 2.2e-03 (1.75) 6.8e-04 (1.71) 2.2e-04 (1.67) 7.0e-05 (1.63)9 1.0e-02 2.5e-03 (2.00) 6.2e-04 (2.00) 1.6e-04 (2.00) 3.9e-05 (2.00)9 1.3e-02 3.6e-03 (1.86) 1.0e-03 (1.81) 3.0e-04 (1.77) 9.1e-05 (1.72)

16 1.8e-02 4.4e-03 (2.00) 1.1e-03 (2.00) 2.7e-04 (2.00) 6.9e-05 (2.00)16 2.1e-02 5.5e-03 (1.91) 1.5e-03 (1.88) 4.2e-04 (1.84) 1.2e-04 (1.80)25 2.7e-02 6.8e-03 (2.00) 1.7e-03 (2.00) 4.3e-04 (2.00) 1.1e-04 (2.00)25 3.0e-02 7.9e-03 (1.94) 2.1e-03 (1.91) 5.7e-04 (1.88) 1.6e-04 (1.85)

DOF 64 128 256 512 1024

Table: Error in the eigenvalues computed with linear elements and α = 0.5.

page 25

Page 26: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

α = .1

Exact Relative error (rate)

N = 64 N = 128 N = 256 N = 512 N = 10241 8.5e-04 2.1e-04 (2.00) 5.3e-05 (2.00) 1.3e-05 (2.00) 3.3e-06 (2.00)1 1.3e-03 4.2e-04 (1.59) 1.6e-04 (1.45) 6.2e-05 (1.33) 2.6e-05 (1.24)4 3.4e-03 8.4e-04 (2.00) 2.1e-04 (2.00) 5.2e-05 (2.00) 1.3e-05 (2.00)4 3.7e-03 1.0e-03 (1.85) 3.1e-04 (1.75) 1.0e-04 (1.62) 3.6e-05 (1.49)9 7.5e-03 1.9e-03 (2.00) 4.7e-04 (2.00) 1.2e-04 (2.00) 2.9e-05 (2.00)9 7.8e-03 2.1e-03 (1.93) 5.6e-04 (1.87) 1.6e-04 (1.78) 5.2e-05 (1.67)

16 1.3e-02 3.3e-03 (2.01) 8.3e-04 (2.00) 2.1e-04 (2.00) 5.2e-05 (2.00)16 1.4e-02 3.5e-03 (1.96) 9.2e-04 (1.92) 2.5e-04 (1.86) 7.4e-05 (1.78)25 2.1e-02 5.2e-03 (2.01) 1.3e-03 (2.00) 3.2e-04 (2.00) 8.1e-05 (2.00)25 2.1e-02 5.3e-03 (1.98) 1.4e-03 (1.95) 3.7e-04 (1.91) 1.0e-04 (1.84)

DOF 64 128 256 512 1024

Table: Error in the eigenvalues computed with linear elements and α = 0.1.

page 26

Page 27: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

L-shaped domain

P1 elements (Neumann boundary conditions)

Computed (rate)

N = 4 N = 8 N = 16 N = 32 N = 640 -0.0000 0.0000 -0.0000 -0.0000 -0.0000

1.48 1.6786 1.5311 (1.9) 1.4946 (1.5) 1.4827 (1.4) 1.4783 (1.4)3.53 3.8050 3.5904 (2.3) 3.5472 (2.1) 3.5373 (2.0) 3.5348 (2.0)9.87 12.2108 10.2773 (2.5) 9.9692 (2.0) 9.8935 (2.1) 9.8755 (2.0)9.87 12.5089 10.3264 (2.5) 9.9823 (2.0) 9.8979 (2.0) 9.8767 (2.0)

11.39 13.9526 12.0175 (2.0) 11.5303 (2.2) 11.4233 (2.1) 11.3976 (2.1)# 20 65 245 922 3626

page 27

Page 28: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Nonconforming P1

Computed (rate)

N = 4 N = 8 N = 16 N = 32 N = 642 1.9674 1.9850 (1.1) 1.9966 (2.1) 1.9992 (2.0) 1.9998 (2.0)5 4.4508 4.9127 (2.7) 4.9787 (2.0) 4.9949 (2.1) 4.9987 (2.0)5 4.7270 4.9159 (1.7) 4.9790 (2.0) 4.9949 (2.0) 4.9987 (2.0)8 7.2367 7.7958 (1.9) 7.9434 (1.9) 7.9870 (2.1) 7.9967 (2.0)

10 8.5792 9.6553 (2.0) 9.9125 (2.0) 9.9792 (2.1) 9.9949 (2.0)10 9.0237 9.6663 (1.5) 9.9197 (2.1) 9.9796 (2.0) 9.9950 (2.0)13 9.8284 12.4011 (2.4) 12.8534 (2.0) 12.9654 (2.1) 12.9914 (2.0)13 9.9107 12.4637 (2.5) 12.8561 (1.9) 12.9655 (2.1) 12.9914 (2.0)17 10.4013 15.9559 (2.7) 16.7485 (2.1) 16.9407 (2.1) 16.9853 (2.0)17 11.2153 16.0012 (2.5) 16.7618 (2.1) 16.9409 (2.0) 16.9854 (2.0)# 40 197 832 3443 13972

page 28

Page 29: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Mixed approximation of Laplacian

Find λ ∈ R and u ∈ L2(0, π) such that for some s ∈ H1(0, π)(s, t) + (t′, u) = 0 ∀t ∈ H1(0, π) s = u′

(s′, v) = −λ(u, v) ∀v ∈ L2(0, π) s′ = −λu

After conforming discretization Σh ⊂ Σ = H1(0, π) andUh ⊂ U = L2(0, π) the discrete problem has the following matrixform

[A B>

B 0

] [xy

]= λ

[0 00 −M

] [xy

]

page 29

Page 30: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

The good element

P1 − P0 scheme (in general, Pk+1 − Pk)

Same eigenvalues as for the standard Galerkin P1 scheme

λ(k)h =

6h2 ·

1− cos kh2 + cos kh

u(k)h |]ih,(i+1)h[ =

s(k)h (ih)− s(k)

h ((i + 1)h)

hλ(k)h

s(k)h (ih) = k cos(kih)

i = 0, . . . ,N (N = number of intervals)

k = 1, . . . ,N

page 30

Page 31: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

A troublesome element

P1 − P1 scheme

Computed eigenvalue (rate)

N = 8 N = 16 N = 32 N = 64 N = 1280 0.0000 -0.0000 -0.0000 -0.0000 -0.00001 1.0001 1.0000 (4.1) 1.0000 (4.0) 1.0000 (4.0) 1.0000 (4.0)4 3.9660 3.9981 (4.2) 3.9999 (4.0) 4.0000 (4.0) 4.0000 (4.0)9 7.4257 8.5541 (1.8) 8.8854 (2.0) 8.9711 (2.0) 8.9928 (2.0)9 8.7603 8.9873 (4.2) 8.9992 (4.1) 9.0000 (4.0) 9.0000 (4.0)

16 14.8408 15.9501 (4.5) 15.9971 (4.1) 15.9998 (4.0) 16.0000 (4.0)25 16.7900 24.5524 (4.2) 24.9780 (4.3) 24.9987 (4.1) 24.9999 (4.0)36 38.7154 29.7390 (-1.2) 34.2165 (1.8) 35.5415 (2.0) 35.8846 (2.0)36 39.0906 35.0393 (1.7) 35.9492 (4.2) 35.9970 (4.1) 35.9998 (4.0)49 46.7793 48.8925 (4.4) 48.9937 (4.1) 48.9996 (4.0)

Remark

Now the eigenvalues are not always approximated from above

page 31

Page 32: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

First spurious eigenfunction

λ = 0

0 1 2 3−1.5

−1

−0.5

0

0.5

1

1.5

page 32

Page 33: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Higher order spurious eigenfunctions

λ ' 9

0 1 2 3−1.5

−1

−0.5

0

0.5

1

1.5

0 1 2 3

−3

−2

−1

0

1

2

3

λ ' 36

0 1 2 3−1.5

−1

−0.5

0

0.5

1

1.5

0 1 2 3

−6

−4

−2

0

2

4

6

page 33

Page 34: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

An intriguing element

P2 − P0 scheme

Computed eigenvalue (rate with respect to 6λ )

n = 8 n = 16 n = 32 n = 64 n = 1281 5.7061 5.9238 (1.9) 5.9808 (2.0) 5.9952 (2.0) 5.9988 (2.0)4 19.8800 22.8245 (1.8) 23.6953 (1.9) 23.9231 (2.0) 23.9807 (2.0)9 36.7065 48.3798 (1.6) 52.4809 (1.9) 53.6123 (2.0) 53.9026 (2.0)

16 51.8764 79.5201 (1.4) 91.2978 (1.8) 94.7814 (1.9) 95.6925 (2.0)25 63.6140 113.1819 (1.2) 138.8165 (1.7) 147.0451 (1.9) 149.2506 (2.0)36 71.6666 146.8261 (1.1) 193.5192 (1.6) 209.9235 (1.9) 214.4494 (2.0)49 76.3051 178.6404 (0.9) 253.8044 (1.5) 282.8515 (1.9) 291.1344 (2.0)64 77.8147 207.5058 (0.8) 318.0804 (1.4) 365.1912 (1.8) 379.1255 (1.9)81 232.8461 384.8425 (1.3) 456.2445 (1.8) 478.2172 (1.9)

100 254.4561 452.7277 (1.2) 555.2659 (1.7) 588.1806 (1.9)# 8 16 32 64 128

page 34

Page 35: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Eigenfunctions for the P2 − P0 element

0 1 2 3−1.5

−1

−0.5

0

0.5

1

1.5

0 1 2 3

−6

−4

−2

0

2

4

6

0 1 2 3−1.5

−1

−0.5

0

0.5

1

1.5

0 1 2 3−15

−10

−5

0

5

10

15

page 35

Page 36: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Another intriguing example in 2D

Neumann eigenvalue problem for the Laplacian

Find λ ∈ R and u ∈ L20(Ω) such that for some σ ∈ H0(div; Ω)

(σ, τ ) + (div τ , u) = 0 ∀τ ∈ H0(div; Ω)

(divσ, v) = −λ(u, v) ∀v ∈ L20(Ω)

Criss-cross mesh sequence, P1 − div(P1) scheme

page 36

Page 37: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Computed eigenvalue (rate)

N = 2 N = 4 N = 8 N = 16 N = 321 1.0662 1.0170 (2.0) 1.0043 (2.0) 1.0011 (2.0) 1.0003 (2.0)1 1.0662 1.0170 (2.0) 1.0043 (2.0) 1.0011 (2.0) 1.0003 (2.0)2 2.2035 2.0678 (1.6) 2.0171 (2.0) 2.0043 (2.0) 2.0011 (2.0)4 4.8634 4.2647 (1.7) 4.0680 (2.0) 4.0171 (2.0) 4.0043 (2.0)4 4.8634 4.2647 (1.7) 4.0680 (2.0) 4.0171 (2.0) 4.0043 (2.0)5 6.1338 5.3971 (1.5) 5.1063 (1.9) 5.0267 (2.0) 5.0067 (2.0)5 6.4846 5.3971 (1.9) 5.1063 (1.9) 5.0267 (2.0) 5.0067 (2.0)6 6.4846 5.6712 (0.6) 5.9229 (2.1) 5.9807 (2.0) 5.9952 (2.0)8 11.0924 8.8141 (1.9) 8.2713 (1.6) 8.0685 (2.0) 8.0171 (2.0)9 11.0924 10.2540 (0.7) 9.3408 (1.9) 9.0864 (2.0) 9.0217 (2.0)9 11.1164 10.2540 (0.8) 9.3408 (1.9) 9.0864 (2.0) 9.0217 (2.0)

10 10.9539 10.4193 (1.2) 10.1067 (2.0) 10.0268 (2.0)10 10.9539 10.4193 (1.2) 10.1067 (2.0) 10.0268 (2.0)13 11.1347 13.7027 (1.4) 13.1804 (2.0) 13.0452 (2.0)13 11.1347 13.7027 (1.4) 13.1804 (2.0) 13.0452 (2.0)15 9.4537 13.9639 (2.1) 14.7166 (1.9) 14.9272 (2.0)15 19.4537 13.9639 (2.1) 14.7166 (1.9) 14.9272 (2.0)16 19.7860 17.0588 (1.8) 16.2722 (2.0) 16.0684 (2.0)16 19.7860 17.0588 (1.8) 16.2722 (2.0) 16.0684 (2.0)17 20.9907 18.1813 (1.8) 17.3073 (1.9) 17.0773 (2.0)

dof 11 47 191 767 3071

page 37

Page 38: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Spurious modes7 8

9

page 38

Page 39: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

More spurious modes15 16

17 18

page 39

Page 40: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Source vs. eigenvalue problem in mixed form

〈B.–Brezzi–Gastaldi ’00〉

N.B.

The criss-cross P1 − div(P1) element is a good element for thesource problem (inf-sup condition OK!)

page 40

Page 41: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

The Q1 − P0 scheme〈B.–Durán–Gastaldi ’99〉

The discrete eigenvalues can be explicitly computed:

λ(mn)h =

4h2

sin2(mh2 ) + sin2(nh

2 )− 2 sin2(mh2 ) sin2(nh

2 )

1− 23(sin2(mh

2 ) + sin2(nh2 )) + 4

9 sin2(mh2 ) sin2(nh

2 )

σ(mn)h = (σ

(mn)1 , σ

(mn)2 )

σ(m,n)1 (xi, yj) =

2h

sin(mh

2

)cos(nh

2

)sin(mxi) cos(nyj)

σ(m,n)2 (xi, yj) =

2h

cos(mh

2

)sin(nh

2

)cos(mxi) sin(nyj)

Does it converge?

page 41

Page 42: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Computed eigenvalue (rate)

N = 4 N = 8 N = 16 N = 32 N = 641 1.0524 1.0129 (2.0) 1.0032 (2.0) 1.0008 (2.0) 1.0002 (2.0)1 1.0524 1.0129 (2.0) 1.0032 (2.0) 1.0008 (2.0) 1.0002 (2.0)2 1.9909 1.9995 (4.1) 2.0000 (4.0) 2.0000 (4.0) 2.0000 (4.0)4 4.8634 4.2095 (2.0) 4.0517 (2.0) 4.0129 (2.0) 4.0032 (2.0)4 4.8634 4.2095 (2.0) 4.0517 (2.0) 4.0129 (2.0) 4.0032 (2.0)5 5.3896 5.1129 (1.8) 5.0288 (2.0) 5.0072 (2.0) 5.0018 (2.0)5 5.3896 5.1129 (1.8) 5.0288 (2.0) 5.0072 (2.0) 5.0018 (2.0)8 7.2951 7.9636 (4.3) 7.9978 (4.1) 7.9999 (4.0) 8.0000 (4.0)9 8.7285 10.0803 (-2.0) 9.2631 (2.0) 9.0652 (2.0) 9.0163 (2.0)9 11.2850 10.0803 (1.1) 9.2631 (2.0) 9.0652 (2.0) 9.0163 (2.0)

10 11.2850 10.8308 (0.6) 10.2066 (2.0) 10.0515 (2.0) 10.0129 (2.0)10 12.5059 10.8308 (1.6) 10.2066 (2.0) 10.0515 (2.0) 10.0129 (2.0)13 12.5059 13.1992 (1.3) 13.0736 (1.4) 13.0197 (1.9) 13.0050 (2.0)13 12.8431 13.1992 (-0.3) 13.0736 (1.4) 13.0197 (1.9) 13.0050 (2.0)16 12.8431 14.7608 (1.3) 16.8382 (0.6) 16.2067 (2.0) 16.0515 (2.0)16 17.5489 16.8382 (0.9) 16.2067 (2.0) 16.0515 (2.0)17 19.4537 17.1062 (4.5) 17.1814 (-0.8) 17.0452 (2.0)17 19.4537 17.7329 (1.7) 17.1814 (2.0) 17.0452 (2.0)18 19.9601 17.7329 (2.9) 17.7707 (0.2) 17.9423 (2.0)18 19.9601 17.9749 (6.3) 17.9985 (4.0) 17.9999 (4.0)20 21.5584 20.4515 (1.8) 20.1151 (2.0) 20.0289 (2.0)20 21.5584 20.4515 (1.8) 20.1151 (2.0) 20.0289 (2.0)

page 42

Page 43: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Wrong proof?

λ(mn)h =

4h2

sin2(mh2 ) + sin2(nh

2 )− 2 sin2(mh2 ) sin2(nh

2 )

1− 23(sin2(mh

2 ) + sin2(nh2 )) + 4

9 sin2(mh2 ) sin2(nh

2 )

Indeed, if h = π/N, we have:

limN→∞

λ(N−1,N−1)h = 18

page 43

Page 44: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

0

20

40 0

20

40

0

500

1000

1500

2000

nm

lam

bd

a(m

,n)

Plot for m = n0 10 20 30 40

0

1000

2000

3000

4000

ComputedExact

page 44

Page 45: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Pointwise vs. uniform convergence

0 10 20 30 40 50 600

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000N=2

exact

computed

page 45

Page 46: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Pointwise vs. uniform convergence

0 10 20 30 40 50 600

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000N=4

exact

computed

page 45

Page 47: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Pointwise vs. uniform convergence

0 10 20 30 40 50 600

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000N=6

exact

computed

page 45

Page 48: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Pointwise vs. uniform convergence

0 10 20 30 40 50 600

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000N=8

exact

computed

page 45

Page 49: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Pointwise vs. uniform convergence

0 10 20 30 40 50 600

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000N=10

exact

computed

page 45

Page 50: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Pointwise vs. uniform convergence

0 10 20 30 40 50 600

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000N=12

exact

computed

page 45

Page 51: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Pointwise vs. uniform convergence

0 10 20 30 40 50 600

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000N=14

exact

computed

page 45

Page 52: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Pointwise vs. uniform convergence

0 10 20 30 40 50 600

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000N=16

exact

computed

page 45

Page 53: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Pointwise vs. uniform convergence

0 10 20 30 40 50 600

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000N=18

exact

computed

page 45

Page 54: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Pointwise vs. uniform convergence

0 10 20 30 40 50 600

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000N=20

exact

computed

page 45

Page 55: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Pointwise vs. uniform convergence

0 10 20 30 40 50 600

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000N=22

exact

computed

page 45

Page 56: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Pointwise vs. uniform convergence

0 10 20 30 40 50 600

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000N=24

exact

computed

page 45

Page 57: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Pointwise vs. uniform convergence

0 10 20 30 40 50 600

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000N=26

exact

computed

page 45

Page 58: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Pointwise vs. uniform convergence

0 10 20 30 40 50 600

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000N=28

exact

computed

page 45

Page 59: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Pointwise vs. uniform convergence

0 10 20 30 40 50 600

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000N=30

exact

computed

page 45

Page 60: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Pointwise vs. uniform convergence

0 10 20 30 40 50 600

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000N=32

exact

computed

page 45

Page 61: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Pointwise vs. uniform convergence

0 10 20 30 40 50 600

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000N=34

exact

computed

page 45

Page 62: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Pointwise vs. uniform convergence

0 10 20 30 40 50 600

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000N=36

exact

computed

page 45

Page 63: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Pointwise vs. uniform convergence

0 10 20 30 40 50 600

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000N=38

exact

computed

page 45

Page 64: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Pointwise vs. uniform convergence

0 10 20 30 40 50 600

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000N=40

exact

computed

page 45

Page 65: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Pointwise vs. uniform convergence

0 10 20 30 40 50 600

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000N=42

exact

computed

page 45

Page 66: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Pointwise vs. uniform convergence

0 10 20 30 40 50 600

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000N=44

exact

computed

page 45

Page 67: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Pointwise vs. uniform convergence

0 10 20 30 40 50 600

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000N=46

exact

computed

page 45

Page 68: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Pointwise vs. uniform convergence

0 10 20 30 40 50 600

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000N=48

exact

computed

page 45

Page 69: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Pointwise vs. uniform convergence

0 10 20 30 40 50 600

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000N=50

exact

computed

page 45

Page 70: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Pointwise vs. uniform convergence

0 10 20 30 40 50 600

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000N=52

exact

computed

page 45

Page 71: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Pointwise vs. uniform convergence

0 10 20 30 40 50 600

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000N=54

exact

computed

page 45

Page 72: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Pointwise vs. uniform convergence

0 10 20 30 40 50 600

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000N=56

exact

computed

page 45

Page 73: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Pointwise vs. uniform convergence

0 10 20 30 40 50 600

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000N=58

exact

computed

page 45

Page 74: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Pointwise vs. uniform convergence

0 10 20 30 40 50 600

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000N=60

exact

computed

page 45

Page 75: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Raviart–Thomas element

Unstructured mesh

Computed (rate)

N = 4 N = 8 N = 16 N = 32 N = 642 2.0138 1.9989 (3.6) 1.9997 (1.7) 1.9999 (2.7) 2.0000 (2.8)5 4.8696 4.9920 (4.0) 5.0000 (8.0) 4.9999 (-2.1) 5.0000 (3.7)5 4.8868 4.9952 (4.5) 5.0006 (3.0) 5.0000 (5.8) 5.0000 (2.6)8 8.6905 7.9962 (7.5) 7.9974 (0.6) 7.9995 (2.5) 7.9999 (2.2)

10 9.7590 9.9725 (3.1) 9.9980 (3.8) 9.9992 (1.3) 9.9999 (3.2)10 11.4906 9.9911 (7.4) 10.0007 (3.7) 10.0005 (0.4) 10.0001 (2.4)13 11.9051 12.9250 (3.9) 12.9917 (3.2) 12.9998 (5.4) 12.9999 (1.8)13 12.7210 12.9631 (2.9) 12.9950 (2.9) 13.0000 (7.5) 13.0000 (1.1)17 13.5604 16.8450 (4.5) 16.9848 (3.4) 16.9992 (4.3) 16.9999 (2.5)17 14.1813 16.9659 (6.4) 16.9946 (2.7) 17.0009 (2.6) 17.0000 (5.5)# 32 142 576 2338 9400

page 46

Page 76: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Raviart–Thomas element (cont’ed)

Uniform mesh

Computed (rate)

N = 4 N = 8 N = 16 N = 32 N = 642 2.1048 2.0258 (2.0) 2.0064 (2.0) 2.0016 (2.0) 2.0004 (2.0)5 5.9158 5.2225 (2.0) 5.0549 (2.0) 5.0137 (2.0) 5.0034 (2.0)5 5.9158 5.2225 (2.0) 5.0549 (2.0) 5.0137 (2.0) 5.0034 (2.0)8 9.7268 8.4191 (2.0) 8.1033 (2.0) 8.0257 (2.0) 8.0064 (2.0)

10 13.8955 11.0932 (1.8) 10.2663 (2.0) 10.0660 (2.0) 10.0165 (2.0)10 13.8955 11.0932 (1.8) 10.2663 (2.0) 10.0660 (2.0) 10.0165 (2.0)13 17.7065 14.2898 (1.9) 13.3148 (2.0) 13.0781 (2.0) 13.0195 (2.0)13 17.7065 14.2898 (1.9) 13.3148 (2.0) 13.0781 (2.0) 13.0195 (2.0)17 20.5061 20.1606 (0.1) 17.8414 (1.9) 17.2075 (2.0) 17.0517 (2.0)17 20.5061 20.4666 (0.0) 17.8414 (2.0) 17.2075 (2.0) 17.0517 (2.0)# 16 64 256 1024 4096

page 47

Page 77: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Commuting diagram property (de Rham complex)〈Douglas–Roberts ’82〉

〈Bossavit ’88〉〈Arnold ’02〉

〈Arnold–Falk–Winther ’10〉

Q ⊂ H10, V ⊂ H0(curl), U ⊂ H0(div), S ⊂ L2/R

0→ Q ∇−→ V curl−−→ U div−−→ S → 0yΠQk

yΠVk

yΠUk

yΠSk

0→ Qk∇−→ Vk

curl−−→ Ukdiv−−→ Sk → 0

I Kikuchi formulation uses Q and VI Alternative formulation uses V and UI U and S are used for Darcy flow or mixed Laplacian

page 48

Page 78: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Lowest order finite elements

page 49

Page 79: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Some comments on adaptive schemes

I A posteriori error analysisI Convergence study for

adaptive schemes

page 50

Page 80: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Multiple eigenvalues: the square ring

λ2 λ3 = λ2

0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Question

What is the best adaptive strategy for the approximation of themultiple eigenvalue?

1. Indicator based on (λh,2, uh,2)

2. Indicator based on (λh,3, uh,3)

3. Indicator based on both (λh,2, uh,2) and (λh,3, uh,3) page 51

Page 81: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Refinement based on λh,3

〈B.–Durán–Gardini–Gastaldi 2015〉

Remark: here we are using a nonconforming discretizationwhich provides eigenvalue approximation from below

1 2 3 4 5 6 7 8 9 10 1177

78

79

80

81

82

83

84

85

λ3,h

λ2,h

page 52

Page 82: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Refinement based on λh,3 (eigenfunction uh,3)

0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

page 53

Page 83: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Refinement based on λh,2

1 2 3 4 5 6 7 8 977

78

79

80

81

82

83

84

85

λ3,h

λ2,h

page 54

Page 84: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Refinement based on λh,2 (eigenfunction uh,2)

0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

page 55

Page 85: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Refinement based on λh,2 and λh,3 (eigenvalues)

1 2 3 4 5 6 7 8 977

78

79

80

81

82

83

84

85

λ3,h

λ2,h

page 56

Page 86: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Refinement based on λh,2 and λh,3 (eigenfunction uh,2)

0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

page 57

Page 87: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Cluster of eigenvalues

〈Gallistl ’14〉

A slightly non-symmetric domain

Now λ2 < λ3 but they are very close to each other

page 58

Page 88: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Non-symmetric slit domain

page 59

Page 89: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

A slightly non-symmetric domain

A square ring for which the first four modes are the followingones (computed on an adapted mesh with 4,122,416 dof’s)

916.745 917.008

917.010 917.274

page 60

Page 90: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of first frequency

Initial mesh

At each refinement level we compute the first four eigenmodesand drive the adaptive strategy according to the error indicatorrelated to the first eigenmode

page 61

Page 91: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of first frequency

Bulk parameter=0.3, Refinement level=0 (initial mesh)

104

105

106

10−5

10−4

10−3

10−2

1st eig

2nd eig

3rd eig

4th eig

slope 1

page 62

Page 92: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of first frequency

Bulk parameter=0.3, Refinement level=1

104

105

106

10−5

10−4

10−3

10−2

1st eig

2nd eig

3rd eig

4th eig

slope 1

page 62

Page 93: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of first frequency

Bulk parameter=0.3, Refinement level=2

104

105

106

10−5

10−4

10−3

10−2

1st eig

2nd eig

3rd eig

4th eig

slope 1

page 62

Page 94: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of first frequency

Bulk parameter=0.3, Refinement level=3

104

105

106

10−5

10−4

10−3

10−2

1st eig

2nd eig

3rd eig

4th eig

slope 1

page 62

Page 95: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of first frequency

Bulk parameter=0.3, Refinement level=4

104

105

106

10−5

10−4

10−3

10−2

1st eig

2nd eig

3rd eig

4th eig

slope 1

page 62

Page 96: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of first frequency

Bulk parameter=0.3, Refinement level=5

104

105

106

10−5

10−4

10−3

10−2

1st eig

2nd eig

3rd eig

4th eig

slope 1

page 62

Page 97: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of first frequency

Bulk parameter=0.3, Refinement level=6

104

105

106

10−5

10−4

10−3

10−2

1st eig

2nd eig

3rd eig

4th eig

slope 1

page 62

Page 98: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of first frequency

Bulk parameter=0.3, Refinement level=7

104

105

106

10−5

10−4

10−3

10−2

1st eig

2nd eig

3rd eig

4th eig

slope 1

page 62

Page 99: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of first frequency

Bulk parameter=0.3, Refinement level=8

104

105

106

10−5

10−4

10−3

10−2

1st eig

2nd eig

3rd eig

4th eig

slope 1

page 62

Page 100: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of first frequency

Bulk parameter=0.3, Refinement level=9

104

105

106

10−5

10−4

10−3

10−2

1st eig

2nd eig

3rd eig

4th eig

slope 1

page 62

Page 101: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of first frequency

Bulk parameter=0.3, Refinement level=10

104

105

106

10−5

10−4

10−3

10−2

1st eig

2nd eig

3rd eig

4th eig

slope 1

page 62

Page 102: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of first frequency

Bulk parameter=0.3, Refinement level=11

104

105

106

10−5

10−4

10−3

10−2

1st eig

2nd eig

3rd eig

4th eig

slope 1

page 62

Page 103: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of first frequency

Bulk parameter=0.3, Refinement level=12

104

105

106

10−5

10−4

10−3

10−2

1st eig

2nd eig

3rd eig

4th eig

slope 1

page 62

Page 104: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of first frequency

Bulk parameter=0.3, Refinement level=13

104

105

106

10−5

10−4

10−3

10−2

1st eig

2nd eig

3rd eig

4th eig

slope 1

page 62

Page 105: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of first frequency

Bulk parameter=0.3, Refinement level=14

104

105

106

10−5

10−4

10−3

10−2

1st eig

2nd eig

3rd eig

4th eig

slope 1

page 62

Page 106: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of first frequency

Bulk parameter=0.3, Refinement level=15

104

105

106

10−5

10−4

10−3

10−2

1st eig

2nd eig

3rd eig

4th eig

slope 1

page 62

Page 107: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of first frequency

Bulk parameter=0.3, Refinement level=16

104

105

106

10−5

10−4

10−3

10−2

1st eig

2nd eig

3rd eig

4th eig

slope 1

page 62

Page 108: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of first frequency

Bulk parameter=0.3, Refinement level=17

104

105

106

10−5

10−4

10−3

10−2

1st eig

2nd eig

3rd eig

4th eig

slope 1

page 62

Page 109: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of first frequency

Bulk parameter=0.3, Refinement level=18

104

105

106

10−5

10−4

10−3

10−2

1st eig

2nd eig

3rd eig

4th eig

slope 1

page 62

Page 110: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of first frequency: underlying mesh

Initial mesh

page 63

Page 111: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of first frequency: underlying mesh

Refinement level=1

page 63

Page 112: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of first frequency: underlying mesh

Refinement level=2

page 63

Page 113: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of first frequency: underlying mesh

Refinement level=3

page 63

Page 114: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of first frequency: underlying mesh

Refinement level=4

page 63

Page 115: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of first frequency: underlying mesh

Refinement level=5

page 63

Page 116: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of first frequency: underlying mesh

Refinement level=6

page 63

Page 117: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of first frequency: underlying mesh

Refinement level=7

page 63

Page 118: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of first frequency: underlying mesh

Refinement level=8

page 63

Page 119: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of first frequency: underlying mesh

Refinement level=9

page 63

Page 120: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of first frequency: underlying mesh

Refinement level=10

page 63

Page 121: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of first frequency: underlying mesh

Refinement level=11

page 63

Page 122: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of first frequency: underlying mesh

Refinement level=12

page 63

Page 123: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of first frequency: underlying mesh

Refinement level=13

page 63

Page 124: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of first frequency: underlying mesh

Refinement level=14

page 63

Page 125: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of first frequency: underlying mesh

Refinement level=15

page 63

Page 126: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of first frequency: underlying mesh

Refinement level=16

page 63

Page 127: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of first frequency: underlying mesh

Refinement level=17

page 63

Page 128: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of first frequency: underlying mesh

Refinement level=18

page 63

Page 129: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of first frequency: underlying mesh

Detail of the last mesh

page 64

Page 130: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Changing the bulk parameter doesn’t help

104

106

10−4

10−2

bulk=0.1

1st eig

2nd eig

3rd eig

4th eig

slope 1

104

106

10−4

10−2

bulk=0.3

1st eig

2nd eig

3rd eig

4th eig

slope 1

104

106

10−4

10−2

bulk=0.5

1st eig

2nd eig

3rd eig

4th eig

slope 1

104

106

10−4

10−2

bulk=0.7

1st eig

2nd eig

3rd eig

4th eig

slope 1

page 65

Page 131: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the second frequency

Bulk parameter=0.3, Refinement level=1

104

105

106

10−5

10−4

10−3

10−2

1st eig

2nd eig

3rd eig

4th eig

slope 1

page 66

Page 132: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the second frequency

Bulk parameter=0.3, Refinement level=2

104

105

106

10−5

10−4

10−3

10−2

1st eig

2nd eig

3rd eig

4th eig

slope 1

page 66

Page 133: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the second frequency

Bulk parameter=0.3, Refinement level=3

104

105

106

10−5

10−4

10−3

10−2

1st eig

2nd eig

3rd eig

4th eig

slope 1

page 66

Page 134: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the second frequency

Bulk parameter=0.3, Refinement level=4

104

105

106

10−5

10−4

10−3

10−2

1st eig

2nd eig

3rd eig

4th eig

slope 1

page 66

Page 135: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the second frequency

Bulk parameter=0.3, Refinement level=5

104

105

106

10−5

10−4

10−3

10−2

1st eig

2nd eig

3rd eig

4th eig

slope 1

page 66

Page 136: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the second frequency

Bulk parameter=0.3, Refinement level=6

104

105

106

10−5

10−4

10−3

10−2

1st eig

2nd eig

3rd eig

4th eig

slope 1

page 66

Page 137: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the second frequency

Bulk parameter=0.3, Refinement level=7

104

105

106

10−5

10−4

10−3

10−2

1st eig

2nd eig

3rd eig

4th eig

slope 1

page 66

Page 138: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the second frequency

Bulk parameter=0.3, Refinement level=8

104

105

106

10−5

10−4

10−3

10−2

1st eig

2nd eig

3rd eig

4th eig

slope 1

page 66

Page 139: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the second frequency

Bulk parameter=0.3, Refinement level=9

104

105

106

10−5

10−4

10−3

10−2

1st eig

2nd eig

3rd eig

4th eig

slope 1

page 66

Page 140: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the second frequency

Bulk parameter=0.3, Refinement level=10

104

105

106

10−5

10−4

10−3

10−2

1st eig

2nd eig

3rd eig

4th eig

slope 1

page 66

Page 141: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the second frequency

Bulk parameter=0.3, Refinement level=11

104

105

106

10−5

10−4

10−3

10−2

1st eig

2nd eig

3rd eig

4th eig

slope 1

page 66

Page 142: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the second frequency

Bulk parameter=0.3, Refinement level=12

104

105

106

10−5

10−4

10−3

10−2

1st eig

2nd eig

3rd eig

4th eig

slope 1

page 66

Page 143: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the second frequency

Bulk parameter=0.3, Refinement level=13

104

105

106

10−5

10−4

10−3

10−2

1st eig

2nd eig

3rd eig

4th eig

slope 1

page 66

Page 144: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the second frequency

Bulk parameter=0.3, Refinement level=14

104

105

106

10−5

10−4

10−3

10−2

1st eig

2nd eig

3rd eig

4th eig

slope 1

page 66

Page 145: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the second frequency

Bulk parameter=0.3, Refinement level=15

104

105

106

10−5

10−4

10−3

10−2

1st eig

2nd eig

3rd eig

4th eig

slope 1

page 66

Page 146: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the second frequency

Bulk parameter=0.3, Refinement level=16

104

105

106

10−5

10−4

10−3

10−2

1st eig

2nd eig

3rd eig

4th eig

slope 1

page 66

Page 147: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the second frequency

Bulk parameter=0.3, Refinement level=17

104

105

106

10−5

10−4

10−3

10−2

1st eig

2nd eig

3rd eig

4th eig

slope 1

page 66

Page 148: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the second frequency

Bulk parameter=0.3, Refinement level=18

104

105

106

10−5

10−4

10−3

10−2

1st eig

2nd eig

3rd eig

4th eig

slope 1

page 66

Page 149: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the second frequency

Bulk parameter=0.3, Refinement level=19

104

105

106

10−5

10−4

10−3

10−2

1st eig

2nd eig

3rd eig

4th eig

slope 1

page 66

Page 150: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the second frequency

Bulk parameter=0.3, Refinement level=20

104

105

106

10−5

10−4

10−3

10−2

1st eig

2nd eig

3rd eig

4th eig

slope 1

page 66

Page 151: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the second frequency

Bulk parameter=0.3, Refinement level=21

104

105

106

10−5

10−4

10−3

10−2

1st eig

2nd eig

3rd eig

4th eig

slope 1

page 66

Page 152: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the second frequency

Bulk parameter=0.3, Refinement level=22

104

105

106

10−5

10−4

10−3

10−2

1st eig

2nd eig

3rd eig

4th eig

slope 1

page 66

Page 153: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the second frequency

Bulk parameter=0.3, Refinement level=23

104

105

106

10−5

10−4

10−3

10−2

1st eig

2nd eig

3rd eig

4th eig

slope 1

page 66

Page 154: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the second frequency

Bulk parameter=0.3, Refinement level=24

104

105

106

10−5

10−4

10−3

10−2

1st eig

2nd eig

3rd eig

4th eig

slope 1

page 66

Page 155: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the third frequency

Bulk parameter=0.3, Refinement level=1

104

105

106

10−5

10−4

10−3

10−2

1st eig

2nd eig

3rd eig

4th eig

slope 1

page 67

Page 156: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the third frequency

Bulk parameter=0.3, Refinement level=2

104

105

106

10−5

10−4

10−3

10−2

1st eig

2nd eig

3rd eig

4th eig

slope 1

page 67

Page 157: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the third frequency

Bulk parameter=0.3, Refinement level=3

104

105

106

10−5

10−4

10−3

10−2

1st eig

2nd eig

3rd eig

4th eig

slope 1

page 67

Page 158: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the third frequency

Bulk parameter=0.3, Refinement level=4

104

105

106

10−5

10−4

10−3

10−2

1st eig

2nd eig

3rd eig

4th eig

slope 1

page 67

Page 159: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the third frequency

Bulk parameter=0.3, Refinement level=5

104

105

106

10−5

10−4

10−3

10−2

1st eig

2nd eig

3rd eig

4th eig

slope 1

page 67

Page 160: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the third frequency

Bulk parameter=0.3, Refinement level=6

104

105

106

10−5

10−4

10−3

10−2

1st eig

2nd eig

3rd eig

4th eig

slope 1

page 67

Page 161: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the third frequency

Bulk parameter=0.3, Refinement level=7

104

105

106

10−5

10−4

10−3

10−2

1st eig

2nd eig

3rd eig

4th eig

slope 1

page 67

Page 162: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the third frequency

Bulk parameter=0.3, Refinement level=8

104

105

106

10−5

10−4

10−3

10−2

1st eig

2nd eig

3rd eig

4th eig

slope 1

page 67

Page 163: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the third frequency

Bulk parameter=0.3, Refinement level=9

104

105

106

10−5

10−4

10−3

10−2

1st eig

2nd eig

3rd eig

4th eig

slope 1

page 67

Page 164: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the third frequency

Bulk parameter=0.3, Refinement level=10

104

105

106

10−5

10−4

10−3

10−2

1st eig

2nd eig

3rd eig

4th eig

slope 1

page 67

Page 165: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the third frequency

Bulk parameter=0.3, Refinement level=11

104

105

106

10−5

10−4

10−3

10−2

1st eig

2nd eig

3rd eig

4th eig

slope 1

page 67

Page 166: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the third frequency

Bulk parameter=0.3, Refinement level=12

104

105

106

10−5

10−4

10−3

10−2

1st eig

2nd eig

3rd eig

4th eig

slope 1

page 67

Page 167: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the third frequency

Bulk parameter=0.3, Refinement level=13

104

105

106

10−5

10−4

10−3

10−2

1st eig

2nd eig

3rd eig

4th eig

slope 1

page 67

Page 168: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the third frequency

Bulk parameter=0.3, Refinement level=14

104

105

106

10−5

10−4

10−3

10−2

1st eig

2nd eig

3rd eig

4th eig

slope 1

page 67

Page 169: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the third frequency

Bulk parameter=0.3, Refinement level=15

104

105

106

10−5

10−4

10−3

10−2

1st eig

2nd eig

3rd eig

4th eig

slope 1

page 67

Page 170: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the third frequency

Bulk parameter=0.3, Refinement level=16

104

105

106

10−5

10−4

10−3

10−2

1st eig

2nd eig

3rd eig

4th eig

slope 1

page 67

Page 171: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the third frequency

Bulk parameter=0.3, Refinement level=17

104

105

106

10−5

10−4

10−3

10−2

1st eig

2nd eig

3rd eig

4th eig

slope 1

page 67

Page 172: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the third frequency

Bulk parameter=0.3, Refinement level=18

104

105

106

10−5

10−4

10−3

10−2

1st eig

2nd eig

3rd eig

4th eig

slope 1

page 67

Page 173: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the third frequency

Bulk parameter=0.3, Refinement level=19

104

105

106

10−5

10−4

10−3

10−2

1st eig

2nd eig

3rd eig

4th eig

slope 1

page 67

Page 174: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the third frequency

Bulk parameter=0.3, Refinement level=20

104

105

106

10−5

10−4

10−3

10−2

1st eig

2nd eig

3rd eig

4th eig

slope 1

page 67

Page 175: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the third frequency

Bulk parameter=0.3, Refinement level=21

104

105

106

10−5

10−4

10−3

10−2

1st eig

2nd eig

3rd eig

4th eig

slope 1

page 67

Page 176: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the third frequency

Bulk parameter=0.3, Refinement level=22

104

105

106

10−5

10−4

10−3

10−2

1st eig

2nd eig

3rd eig

4th eig

slope 1

page 67

Page 177: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the third frequency

Bulk parameter=0.3, Refinement level=23

104

105

106

10−5

10−4

10−3

10−2

1st eig

2nd eig

3rd eig

4th eig

slope 1

page 67

Page 178: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the fourth frequency

Bulk parameter=0.3, Refinement level=1

104

105

106

10−5

10−4

10−3

10−2

1st eig

2nd eig

3rd eig

4th eig

slope 1

page 68

Page 179: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the fourth frequency

Bulk parameter=0.3, Refinement level=2

104

105

106

10−5

10−4

10−3

10−2

1st eig

2nd eig

3rd eig

4th eig

slope 1

page 68

Page 180: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the fourth frequency

Bulk parameter=0.3, Refinement level=3

104

105

106

10−5

10−4

10−3

10−2

1st eig

2nd eig

3rd eig

4th eig

slope 1

page 68

Page 181: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the fourth frequency

Bulk parameter=0.3, Refinement level=4

104

105

106

10−5

10−4

10−3

10−2

1st eig

2nd eig

3rd eig

4th eig

slope 1

page 68

Page 182: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the fourth frequency

Bulk parameter=0.3, Refinement level=5

104

105

106

10−5

10−4

10−3

10−2

1st eig

2nd eig

3rd eig

4th eig

slope 1

page 68

Page 183: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the fourth frequency

Bulk parameter=0.3, Refinement level=6

104

105

106

10−5

10−4

10−3

10−2

1st eig

2nd eig

3rd eig

4th eig

slope 1

page 68

Page 184: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the fourth frequency

Bulk parameter=0.3, Refinement level=7

104

105

106

10−5

10−4

10−3

10−2

1st eig

2nd eig

3rd eig

4th eig

slope 1

page 68

Page 185: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the fourth frequency

Bulk parameter=0.3, Refinement level=8

104

105

106

10−5

10−4

10−3

10−2

1st eig

2nd eig

3rd eig

4th eig

slope 1

page 68

Page 186: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the fourth frequency

Bulk parameter=0.3, Refinement level=9

104

105

106

10−5

10−4

10−3

10−2

1st eig

2nd eig

3rd eig

4th eig

slope 1

page 68

Page 187: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the fourth frequency

Bulk parameter=0.3, Refinement level=10

104

105

106

10−5

10−4

10−3

10−2

1st eig

2nd eig

3rd eig

4th eig

slope 1

page 68

Page 188: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the fourth frequency

Bulk parameter=0.3, Refinement level=11

104

105

106

10−5

10−4

10−3

10−2

1st eig

2nd eig

3rd eig

4th eig

slope 1

page 68

Page 189: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the fourth frequency

Bulk parameter=0.3, Refinement level=12

104

105

106

10−5

10−4

10−3

10−2

1st eig

2nd eig

3rd eig

4th eig

slope 1

page 68

Page 190: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the fourth frequency

Bulk parameter=0.3, Refinement level=13

104

105

106

10−5

10−4

10−3

10−2

1st eig

2nd eig

3rd eig

4th eig

slope 1

page 68

Page 191: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the fourth frequency

Bulk parameter=0.3, Refinement level=14

104

105

106

10−5

10−4

10−3

10−2

1st eig

2nd eig

3rd eig

4th eig

slope 1

page 68

Page 192: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the fourth frequency

Bulk parameter=0.3, Refinement level=15

104

105

106

10−5

10−4

10−3

10−2

1st eig

2nd eig

3rd eig

4th eig

slope 1

page 68

Page 193: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the fourth frequency

Bulk parameter=0.3, Refinement level=16

104

105

106

10−5

10−4

10−3

10−2

1st eig

2nd eig

3rd eig

4th eig

slope 1

page 68

Page 194: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the fourth frequency

Bulk parameter=0.3, Refinement level=17

104

105

106

10−5

10−4

10−3

10−2

1st eig

2nd eig

3rd eig

4th eig

slope 1

page 68

Page 195: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the fourth frequency

Bulk parameter=0.3, Refinement level=18

104

105

106

10−5

10−4

10−3

10−2

1st eig

2nd eig

3rd eig

4th eig

slope 1

page 68

Page 196: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the fourth frequency

Bulk parameter=0.3, Refinement level=19

104

105

106

10−5

10−4

10−3

10−2

1st eig

2nd eig

3rd eig

4th eig

slope 1

page 68

Page 197: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the fourth frequency

Bulk parameter=0.3, Refinement level=20

104

105

106

10−5

10−4

10−3

10−2

1st eig

2nd eig

3rd eig

4th eig

slope 1

page 68

Page 198: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the fourth frequency

Bulk parameter=0.3, Refinement level=21

104

105

106

10−5

10−4

10−3

10−2

1st eig

2nd eig

3rd eig

4th eig

slope 1

page 68

Page 199: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the fourth frequency

Bulk parameter=0.3, Refinement level=22

104

105

106

10−5

10−4

10−3

10−2

1st eig

2nd eig

3rd eig

4th eig

slope 1

page 68

Page 200: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the fourth frequency

Bulk parameter=0.3, Refinement level=23

104

105

106

10−5

10−4

10−3

10−2

1st eig

2nd eig

3rd eig

4th eig

slope 1

page 68

Page 201: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the fourth frequency

Bulk parameter=0.3, Refinement level=24

104

105

106

10−5

10−4

10−3

10−2

1st eig

2nd eig

3rd eig

4th eig

slope 1

page 68

Page 202: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

What is going on?

Let’s see the mesh sequence and the computed eigenfunctions,for instance, in the case of the third frequency

page 69

Page 203: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

What is going on?

Initial mesh

page 70

Page 204: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

What is going on?

Refinement level=1

page 70

Page 205: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

What is going on?

Refinement level=2

page 70

Page 206: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

What is going on?

Refinement level=3

page 70

Page 207: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

What is going on?

Refinement level=4

page 70

Page 208: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

What is going on?

Refinement level=5

page 70

Page 209: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

What is going on?

Refinement level=6

page 70

Page 210: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

What is going on?

Refinement level=7

page 70

Page 211: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

What is going on?

Refinement level=8

page 70

Page 212: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

What is going on?

Refinement level=9

page 70

Page 213: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

What is going on?

Refinement level=10

page 70

Page 214: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

What is going on?

Refinement level=11

page 70

Page 215: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

What is going on?

Refinement level=12

page 70

Page 216: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

What is going on?

Refinement level=13

page 70

Page 217: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

What is going on?

Refinement level=14

page 70

Page 218: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

What is going on?

Refinement level=15

page 70

Page 219: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the first four frequencies altogether

Bulk parameter=0.3, Refinement level=16

104

105

106

10−5

10−4

10−3

10−2

1st eig

2nd eig

3rd eig

4th eig

slope 1

page 71

Page 220: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Convergence rate vs. computational cost

104

105

106

10−5

10−4

10−3

10−2

104

105

106

10−5

10−4

10−3

10−2

1st eig

2nd eig

3rd eig

4th eig

slope 1

page 72

Page 221: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Influence of the bulk parameter

104

106

10−4

10−2

bulk=0.1

1st eig

2nd eig

3rd eig

4th eig

slope 1

104

106

10−4

10−2

bulk=0.3

1st eig

2nd eig

3rd eig

4th eig

slope 1

104

106

10−4

10−2

bulk=0.5

1st eig

2nd eig

3rd eig

4th eig

slope 1

104

106

10−4

10−2

bulk=0.7

1st eig

2nd eig

3rd eig

4th eig

slope 1

page 73

Page 222: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

A tricky example

Solve the Laplace eigenvalue problem on this domain

First four exact values: 9.636. . . , 9.638. . . , 15.17. . . , 15.18. . .(computed on an adaptively refined mesh with 8,913,989 dofs)

page 74

Page 223: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

The computational framework

All computations performed on my relatively olddesktop computer(2 Intel Xeon CPU’s @ 3.60GHz, 2 cores each, 16Gb RAM)

AFEM algorithm implemented within the deal.II library 〈Heltai〉

Tensor product meshFinite element space: continuous bilinear space Q1Solution of algebraic eigenvalue problem by SLEPchttp://slepc.upv.es using hypre multigrid solverSLEPc is built on top of PETSc for the parallelization

page 75

Page 224: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the second frequency

Initial mesh: 48 dofs

page 76

Page 225: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the second frequency

Refinement # 1: 72 dofs

page 76

Page 226: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the second frequency

Refinement # 2: 96 dofs

page 76

Page 227: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the second frequency

Refinement # 3: 151 dofs

page 76

Page 228: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the second frequency

Refinement # 4: 209 dofs

page 76

Page 229: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the second frequency

Refinement # 5: 356 dofs

page 76

Page 230: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the second frequency

Refinement # 6: 512 dofs

page 76

Page 231: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the second frequency

Refinement # 7: 822 dofs

page 76

Page 232: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the second frequency

Refinement # 8: 1,161 dofs

page 76

Page 233: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the second frequency

Refinement # 9: 2,014 dofs

page 76

Page 234: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the second frequency

Refinement # 10: 2,906 dofs

page 76

Page 235: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the second frequency

Refinement # 11: 5,255 dofs

page 76

Page 236: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the second frequency

Refinement # 12: 7,740 dofs

page 76

Page 237: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the second frequency

Refinement # 13: 13,701 dofs

page 76

Page 238: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the second frequency

Refinement # 14: 20,033 dofs

page 76

Page 239: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the second frequency

Refinement # 15: 35,787 dofs

page 76

Page 240: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the second frequency

Refinement # 16: 92,676 dofs

page 76

Page 241: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Better view

Refinement # 14: 20,033 dofs

page 77

Page 242: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Better view

Refinement # 15: 35,787 dofs

page 77

Page 243: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Better view

Refinement # 16: 92,676 dofs

page 77

Page 244: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Better view

Refinement # 17: 199,818 dofs

page 77

Page 245: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Better view

Refinement # 18: 485,503 dofs

page 77

Page 246: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Better view

Refinement # 19: 1,312,781 dofs

page 77

Page 247: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

How much does it cost?

page 78

Page 248: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Some comments on the parallel solver

Cycle Dofs Total CPU Time per cycle0 48 0,20 0,007%1 72 0,35 0,011%2 96 0,32 0,010%3 151 0,41 0,013%4 209 0,37 0,012%5 356 0,40 0,013%6 512 0,38 0,012%7 822 0,47 0,015%8 1,161 0,58 0,019%9 2,014 0,70 0,023%

10 2,906 0,92 0,030%11 5,255 1,07 0,034%12 7,740 1,66 0,053%13 13,701 2,67 0,086%14 20,033 3,87 0,125%15 35,787 6,51 0,210%16 92,676 16,00 0,516%17 199,818 36,20 1,166%18 485,503 85,40 2,752%19 1,312,781 239,00 7,701%20 3,558,963 686,00 22,104%21 8,913,989 2020,00 65,088%

Total 14,654,593 3103,48 100.000%page 79

Page 249: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

More detailed comments on the parallel solver

page 80

Page 250: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

AFEM for clusters of eigenvalues

Cluster of length Nλn+1, . . . , λn+NJ = n + 1, . . . ,n + N

Corresponding combination of eigenspaces

W = spanuj | j ∈ JWTh = Wh = spanuh,j | j ∈ J

How to implement the AFEM scheme

Consider contribution of all elements in W` simultaneously

θ∑j∈J

η`,j(T`)2 ≤∑j∈J

η`,j(M`)2

page 81

Page 251: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the second frequency (cluster of two)

Initial mesh: 48 dofs

page 82

Page 252: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the second frequency (cluster of two)

Refinement # 1: 99 dofs

page 82

Page 253: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the second frequency (cluster of two)

Refinement # 2: 221 dofs

page 82

Page 254: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the second frequency (cluster of two)

Refinement # 3: 543 dofs

page 82

Page 255: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the second frequency (cluster of two)

Refinement # 4: 1,295 dofs

page 82

Page 256: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the second frequency (cluster of two)

Refinement # 5: 3,141 dofs

page 82

Page 257: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the second frequency (cluster of two)

Refinement # 6: 8,324 dofs

page 82

Page 258: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the second frequency (cluster of two)

Refinement # 7: 21,419 dofs

page 82

Page 259: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the second frequency (cluster of two)

Refinement # 8: 52,783 dofs

page 82

Page 260: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the second frequency (cluster of two)

Refinement # 9: 143,641 dofs

page 82

Page 261: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the second frequency (cluster of two)

Refinement # 10: 384,389 dofs

page 82

Page 262: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the second frequency (cluster of two)

Refinement # 11: 949,442 dofs

page 82

Page 263: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Approximation of the second frequency (cluster of two)

Refinement # 12: 2,559,242 dofs

page 82

Page 264: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Cluster of two: underlying mesh

Initial mesh: 48 dofs

page 83

Page 265: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Cluster of two: underlying mesh

Refinement # 1: 99 dofs

page 83

Page 266: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Cluster of two: underlying mesh

Refinement # 2: 221 dofs

page 83

Page 267: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Cluster of two: underlying mesh

Refinement # 3: 543 dofs

page 83

Page 268: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Cluster of two: underlying mesh

Refinement # 4: 1,295 dofs

page 83

Page 269: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Cluster of two: underlying mesh

Refinement # 5: 3,141 dofs

page 83

Page 270: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Cluster of two: underlying mesh

Refinement # 6: 8,324 dofs

page 83

Page 271: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Some theoretical framework〈Babuška–Osborn ’91〉

〈B. ’00〉

Variationally posed eigenproblem (Laplace operator)

Abstract framework

H (= L2(Ω)) V (= H10(Ω)) ⊂ H

Hilbert spaces, V compactly embedded in H

a(u, v) (=∫

Ω ∇ u ·∇ v dx) V × V → Rbilinear, continuous, symmetric, coercive

b(u, v) (= (u, v)) H × H → Rbilinear, continuous, symmetric

Eigenvalue problem

Find λ ∈ R such that for some u ∈ V with u 6≡ 0 it holdsa(u, v) = λb(u, v) ∀v ∈ V

page 85

Page 272: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Rayleigh quotient

λ(1) ≤ λ(2) ≤ · · · ≤ λ(k) ≤ · · ·

a(u(m), u(n)) = b(u(m), u(n)) = 0 if m 6= n

λ(1) = minv∈V

a(v, v)

b(v, v)u(1) = arg min

v∈V

a(v, v)

b(v, v)

λ(k) = minv∈(

k−1⊕

i=1E(i)

)⊥ a(v, v)

b(v, v)u(k) = arg min

v∈(

k−1⊕

i=1E(i)

)⊥ a(v, v)

b(v, v)

page 86

Page 273: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Rayleigh quotient (discrete)

λ(1)h ≤ λ(2)

h ≤ · · · ≤ λ(k)h ≤ λ(N(h))

h

a(u(m)h , u(n)

h ) = b(u(m)h , u(n)

h ) = 0 if m 6= n

λ(1)h = min

v∈Vh

a(v, v)

b(v, v)u(1)

h = arg minv∈Vh

a(v, v)

b(v, v)

λ(k)h = min

v∈(

k−1⊕

i=1E(i)

h

)⊥ a(v, v)

b(v, v)u(k)

h = arg min

v∈(

k−1⊕

i=1E(i)

h

)⊥ a(v, v)

b(v, v)

⇒ λ(1) ≤ λ(1)h

page 87

Page 274: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Minmax characterization

The k-th eigenvalue λ(k) satisfies

λ(k) = minE∈V(k)

maxv∈E

a(v, v)

b(v, v)

V(k) set of all subspaces of V with dim(E) = k

Proof.

λ(k) ≥ min max : take E =k⊕

i=1E(i), so that v =

k∑i=1

αiu(i)

Then a(v, v)/b(v, v) ≤ λ(k) thanks to orthogonalities

λ(k) ≤ min max : minimum λ(k) attained for E =k⊕

i=1E(i) and the

choice v = u(k). Otherwise, there exists v ∈ E orthogonal to u(i)

for all i ≤ k and hence a(v, v)/b(v, v) ≥ λ(k)

page 88

Page 275: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Minmax characterization (continuous and discrete)

λ(k) = minE∈V(k)

maxv∈E

a(v, v)

b(v, v)

V(k) set of all subspaces of V with dim(E) = k

λ(k)h = min

Eh∈V(k)h

maxv∈Eh

a(v, v)

b(v, v)

V(k)h set of all subspaces of Vh with dim(E) = k

⇒ λ(k) ≤ λ(k)h ∀k

page 89

Page 276: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Laplace’s eigenvalues

We need the upper bound

λ(k)h ≤ λ(k) + ε(h)

with ε(h) tending to zero as h goes to zero

We are going to useEh = ΠhE(k)

in the minmax characterization of the discrete eigenvalues,where

E(k) =k⊕

i=1E(i)

and Πh : V → Vh denotes the elliptic projection

(∇(u−Πhu),∇ vh) = 0 ∀vh ∈ Vh

page 90

Page 277: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

We need to check that the dimension of Eh is equal to k

Take h small enough so that‖v−Πhv‖L2(Ω) ≤ 1

2‖v‖L2(Ω) ∀v ∈ E(k)

Then ‖Πhv‖L2(Ω) ≥ ‖v‖L2(Ω) − ‖v−Πhv‖L2(Ω) ∀v ∈ V impliesthat Πh is injective from E(k) to Eh

page 91

Page 278: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Taking Eh in the discrete minmax equation gives

λ(k)h ≤ max

w∈Eh

‖∇w‖2L2(Ω)

‖w‖2L2(Ω)

= maxv∈E(k)

‖∇(Πhv)‖2L2(Ω)

‖Πhv‖2L2(Ω)

≤ maxv∈E(k)

‖∇ v‖2L2(Ω)

‖Πhv‖2L2(Ω)

= maxv∈E(k)

‖∇ v‖2L2(Ω)

‖v‖2L2(Ω)

‖v‖2L2(Ω)

‖Πhv‖2L2(Ω)

≤ λ(k) maxv∈E(k)

‖v‖2L2(Ω)

‖Πhv‖2L2(Ω)

.

Take Ω convex (for simplicity). Then

‖v−Πhv‖L2(Ω) ≤ Ch2‖∆v‖L2(Ω) ≤ Cλ(k)h2‖v‖L2(Ω)

= C(k)h2‖v‖L2(Ω)

Hence‖Πhv‖L2(Ω) ≥ ‖v‖L2(Ω)(1− C(k)h2)

page 92

Page 279: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Eigenvalue estimate

Finally

λ(k)h ≤ λ(k)

(1

1− C(k)h2

)2

' λ(k)(1 + C(k)h2)2

' λ(k)(1 + 2C(k)h2)

In general

λ(k)h ≤ λ(k)

(1 + C(k) sup

v∈E(k)‖v‖=1

‖v−Πhv‖2H1(Ω)

)

page 93

Page 280: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Estimate for the eigenfunctions

Let’s start with a simple eigenvalue λ(k)

ρ(k)h = max

i6=k

λ(k)

|λ(k) − λ(i)h |,

w(k)h = (Πhu(k), u(k)

h )u(k)h

‖u(k) − u(k)h ‖L2(Ω) ≤ ‖u(k) −Πhu(k)‖

+ ‖Πhu(k) − w(k)h ‖

+ ‖w(k)h − u(k)

h ‖

page 94

Page 281: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Second term

Πhu(k) − w(k)h =

∑i6=k

(Πhu(k), u(i)h )u(i)

h

‖Πhu(k) − w(k)h ‖

2 =∑i6=k

(Πhu(k), u(i)h )2

(Πhu(k), u(i)h ) =

1

λ(i)h

(∇(Πhu(k)),∇ u(i)h )

=1

λ(i)h

(∇ u(k),∇ u(i)h ) =

λ(k)

λ(i)h

(u(k), u(i)h )

λ(i)h (Πhu(k), u(i)

h ) = λ(k)(u(k), u(i)h )

page 95

Page 282: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

(λ(i)h − λ

(k))(Πhu(k), u(i)h ) = λ(k)(u(k) −Πhu(k), u(i)

h )

|(Πhu(k), u(i)h )| ≤ ρ(k)

h |(u(k) −Πhu(k), u(i)

h )|

‖Πhu(k) − w(k)h ‖

2 ≤(ρ

(k)h

)2∑i6=k

(u(k) −Πhu(k), u(i)h )2

≤(ρ

(k)h

)2‖u(k) −Πhu(k)‖2

page 96

Page 283: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Third term

We are going to show that

‖u(k)h − w(k)

h ‖ ≤ ‖u(k) − w(k)

h ‖

so that

‖u(k)h − w(k)

h ‖ ≤ ‖u(k) −Πhu(k)‖+ ‖Πhu(k) − w(k)

h ‖

u(k)h − w(k)

h = u(k)h (1− (Πhu(k), u(k)

h )).

‖u(k)‖ − ‖u(k) − w(k)h ‖ ≤ ‖w

(k)h ‖ ≤ ‖u

(k)‖+ ‖u(k) − w(k)h ‖

1− ‖u(k) − w(k)h ‖ ≤ |(Πhu(k), u(k)

h )| ≤ 1 + ‖u(k) − w(k)h ‖,∣∣∣|(Πhu(k), u(k)

h )| − 1∣∣∣ ≤ ‖u(k) − w(k)

h ‖

page 97

Page 284: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Simple eigenfunction estimate

Sign choice for u(k)h such that

(Πhu(k), u(k)h ) ≥ 0

Then∣∣∣|(Πhu(k), u(k)

h )| − 1∣∣∣ = ‖w(k)

h − u(k)h ‖

Final estimate

‖u(k) − u(k)h ‖L2(Ω) ≤ 2(1 + ρ

(k)h )‖u(k) −Πhu(k)‖L2(Ω)

page 98

Page 285: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Eigenfunction estimate in H1

C‖u(k) − u(k)h ‖

2H1(Ω) ≤ ‖∇(u(k) − u(k)

h )‖2L2(Ω)

= ‖∇ u(k)‖2 − 2(∇ u(k),∇ u(k)h ) + ‖∇ u(k)

h ‖2

= λ(k) − 2λ(k)(u(k), u(k)h ) + λ

(k)h

= λ(k) − 2λ(k)(u(k), u(k)h ) + λ(k) − (λ(k) − λ(k)

h )

= λ(k)‖u(k) − u(k)h ‖

2L2(Ω) − (λ(k) − λ(k)

h )

‖u(k) − u(k)h ‖H1(Ω) ≤ C(k) sup v∈E(k)

‖v‖=1

‖v−Πhv‖H1(Ω)

page 99

Page 286: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Multiple eigenfunctions

λ(k) = λ(k+1)

λ(i) 6= λ(k) for i 6= k, k + 1ρ

(k)h = max

i6=k,k+1

λ(k)

|λ(k) − λ(i)h |,

w(k)h = αhu(k)

h + βhu(k+1)h

αh = (Πhu(k), u(k)h ), βh = (Πhu(k), u(k+1)

h )

‖u(k) − w(k)h ‖L2(Ω) ≤ (1 + ρ

(k)h )‖u(k) −Πhu(k)‖L2(Ω)

‖u(k) − w(k)h ‖H1(Ω) ≤ C(k) sup

v∈V(k+1)‖v‖=1

‖v−Πhv‖H1(Ω)

page 100

Page 287: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Standard Laplace eigenvalue problem

Strong form

−∆u = λu in Ωu = 0 on ∂Ω

Weak form

λ ∈ R, u ∈ V, u 6≡ 0:a(u, v) = λb(u, v) ∀v ∈ V

Solution operator

T : H → H, T(H) ⊂ V implies T is compacta(Tf , v) = b(f , v) ∀v ∈ V

λ1 ≤ λ2 ≤ · · · ≤ λi ≤ · · ·Ei = span(ui), normalization b(ui, ui) = 1

V =∞⊕

i=1Ei

page 102

Page 288: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Galerkin approximation

Discrete problem

Vh ⊂ V, dim Vh = N(h)

Find λh ∈ R such that for some uh ∈ Vh with uh 6≡ 0 it holdsa(uh, v) = λhb(uh, v) ∀v ∈ Vh

Discrete (compact) solution operator

Th : H → Ha(Thf , v) = b(f , v) ∀v ∈ Vh

λ1,h ≤ λ2,h ≤ · · · ≤ λi,h ≤ · · · ≤ λN(h),hEi,h = span(ui,h), normalization b(ui,h, ui,h) = 1

Vh =N(h)⊕

i=1Ei,h

page 103

Page 289: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Definition of convergence

Absence of spurious modes

For any compact set K ⊂ ρ(T) there exists h0 > 0 such that forall h < h0 it holds K ⊂ ρ(Th)

Convergence

If µ is a nonzero eigenvalue of T with algebraic multiplicityequal to m, then there are exactly m eigenvaluesµ1,h, µ2,h, . . . , µm,h of Th, repeated according to their algebraicmultiplicities, such that µi,h → µ for all iMoreover, the gap between the direct sum of the generalizedeigenspaces associated with µ1,h, µ2,h, . . . , µm,h and thegeneralized eigenspace associated with µ tends to zero

Gap

δ(E, F) = max(δ(E, F), δ(F, E)), where E, F subspaces of Hδ(E, F) = sup

u∈E, ||u||H=1infv∈F||u− v||H

page 104

Page 290: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Uniform convergence

Convergence in norm

||T − Th||L(H,H) → 0

Theorem

If T is selfadjoint and compact

Uniform convergence ⇐⇒ Eigenmodes convergence

Strategy

1) prove uniform convergence,2) estimate the order of convergence

page 105

Page 291: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Galerkin approximation of compact operators

〈Bramble–Osborn ’73〉〈Osborn ’75〉〈Kolata ’78〉

Céa’s Lemma

Th = PhT, with Ph projection w.r.t. bilinear form a

T − Th = (I − Ph)T

Consequence of a(Tf − Thf , vh) = 0 ∀vh ∈ Vh

If I − Ph converges to zero pointwise and T is compact, thenT − Th converges to zero uniformly (consequence ofBanach–Steinhaus uniform boundedness principle)

page 106

Page 292: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Crucial proof

First we show that ‖I − Ph‖L(V,H) is bounded

Define c(h, u) by ‖(I − Ph)u‖H = c(h, u)‖u‖VFor each u we have c(h, u)→ 0 (pointwise convergence)

M(u) = maxh c(h, u) <∞ implies ‖I − Ph‖L(V,H) ≤ C uniformly

Take fh s.t. ‖fh‖H = 1 and ‖T − Th‖L(H) = ‖(T − Th)fh‖HExtract subsequence with Tfh → w in V

‖(I − Ph)Tfh‖H ≤ ‖(I − Ph)(Tfh − w)‖H + ‖(I − Ph)w‖H≤ C‖Tfh − w‖V + ‖(I − Ph)w‖H ≤ ε

Comment on the norms

1. T : H → V compact + p/w convergence V → H L(H)

2. T : V → V compact + p/w convergence V → V L(V)

page 107

Page 293: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Standard Galerkin formulation are OK for eigenvalues

Important conclusion

Standard Galerkin formulation: all finite element schemesproviding good approximation to the source problem can besuccessfully applied to the corresponding eigenvalue problem

Is the same true for eigenvalue problems in mixed form?

page 108

Page 294: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Laplace eigenproblem in mixed form〈Mercier–Osborn–Rappaz–Raviart ’81〉

〈B.–Brezzi–Gastaldi ’97-’00〉

Find λ ∈ R and u ∈ U with u 6≡ 0 such that for some σ ∈ Σ(σ, τ) + (div τ, u) = 0 ∀τ ∈ Σ σ = ∇ u(divσ, v) = −λ(u, v) ∀v ∈ U divσ = −λu

Matrix form (Σh ⊂ Σ, Uh ⊂ U)[A B>

B 0

] [xy

]= −λ

[0 00 MU

] [xy

]

Similarly, one could deal with problems of the type[A B>

B 0

] [xy

]= λ

[MΣ 00 0

] [xy

]page 110

Page 295: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Definition of the solution operator

Source problem(σ, τ) + (div τ, u) = 0 ∀τ ∈ Σ σ = ∇ u(divσ, v) = −(g, v) ∀v ∈ U −divσ = g

A first natural (but wrong) definition

T1 : U → Σ× U, T1(g) = (σ, u)

One would like to compute eigenvalues. . .

T2 : (Σ× U)′ → Σ× UT2(f , g) = (σ, u) with

(σ, τ) + (div τ, u) = 〈f , v〉 ∀τ ∈ Σ

(divσ, v) = −(g, v) ∀v ∈ U

TΣU(f , g)

cutoff7−→ (0, g)T27−→ (σ, u)

L2 × L2 −→ L2 × L2 is compact

page 111

Page 296: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Uniform convergence?

Let’s try to follow Kolata’s argument

TΣU − TΣU,h = (I − Qh)TΣU

3 ||(I − Qh)(σ, u)||Σ×U → 0 for all (σ, u) ∈ Σ× U

7 TΣU : L2 × L2 → Σ× U is not compact

7 TΣU : Σ× U → Σ× U is not compact either

Standard mixed estimates don’t help

||σ − σh||Σ + ||u− uh||U ≤ C infτh,vh

(||σ − τh||ΣO(1)

+ ||u− vh||UO(h)

)

infτh ‖σ − τh‖H(div) ≤ Chs(‖σ‖Hs + ‖divσ‖Hs)

page 112

Page 297: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Better definition of the solution operator〈B.–Brezzi–Gastaldi ’97〉

TU : U → U

σ ∈ Σ, TUg ∈ U such that(σ, τ) + (div τ,TUg) = 0 ∀τ ∈ Σ(divσ, v) = −(g, v) ∀v ∈ U

Operator is now compact, but standard mixed estimates don’thelp again

||σ − σh||Σ + ||u− uh||U ≤ C infτh,vh

(||σ − τh||ΣO(1)

+ ||u− vh||UO(h)

)

Fundamental comment

We need an estimate for uh which does not involve divσ

page 113

Page 298: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Uniform convergence ||TU − TU,h|| → 0

I Ellipticity in the kernel

||τh||2L2 ≥ α||τh||2Σfor all τh ∈ Σh s.t. (div τh, v) = 0, ∀v ∈ Uh

I Fortin operator Πh : Σ+ → Σh s.t.

(div(σ −Πhσ), v) = 0 ∀v ∈ Uh||Πhσ||Σ ≤ C||σ||Σ+

Theorem

||σ − σh||L2 ≤ C(||σ −Πhσ||L2 + (1/

√α) inf

vh∈Uh||u− vh||U

)||u− uh||U ≤ C

(inf

vh∈Uh||u− vh||U + ||σ − σh||L2

)page 114

Page 299: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Proof

P = L2-projection onto Uh

||Πhσ − σh||2L2 = (Πhσ − σ,Πhσ − σh) + (σ − σh,Πhσ − σh)

= (Πhσ − σ,Πhσ − σh)− (div(Πhσ − σh), u− Pu)

≤ ||Πhσ − σ||L2 ||Πhσ − σh||L2 + ||div(Πhσ − σh)||L2 ||u− Pu||U≤ ||Πhσ − σh||L2

(||Πhσ − σ||L2 + (1/

√α)||u− Pu||U

)||Pu− uh||U ≤ C sup

τh

(Pu− uh,div τh)

||τh||Σ

≤ C supτh

(Pu− u,div τh) + (u− uh,div τh)

||τh||Σ

≤ C(||Pu− u||U + sup

τh

−(σ − σh, τh)

||τh||Σ

)≤ C (||Pu− u||U + ||σ − σh||L2)

page 115

Page 300: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Fortid condition

Definition

The spaces Σh, Uh satisfy the Fortid condition if there exists aFortin operator which converges strongly to the identityoperator, namely

Πh : Σ+ → Σh s.t.

(div(σ −Πhσ), v) = 0 ∀v ∈ Uh||Πhσ||Σ ≤ C||σ||Σ+

||I −Πh||L(Σ+,L2) → 0

page 116

Page 301: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Final convergence result

Theorem

Assume ellipticity in the kernel and Fortid conditionFor any N ∈ N define ρN(h) :]0,1]→ R as

ρN(h) = sup

u∈m(N)⊕

i=1Ei

(infvh||u− vh||U + ||∇ u−Πh ∇ u||L2

)

Then ||TU − TU,h||L(U,U) → 0 and the following estimates hold true

m(N)∑i=1

|λi − λi,h| ≤ C(ρN(h))2

δ(m(N)⊕

i=1Ei,

m(N)⊕

i=1Ei,h

)≤ CρN(h)

page 117

Page 302: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Back to the criss-cross (counter)-example

Crisscross meshΣh = continuous p/w linears (componentwise)Uh = div Σh ⊂ p/w constants

Theorem

With the above choice of spaces, there exists a sequence gh ⊂ Uwith ‖gh‖0 = 1 s.t.

||u− uh||U 6→ 0

that is ‖TU − TU,h‖L(U,U) 6→ 0

Proof.

Estimate by Qin ’94 based on idea of Johnson–Pitkäranta ’82

page 118

Page 303: Finite element approximation of eigenvalue problems

References Some computations Simple theory Babuška–Osborn theory Theory for mixed problems

Raviart–Thomas scheme

General mesh (triangles, parallelograms, tetrahedrons,parallelepipeds)

Σh : Raviart–Thomas space of order kUh : Pk−1 or tensor product polynomials Qk−1

Fortid

The interpolant is a Fortin operator

See also Falk–Osborn ’80

Convergence: O(h2k) eigenvalues, O(hk) eigenfunctions

page 119