first report propeller design fyp 2003

Upload: ahsan-mansoor-khan

Post on 09-Apr-2018

229 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/8/2019 First Report Propeller Design FYP 2003

    1/20

    Group

    AhsanMansoorKhan

    MunawarHussainJeelani

    GroupSupervisor

    Dr.AnwarulHaq

    Mr.SherAfgan

    PropellerdesignforveryhighaltitudeandlowReynoldsnumber

  • 8/8/2019 First Report Propeller Design FYP 2003

    2/20

    ProjectDescription

    Thepurposeofthisprojectistodesignapropellerthatisabletoproviderequiredamountofthrustfor

    theaircrafttoliftitfromsealevelandclimbtoreachathighaltitudeforsustainedflightat70,000ft.

    Propeller

    Apropellerisameansofconvertingenginepowerintoapropulsiveforce.

    Rotatingapropellerresults intherearwardaccelerationofamassofair,thereactiontothis

    rearwardmotionisaforwardforceonthepropellerbladescalledthrust.

    Thrust=MassofairflowxAcceleration

    Thepropelleracceleratesa largemassofairrearwardatarelatively lowvelocity.Thereaction to this isa thrust forceacting ina forwarddirection,propellinganaircraftalong its

    flightpath.Whenapropellerisfittedinfrontofanengine,itisatractor,whereaswhenfitted

    attherearitisapusher.

    Propellerefficiency

    Propellerefficiencyistheratioofthrusthorsepower(THP),whichisdeliveredbythepropeller,

    totheenginepower(BHP)requiredtodrivethepropelleratagivenrpm,expressedasa

    percentage.

    PROPELLEREFFICIENCY= THP/BHP

    Anotherdefinitionistheratioofusefulworkdonebythepropellerinmovingan

    aircraft,totheworksuppliedbytheengine.

    Theworkdonebythepropelleristheproductofthethrustandforwardspeed(TAS).

    Theworksuppliedbytheengineisthetorquerequiredtoturnthepropelleratagivenrpm.

    PROPELLEREFFICIENCY=(THRUST*V)/P

    V=Trueairspeed

    P=Powerprovidedbytheengine

  • 8/8/2019 First Report Propeller Design FYP 2003

    3/20

    Whentheaircraftisstationaryonthegroundwiththeenginerunning,thepropelleris0%

    effective,since,althoughitmaybedevelopingalotofthrust,itisnotdoinganywork.

    Astheforwardspeedoftheaircraftincreases,theefficiencyincreases.

    Ingeneraltrendsefficiencylevelof88%uponachievingtheoptimumairspeedforthatpropellercanbeexpected.

    Propellertypes

    Fixedpitchpropeller

    Fora fixedbladeangle,withvariations in forwardspeed theangleofattackchanges.As the

    forwardspeedincreases,theangleofattackdecreasesandwithitthethrust.

    ThedisadvantagesoffixedpitchpropellerarethattheFixedpitchpropellers,likemost

    airfoils,aremostefficientonlyunderonesetofconditionsi.e.cruise.Butuntilreachingcruising

    airspeed,theAOAofthepropellerbladesiscomparativelylarge;thereforethepropellerisless

    efficient.Duringtakeoff,theAOAofthebladesofsuchapropellerwouldbeextremelylarge.

    Thiswouldresultinpooracceleration,hencerequiringalongertakeoffrun.

    For furtherunderstandingconsiderwhena fixedpitchpropeller isoptimised for takeoffand

    climbperformance,thecruisespeediscompromised,sincethebladesAOAwouldbetoolow

    formaximumefficiencyathigherspeeds.

    Variablepitchpropeller

    Duetothedisadvantagesoffixedpitchpropeller,variablepitchpropellerismost

    suitabletouseasshowninfigurebelowwhichshowsgeneraltrendseeninpropeller

    performanceforvaryingpitchangles.

  • 8/8/2019 First Report Propeller Design FYP 2003

    4/20

    CounterRotatingPropellers

    AirbusA400M

    ContraRotatingPropellers

  • 8/8/2019 First Report Propeller Design FYP 2003

    5/20

    DualPropellerApproach

    VariableDiameterPropeller

    SikorskyAircraft

    Hartzell

    Condorpropller

  • 8/8/2019 First Report Propeller Design FYP 2003

    6/20

    ERAST

    Pathfinder

    PerseusB

  • 8/8/2019 First Report Propeller Design FYP 2003

    7/20

    HighAltitudeCharacteristic

    Airdensitydropsinhalfforevery15,000feetinaltitude lowairdensity,almostconstantairtemperature,thehorizontaldirectionmovement[1] Nothunderstormorclimatechange. Thesoundvelocitydecreaseswiththeincreaseofaltitude.

    Soatahighaltitude,theMachnumberofbladetipairfoilprofileislargerthantheoneatthesealevel

    andtheshockeffectincreasesatthesametime.

    Machnumberisdefinedas:

    M=V/a

    where

    V=speedofpropeller

    a=Speedofsound

    AsvalueofSpeedofsound(a)decreaseswithincreaseinaltitudeitcanbeseenfromtheequationthat

    MachnumberincreasesprovidedtheSpeedofpropeller(V)iskeptconstant.

    ReferenceAltitude:70,000ftaltitude

    Density =1.399*104Slug/ft3

    TemperatureT=389.990R

    At SeaLevel

    Density =2.37*103Slug/ft3

    TemperatureT=518.690R

    Comparingtheabovedataitisclearlyseenataltitudeof70,000ftthedensityis17timeslessas

    comparedtosealevel.Asmentionedabove

    Thrust=MassofairflowxAcceleration

    Decreaseindensityathighaltitudewouldmeanlessmassflowavailableinturnthiswouldmeanless

    thrustavailable.

  • 8/8/2019 First Report Propeller Design FYP 2003

    8/20

    Themainproblemtodesignpropellerefficientenoughtoproduceeffectiveorrequiredamountof

    thrustatsuchvaryingconditionswhereitshouldbeabletolifttheaircraftfromsealevelandclimbto

    reachsuchhighaltitude.

    TypesofexistingPropellersforveryhighaltitude

    Highaltitudelongenduranceunmannedairplanes

    Tier,Helios,Pathfinder

    Reynoldsnumber

    TheReynoldsnumberrepresentstheratiooftheimportanceofinertialeffectsintheflowtoviscous

    effectsintheflow.

    Reynoldsnumberisdefinedas

    Re=UL/

    Where:

    U=characteristicvelocity

    L=characteristiclength

    =densityofthefluid

    =dynamicviscosity

    LowReynoldsnumber

    MainEffectsoflowReynoldsnumberareasfollows:

    Rapidlydescendingmaximumlifttodragratioofcommonairfoils AtmosphericdensitydecreasesandAirkinematicviscositycoefficientincreaseswiththe

    increaseofheightinturnbothfactorsdecreasetheReynoldsnumber.

    ThemainproblemassociatedwithlowReynoldsnumberistheAppearanceoflaminarflowseparation

    bubbleeveninsmallattackangles(seeFig.(a)below),whichbringstheslowlyincreasedliftcoefficient

    andtherapidlyincreaseddragcoefficient.

  • 8/8/2019 First Report Propeller Design FYP 2003

    9/20

    Alongwiththeincreaseofattackangle,liftcoefficienteventdoesnotchangeanymorebutthedrag

    coefficientstillincreasesrapidlywhichmakestheairfoilmaximumlifttodragratiodroprapidly.

    a)AirfoilboundarylayerinlowMach

    b)AirfoilboundarylayerinhighMach

    Fig.boundarylayerschematicdiagramontheuppersurfaceoflowReynoldsnumberairfoil

    [1]

    Formoreclearunderstandingthefollowingexampleshowstheflowpatternsthatarecausedbythe

    flowaroundacylinderforvaryingReynoldsnumber.

  • 8/8/2019 First Report Propeller Design FYP 2003

    10/20

  • 8/8/2019 First Report Propeller Design FYP 2003

    11/20

    Thickness: 9.1%

    Camber: 3.8%

    Trailingedgeangle: 7.1o

    Lowerflatness: 94.9%

    Leadingedgeradius: 1.8%

    MaxCL: 1.143

    MaxCLangle: 7.0

    MaxL/D: 58.18

    MaxL/Dangle: 5.0

    MaxL/DCL: 0.955

    Stallangle: 7.0

    Zeroliftangle: 3.5

    E174(Dicke8.92%)

  • 8/8/2019 First Report Propeller Design FYP 2003

    12/20

    Thickness: 8.9%

    Camber: 3.8%

    Trailingedgeangle: 4.6o

    Lowerflatness: 95.0%

    Leadingedgeradius: 1.8%

    MaxCL: 1.15

    MaxCLangle: 7.0

    MaxL/D: 58.383

    MaxL/Dangle: 5.0

    MaxL/DCL: 0.961

    Stallangle: 7.0

    Zeroliftangle: 3.5

    S9037(9%)

    Thickness: 9.0%

    Camber: 3.5%

    Trailingedgeangle: 5.9o

    Lowerflatness: 92.6%

    Leadingedgeradius: 0.9%

    MaxCL: 1.246

    MaxCLangle: 8.5

    MaxL/D: 55.999

    MaxL/Dangle: 4.5

  • 8/8/2019 First Report Propeller Design FYP 2003

    13/20

    MaxL/DCL: 0.92

    Stallangle: 8.5

    Zeroliftangle: 3.5

    SD6080(9.2%)

    Thickness: 9.2%

    Camber: 3.7%

    Trailingedgeangle: 7.0o

    Lowerflatness: 94.5%

    Leadingedgeradius: 1.9%

    MaxCL: 1.196

    MaxCLangle: 8.0

    MaxL/D: 57.556

    MaxL/Dangle: 5.0

    MaxL/DCL: 0.948

    Stallangle: 8.0

    Zeroliftangle: 3.0

  • 8/8/2019 First Report Propeller Design FYP 2003

    14/20

    SD2083(9.0%)

    Thickness: 9.0%

    Camber: 2.8%Trailingedgeangle: 9.8o

    Lowerflatness: 92.0%

    Leadingedgeradius: 1.7%

    MaxCL: 1.071

    MaxCLangle: 7.5

    MaxL/D: 54.066

    MaxL/Dangle: 4.5

    MaxL/DCL: 0.795

    Stallangle: 7.5

    Zeroliftangle: 2.5

  • 8/8/2019 First Report Propeller Design FYP 2003

    15/20

    S1210

    Thickness: 12.0%

    Camber: 7.2%Trailingedgeangle: 6.9o

    Lowerflatness: 34.2%

    Leadingedgeradius: 2.1%

    MaxCL: 2.248

    MaxCLangle: 9.0

    MaxL/D: 73.283

    MaxL/Dangle: 6.0

    MaxL/DCL: 1.961

    Stallangle: 9.0

    Zeroliftangle: 10.5

  • 8/8/2019 First Report Propeller Design FYP 2003

    16/20

    PropellerNomenclature

    Fig.Constantspeedpropellerbladepositions

    Feathered:Whenthechordlineofthebladeisparalleltotheairflow,therebypreventingwind

    milling.

    CoarsePitch:themaximumcruisingpitchinnormaloperation

    FlightFinePitch:Theminimumpitchobtainableinflight.

  • 8/8/2019 First Report Propeller Design FYP 2003

    17/20

    GroundFinePitch:theminimumtorquepositionforgroundoperationandissometimes

    referredtoassuperfinepitch.

    ReversePitch:Anangletowhichthepropellerblademaybeturnedtoprovidereversethrust

    fromthepropeller.

    PropellerDesign

    Differentparameterstoconsiderforthedesignarelistedasfollows:

    Airfoilselection Airfoilthickness AirfoilCdversusClcurve Bladetwist Bladediameter PropellerHubdiameter RPM

    BladeTwist

    Thefollowingdiagramillustratesdifferencebetweenconstantbladeangleandbladewithtwist.

    Asthepropellerforhighaltitudeapplicationbladewithtwististhelogicalchoicewhichgives

    optimumpropellerperformanceatallbladestationstiptoroot.

  • 8/8/2019 First Report Propeller Design FYP 2003

    18/20

    AdvanceRatio

    Itistheratiooftheforwardspeeddividedbytheproductofrotationalspeedandthediameter

    J=V/ND

    V=Freestreamvelocity

    N=numberofpropellerrevolutions/sec

    D=Propellerdiameter

    Startingpointforthedesign

    Asinitialestimateofpropellerperformancetheanalysisusingfollowinginputswouldbedoneusing

    simplebladeelementtheory.

    ShaftPoweroutoftheEngine(hp) PropellerRPM(z) FlightAltitude(70,000ft) ForwardVelocity(Vo) AverageLocalVelocity(V) PropellerDiameter(D) NumberofPropellerBlades(n) BladeActivityFactor(AF) BladeDesignLiftCoefficient(Cl) PropellerAirfoilLiftToDragRatio(L/D)

    Thismethodisbasedontheassumptionthat0.75rofbladelocationwhereristhechordof

    bladesectioncanbeassumedtorepresenttheperformanceoftheentireblade.

    ThisanalysisalsotakesintoaccounteffectsduetolowReynoldsnumberoperation.

    HowevertheabovementionedanalysisisinaccurateiftheaircraftneedstooperateathigherMach

    numberclosetoM=0.8howeverthisisefficientforlowersubsonicspeeds.

    ForreferenceofthismethodFormulasandmethodisinitiallyreferredfrom

    AircraftPropulsion:Scienceofmakingthrusttofly by BhaskarRoy HighAltitudePropellerDesignandAnalysisOverviewbyAnthonyColozza,FederalData

    SystemsClevelandOhio44135,March1998.

  • 8/8/2019 First Report Propeller Design FYP 2003

    19/20

    CostEstimation

    CompositePropellerprototypemanufacturingCostestimated

    Rs.20,000

    Timeline

  • 8/8/2019 First Report Propeller Design FYP 2003

    20/20

    References

    [1] NumericalSimulationofLowReynoldsNumberandHighLiftAirfoilS1223byRongMa,PeiqingLiu,

    ProceedingsoftheWorldCongressonEngineering2009VolII,WCE2009,July1 3,2009,London,U.K.

    [2]36324005LowReynoldsNumberFlows.pdf

    AircraftPropulsion:Scienceofmakingthrusttofly by BhaskarRoy

    HighAltitudePropellerDesignandAnalysisOverviewbyAnthonyColozza,FederalDataSystems

    ClevelandOhio44135,March1998.

    DesignandPerformanceCalculationsofaPropellerforVeryHighAltitudeFlight,L.DanielleKochLewis

    ResearchCenter,Cleveland,Ohio

    Selig,M.S.,Guglielmo,J.J.,Broeren,A.P.,andGiguere,P.,SummaryofLowSpeedAirfoilData

    (TranslationJournalsstyle),vol.1,SoarTechPublications,VirginiaBeach,VA,1995.

    Selig,M.S.,andGuglielmo,J.J.,HighLiftLowReynoldsNumberAirfoilDesign,AIAAPaper941866,

    June1994.

    Airfoildatabase:DaVinciTechnologies,

    http://www.davincitechnologies.com/AirfoilOptimizerStdAirfoils.htm

    AirfoilInvestigationDatabase,http://www.worldofkrauss.com/