fisicoquímica definiciones

3
Capacidad calorífica Es el cociente entre la cantidad de energía calorífica transferida a un cuerpo o sistema en un proceso cualquiera y el cambio de temperatura que experimenta. En una forma menos formal es la energía necesaria para aumentar una unidad de temperatura (SI: 1 K) de una determinada sustancia, (usando el SI). 1 Indica la mayor o menor dificultad que presenta dicho cuerpo para experimentar cambios de temperatura bajo el suministro de calor. Puede interpretarse como una medida de inercia térmica. Es una propiedad extensiva, ya que su magnitud depende, no solo de la sustancia, sino también de la cantidad de materia del cuerpo o sistema; por ello, es característica de un cuerpo o sistema particular. Por ejemplo, la capacidad calorífica del agua de una piscina olímpica será mayor que la de un vaso de agua. En general, la capacidad calorífica depende además de la temperatura y de la presión. Calor específico Es una magnitud física que se define como la cantidad de calor que hay que suministrar a la unidad de masa de una sustancia o sistema termodinámico para elevar su temperatura en una unidad (kelvin o grado Celsius). En general, el valor del calor específico depende de dicha temperatura inicial. 1 2 Se le representa con la letra (minúscula). Trabajo El trabajo que realiza una fuerza sobre un cuerpo equivale a la energía necesaria para desplazar este cuerpo. 1 El trabajo es una magnitud física escalar que se representa con la letra (del inglés Work) y se expresa en unidades de energía, esto es en julios o joules (J) en el Sistema Internacional de Unidades. Calor es el proceso de transferencia de energía térmica entre diferentes cuerpos o diferentes zonas de un mismo cuerpo que se encuentran a distintas temperaturas. Este flujo de energía siempre ocurre desde el cuerpo de mayor temperatura hacia el cuerpo de menor temperatura, ocurriendo la transferencia hasta que ambos cuerpos se encuentren en equilibrio térmico (ejemplo: una bebida fría dejada en una habitación se entibia). Energía interna En física, la energía interna (U) de un sistema intenta ser un reflejo de la energía a escala macroscópica. Más concretamente, es la suma de: la energía cinética interna, es decir, de las sumas de las energías cinéticas de las individualidades que lo forman respecto al centro de masas del sistema, y de la energía potencial interna, que es la energía potencial asociada a las interacciones entre estas individualidades. 1 La energía interna no incluye la energía cinética traslacional o rotacional del sistema como un todo. Tampoco incluye la energía potencial que el cuerpo pueda tener por su localización en un campo gravitacional o electrostático externo. Entalpía Entalpía (del griego ἐνθάλπω [enthálpō], ‘agregar calor’; formado por ἐν [en], ‘en’ y θάλπω [thálpō], ‘calentar’) es una magnitud termodinámica, simbolizada con la letra H mayúscula, cuya variación expresa una medida de la cantidad de energía absorbida o cedida por un sistema termodinámico, es decir, la cantidad de energía que un sistema puede intercambiar con su entorno. Entropía En termodinámica, la entropía (simbolizada como S) es una magnitud física que, mediante cálculo, permite determinar la parte de laenergía que no puede utilizarse para producir trabajo. Es una función de estado de carácter extensivo y su valor, en un sistema aislado, crece en el transcurso de un proceso que se dé de forma natural. La entropía describe lo irreversible de los sistemas termodinámicos. La palabra entropía procede del griego (ἐντροπία) y significa

Upload: yenxaphan

Post on 26-Nov-2015

13 views

Category:

Documents


3 download

DESCRIPTION

diferentes conceptos preliminares al estudio de fisicoquímica.

TRANSCRIPT

Page 1: Fisicoquímica definiciones

Capacidad calorífica

Es el cociente entre la cantidad de energía calorífica transferida a un cuerpo o sistema en un proceso cualquiera y el cambio de temperatura que experimenta. En una forma menos formal es la energía necesaria para aumentar una unidad de temperatura (SI: 1 K) de una

determinada sustancia, (usando el SI).1 Indica la mayor o menor dificultad que presenta dicho

cuerpo para experimentar cambios de temperatura bajo el suministro de calor. Puede interpretarse como una medida de inercia térmica. Es una propiedad extensiva, ya que su magnitud depende, no solo de la sustancia, sino también de la cantidad de materia del cuerpo o sistema; por ello, es característica de un cuerpo o sistema particular. Por ejemplo, la capacidad calorífica del agua de una piscina olímpica será mayor que la de un vaso de agua. En general, la capacidad calorífica depende además de la temperatura y de la presión.

Calor específico

Es una magnitud física que se define como la cantidad de calor que hay que suministrar a la unidad de masa de una sustancia o sistema termodinámico para elevar su temperatura en una unidad (kelvin o grado Celsius). En general, el valor del calor específico depende de dicha

temperatura inicial.1 2 Se le representa con la letra (minúscula).

Trabajo

El trabajo que realiza una fuerza sobre un cuerpo equivale a la energía necesaria

para desplazar este cuerpo.1 El trabajo es una magnitud física escalar que se representa con la

letra (del inglés Work) y se expresa en unidades de energía, esto es en julios o joules (J) en el Sistema Internacional de Unidades.

Calor

es el proceso de transferencia de energía térmica entre diferentes cuerpos o diferentes zonas de un mismo cuerpo que se encuentran a distintas temperaturas. Este flujo de energía siempre ocurre desde el cuerpo de mayor temperatura hacia el cuerpo de menor temperatura, ocurriendo la transferencia hasta que ambos cuerpos se encuentren en equilibrio térmico (ejemplo: una bebida fría dejada en una habitación se entibia).

Energía interna

En física, la energía interna (U) de un sistema intenta ser un reflejo de la energía a escala macroscópica. Más concretamente, es la suma de:

la energía cinética interna, es decir, de las sumas de las energías cinéticas de las individualidades que lo forman respecto al centro de masas del sistema, y de

la energía potencial interna, que es la energía potencial asociada a las interacciones entre estas individualidades.

1

La energía interna no incluye la energía cinética traslacional o rotacional del sistema como un todo. Tampoco incluye la energía potencial que el cuerpo pueda tener por su localización en un campo gravitacional o electrostático externo.

Entalpía

Entalpía (del griego ἐνθάλπω [enthálpō], ‘agregar calor’; formado por ἐν [en], ‘en’ y θάλπω [thálpō], ‘calentar’) es una magnitud termodinámica, simbolizada con la letra H mayúscula, cuya variación expresa una medida de la cantidad de energía absorbida o cedida por un sistema termodinámico, es decir, la cantidad de energía que un sistema puede intercambiar con su entorno.

Entropía

En termodinámica, la entropía (simbolizada como S) es una magnitud física que, mediante cálculo, permite determinar la parte de laenergía que no puede utilizarse para producir trabajo. Es una función de estado de carácter extensivo y su valor, en un sistema aislado, crece en el transcurso de un proceso que se dé de forma natural. La entropía describe lo irreversible de los sistemas termodinámicos. La palabra entropía procede del griego (ἐντροπία) y significa

Page 2: Fisicoquímica definiciones

evolución o transformación. Fue Rudolf Clausius quien le dio nombre y la desarrolló durante la

década de 1850;1 2 y Ludwig Boltzmann, quien encontró la manera de expresar

matemáticamente este concepto, desde el punto de vista de la probabilidad.

Laws of thermodynamics

The four laws of thermodynamics are:

Zeroth law of thermodynamics: If two systems are both in thermal equilibrium with a third system then they are in thermal equilibrium with each other. This law helps define the notion of temperature.

First law of thermodynamics: Heat and work are forms of energy transfer. Energy is invariably conserved but the internal energy of a closed system changes as heat and work are transferred in or out of it. Equivalently, perpetual motion machines of the first kind are impossible.

Second law of thermodynamics: An isolated system, if not already in its state of thermodynamic equilibrium, spontaneously evolves towards it. Thermodynamic equilibrium has the greatest entropy amongst the states accessible to the system. Equivalently, perpetual motion machines of the second kind are impossible.

Third law of thermodynamics: The entropy of a system approaches a constant value as the temperature approaches zero. The entropy of a system at absolute zero is typically zero, and in all cases is determined only by the number of different ground states it has. Specifically, the entropy of a pure crystalline substance atabsolute zero temperature is zero.

Sistemas y tipos

Los sistemas termodinámicos se clasifican según el grado de aislamiento que presentan con su entorno. Aplicando este criterio pueden darse tres clases de sistemas:

Sistema aislado: Es aquel que no intercambia ni materia ni energía2 con su entorno, es

decir se encuentra en equilibrio termodinámico. Un ejemplo de este clase podría ser un gas encerrado en un recipiente de paredes rígidas lo suficientemente gruesas (paredes [adiabáticas]) como para considerar que los intercambios de energía calorífica

3 sean

despreciables, ya que por hipótesis no puede intercambiar energía en forma de trabajo.

Sistema cerrado: Es el que puede intercambiar energía pero no materia con el exterior. Multitud de sistemas se pueden englobar en esta clase. El mismo planeta Tierra

4 puede

considerarse un sistema cerrado. Una lata de sardinas también podría estar incluida en esta clasificación.

5

Sistema abierto: En esta clase se incluyen la mayoría de sistemas que pueden observarse en la vida cotidiana. Por ejemplo, un vehículo motorizado es un sistema abierto, ya que intercambia materia con el exterior cuando es cargado, o su conductor se introduce en su interior para conducirlo, o es provisto de combustible al repostarse, o se consideran los gases que emite por su tubo de escape pero, además, intercambia energía con el entorno. Solo hay que comprobar el calor que desprende el motor y sus inmediaciones o el trabajo que puede efectuar acarreando carga.

Procesos termodinámicos

En física, se denomina proceso termodinámico a la evolución de determinadas magnitudes (o propiedades) propiamente termodinámicas relativas a un determinado sistema termodinámico. Desde el punto de vista de la termodinámica, estas transformaciones deben transcurrir desde un estado de equilibrio inicial a otro final; es decir, que las magnitudes que sufren una variación al pasar de un estado a otro deben estar perfectamente definidas en dichos estados inicial y final. De esta forma los procesos termodinámicos pueden ser interpretados como el resultado de lainteracción de un sistema con otro tras ser eliminada alguna ligadura entre ellos, de forma que finalmente los sistemas se encuentren en equilibrio (mecánico, térmico y/o material) entre sí.

Page 3: Fisicoquímica definiciones

De una manera menos abstracta, un proceso termodinámico puede ser visto como los cambios de un sistema, desde unas condiciones iniciales hasta otras condiciones finales, debidos a la desestabilización del sistema.