flight measurements

Upload: ewiontko

Post on 25-Feb-2018

224 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/25/2019 Flight measurements

    1/29

    R . M . N o . 3 4 8 5

    ~,~:~,,-';~ :, ; ' ~" ~ ',

    ' ~ ' ~ I ~ ' h - ~ ' , , ,

    M I N I S T R Y O F T E H N O L O G Y

    A E R O N A U T I C A L R E S E A R C H C O U N C IL

    R E PO R T S A N D M E M O R A N D A

    F l i g h t M e a s u r e m e n t s o f th e E l ev a to r a n d A i le r o n

    H i n g e - M o m e n t D e r i v a ti v es o f th e F a ir e y D e l t a 2

    A i rc ra ft u p t o a M a c h N u m b e r o f 1 6 a n d C o m -

    p a f i s o n s w i t h W i n d - t u n n e l R e s u l t s

    By R . Rose , M.Sc . , O . P . N icho las , B .Sc . ( Eng . ) and

    G l y n i s V o r l e y

    L O N D O N : H E R M A J ES T Y S S T A T I O N E R Y O F F I C E

    1967

    P R I E 1 5 S . 6 d . N E T

  • 7/25/2019 Flight measurements

    2/29

    F l ig h t M e a s u r e m e n t s o f t h e E le v a to r a n d A i le r o n

    H i n g e - M o m e n t D e r i v at iv e s o f th e F a ir e y D e l t a 2

    A i r cr a ft u p to a M a c h N u m b e r o f 1 6 a n d C o m -

    p a r i s o n s w i t h W i n d - t u n n e l R e s u l t s

    B y R . R o s e , M . S c . , O . P . N i c h o l a s , B . S c . E n g . ) a n d

    Glynis Vorley

    Re p o r t s a n d M e mo r a n d a No . 3485

    Ju ly 1965

    S u m m a r y

    Aileron and elevator hinge-moment derivatives have been extracted from flight tests on the Fairey

    Delta 2 in which the dynamic aircraft response, to control pulses was recorded. As this method is not

    widely used, and has proved very successful, it is described in detail. Corrections had to be made for aero-

    elastic distortion of the control surfaces, for inertia loads acting on the controls and for the dynamic

    response of the instrumentation.

    Where possible the results are compared with wind-tunnel data. There is good agreement for the

    hinge moment due to control derivatives, b2, and the elevator, bl, whereas the results for aileron, bl, show

    differences from the tunnel values at supersonic speeds.

    bo could not be measured because of strain gauge drift; however consistent results were obtained for

    the aileron hinge moment induced by the elevator deflection and

    v ic e v e r s a

    At transonic speeds these

    terms are of similar magnitude to the conventional hinge moment derivatives b 1 and b 2, and must therefore

    be considered by designers.

    LIST OF CONTENTS

    1. Introduction

    2. Description of Aircraft and Instrumentation

    2.1. Aircraft

    2.2. Instrumentation

    3. Flight Tests

    4. Method of Analysis

    4.1 . Elevator pulses

    4.2 . Aileron pulses

    4.3 . Steady turns

    5. Results and Discussion

    Replaces R.A.E. Tech. Report No. 65143 --A.R.C. 27 376.

  • 7/25/2019 Flight measurements

    3/29

    L I S T O F

    C O N T E N T S c o n t i n u e d

    6 . C o n c l u s i o n s

    A p p e n d i x A T h e h i n g e m o m e n t s a c t in g o n e le v a t o r a n d a i l e r o n c o n t r o ls

    A p p e n d i x B Ev a l u a t i o n o f b 2 a n d c ro s s - c o n t ro l d e r i v a ti v e s f ro m c o n t ro l p u l s e s

    A p p e n d i x C D e t e rm i n a t i o n o f b 1 f ro m s t i c k f i x ed l o n g i t u d i n a l s h o r t -p e r i o d o s c i l l a t i o n s

    A p p e n d i x D E v a l u a t i o n o f e l ev a t o r a n d a i l e r o n h in g e m o m e n t d e r i v a ti v e s d u e t o i n c id e n c e b l

    f ro m f l i g h t a t d i f f e r e n t v a l u e s o f n o rm a l a c c e l e r a t i o n

    S y m b o l s

    R e fe r e n c e s

    Ta b l e 1

    Ta b l e 2

    L e a d i n g a i r c ra f t d i m e n s i o n s

    C o n t ro l s u r f a c e d e t a i l s

    I l l u s t r a t i o n s

    D e t a c h a b l e A b s t r a c t C a r d s

    1. Introduction.

    Th e re i s c o n s i d e ra b l e i n t e r e s t in p r e d i c t i n g v a l u e s o f t h e h i n g e m o m e n t s fo r c o n t ro l s . A t p r e s e n t t h e r e

    a r e n o r e l i a b l e t h e o r i e s 1 fo r e s t i m a t i n g h i n g e m o m e n t s a t t r a n s o n i c a n d s u p e r s o n i c s p e e d s a n d p r e d i c -

    t i o n s fo r th e s e c a se s a r e u s u a l l y b a s e d o n w i n d - t u n n e l re s u l ts . To g i v e c o n f i d e n c e i n t h e s e p r e d i c t i o n s i t

    i s i m p o r t a n t t h a t s o m e c h e c k s a r e m a d e b e t w e e n t u n n e l a n d f l i g h t m e a s u r e m e n t s . T h i s r e p o r t p r e s e n ts

    t h e r e s u lt s o f f li g h t m e a s u r e m e n t s m a d e a t R . A . E . B e d f or d o f tr a i li n g e d g e c o n t ro l h i n g e m o m e n t s o n

    t h e F a i r e y D e l t a 2 w h i c h i s a r e s e a r c h a i r c r a f t w i t h a c o n t ro l c o n f i g u ra t i o n o f c u r r e n t i n t e r e s t a n d a

    p e r fo rm a n c e w e l l i n t o t h e s u p e r s o n i c s p e e d r a n g e . Th e f l i g h t r e s u l ts a r e c o m p a re d w i t h t u n n e l s r e s u l t s z 5

    m a d e a t t r a n s o n i c a n d s u p e r s o n i c s p e e d s .

    A d y n a m i c f l i gh t t e st t e c h n i q u e h a s b e e n u s e d w h i c h a l l ow s t h e e l e v a t o r a n d a i l e r o n h i n g e - m o m e n t

    . C

    d e r i v a ti v e s w i t h t h e e x c e p t i o n o fb o t h e h i n g e m o m e n t a t z e ro m c l d e n c e a n d c o n t ro l a n g l e t o b e e x tr a c t e d .

    2. Description o f Airc raft and Instrumentation.

    2.1.

    Aircraft.

    Th e F a i r e y D e l t a 2 i s a 6 0 d e g d e l t a w i n g t a i ll e s s r e s e a r c h a i r c r a f t c a p a b l e o f s p e e d s u p t o a t l e a s t

    M - - 1 . 7. F i g . 1 s h o w s a g e n e ra l a r r a n g e m e n t a n d F i g . 2 a p h o t o g ra p h o f t h e a i r c r a f t. Ta b l e 1 g i v es t h e

    p r i n c i p a l d i m e n s i o n s o f t h e a i r c r a f t a n d T a b l e 2 d e t a i l s o f t h e c o n t ro l s u r f a c es .

    Th e a i r c r a f t h a s fu l l - s p a n t r a i l in g -e d g e c o n t ro l s w h i c h a r e s p l i t i n t o s e p a ra t e e l e v a t o r s a n d a i l e ro n s ;

    t h e e l e v a t o r s a r e a e ro d y n a m i c a l l y u n b a l a n c e d t h e a i l e ro n s a re r i g g e d u p 3 d e g a n d h a v e a s m a l l h o r n

    b a l a n c e . Th e c o n t ro l s u r f a c es a r e o p e ra t e d b y i r r e v e r s ib l e h y d ra u l i c j a c k s . Th e e l e v a t o r j a c k s a r e p o s i -

    t i o n e d i n t h e r e a r f u s e l a ge a n d o p e ra t e t h e e l e v a t o r s

    via

    t o rq u e t u b e s . Th e a i l e ro n j a c k s a r e s i t u a t e d b e -

    n e a t h t h e o u t e r w i n g fo rw a rd o f t h e m i d p o r t i o n o f t h e a i l e ro n a n d o p e ra t e t h e a i le ro n s d i re c t l y .

    C o n t ro l - f e e l fo r c e s a r e s u p p l i e d t o t h e p i l o t b y s i m p l e s p ri n g s t h e d a t u m o f e a c h s p r i n g b e i n g v a ri e d

    w i t h i n a l i m i t e d r a n g e b y a n e l e c t r i c t r i m m o t o r . T o c a t e r f o r t h e l a rg e v a r i a t i o n s o f a i r c r a f t r e s p o n s e

    a n d c o n t ro l e f f e c t iv e n e s s o v e r t h e f l i gh t e n v e l o p e t h e g e a r r a t i o s b e t w e e n t h e e l e v a t o r s a n d a i l e ro n s a n d

    t h e c o r r e s p o n d i n g s t i c k m o v e m e n t c a n b e v a r i e d i n fl i g h t b y t h e p i lo t .

    2

  • 7/25/2019 Flight measurements

    4/29

    2.2. I n s t r u m e n t a t i o n

    T h e f o l l o w i n g p a r a m e t e r s , r e l e v a n t t o t h e te s ts , w e r e r e c o r d e d o n H u s s e n o t A . 2 2 p h o t o g r a p h i c t r a c e

    r e c o r d e r s :

    S p e e d

    A l t i t u d e

    E l e v a t o r a n g l e p o r t a n d s t a r b o a r d )

    A i l e r o n a n g l e p o r t a n d s t a r b o a r d )

    E l e v a t o r h i n ge m o m e n t p o r t a n d s t a r b o a rd )

    A i l e ro n h i n ge m o m e n t p o r t a n d s t a r b o a r d )

    S t r a i n -g a u g e b r i d g e v o l t a g e

    I n c i d e n c e

    N o r m a l a c c e l e r a t i o n

    R a t e o f r o l l

    S i d e s l ip a n g l e

    T h e h i n g e m o m e n t s w e r e m e a s u r e d w i t h f o u r - a c t i v e - a r m s t ra i n - g a u g e b r i d g e s e n e r g i s e d b y a s t a b i li s e d

    v o l t a g e f r o m V e n n e r a c c u m u l a t o r s . I n t h e c a s e o f t h e e l e v a t o r s t h e s t r a i n g a u g e s w e r e a t t a c h e d t o t h e i n n e r

    s u r fa c e o f t h e t o r q u e t u b e s ; f o r t h e a i l e ro n s t h e g a t ig e s w e r e a t t a c h e d t o o n e e n d o f t h e j a c k b o d y . A t y p i c a l

    s t r a i n i n c r e m e n t i n t h e t e s ts w a s 0 . 0 2 p e r cen t T h e s t r a i n g a u g e s w e r e c a re f u l ly m a t c h e d a n d d u r i n g g r o u n d

    t e st s w e r e f o u n d t o h a v e n e g l ig i b le d r if t o v e r a t e m p e r a t u r e r a n g e - 4 0 d e g C t o + 4 0 d e g C . T h e b r i d g e s

    h a v e b e e n c a l i b r a t e d b y a p p l y i n g k n o w n l o a d s t o t h e c o n t r o l s u r fa c e s . C o n t r o l - s u r f a c e a n g l e s w e r e m e a s -

    u r e d b y p o t e n t i o m e t e r s a t t a c h e d t o t h e c o n t r o ls .

    I n c i d en c e w a s m e a s u r e d b y o n e o f f ou r w i n d v a n e s m o u n t e d o n t h e n o s e b o o m o f t h e a i rc r a ft b e h i n d

    t h e p i t o t -s t a t i c h e a d . T h e v a n e s w e r e a r r a n g e d i n a c r u c i f o r m c o n f i g u r a t i o n s o a s t o p r e s e r v e th e s y m -

    m e t r i c a l a r r a n g e m e n t r e q u i r e d t o r e d u c e p o s i t i o n e r r o r s i n t h e t r a n s o n i c a n d s u p e r s o n i c s p e e d r a n g e .

    3 Fl i gh t Tests

    T h e m a i n f li g h t t e s ts c o n s i s t e d o f r e c o r d i n g t h e c o n t r o l h i n g e m o m e n t s a n d t h e r e s p o n s e o f t h e a i r c r a f t

    d u r i n g a n d a f t e r e i t h e r a n e l e v a t o r o r a i l e r o n p u ls e . D u e t o t h e l a c k o f c o n t r o l o f t h r u s t w i t h r e h e a t o n

    a n d t h e l i m i te d f u e l a v a i la b l e , it w a s n o t p o s s i b l e i n th i s a i r c ra f t a t t r a n s o n i c a n d s u p e r s o n i c M a c h n u m b e r s

    t o s t a b i li s e s p e e d . T h i s c a u s e d s o m e d i f f ic u l t y i n t r i m m i n g t h e a i r c r a f t , p a r t i c u l a r l y a t t r a n s o n i c s p e e d s

    w h e r e s i g n i fi c a n t t r i m c h a n g e s o c c u r r e d r a p i d ly . N e v e r t h e l e s s , p i l o t s f o u n d i t p o s s ib l e , a f t e r s o m e p r a c t i c e ,

    t o t r i m t h e a i r c r a f t s a t i s f a c t o r i l y d u r i n g t h e s e n o n - s t a b i l i s e d c o n d i t i o n s . W i t h t h e a i r c r a f t i n t ri m , t h e p i l o t

    t a p p e d t h e c o n t r o l c o l u m n i n e i th e r a la t e r a l o r r e a r w a r d s d i r e c t i o n a n d a l l o w e d i t t o r e t u r n t o i t s t r i m

    p o s i t i o n u n d e r t h e a c t i o n o f th e f e e l s p r in g , r e s u l ti n g in a c o n t r o l p u l s e o f a b o u t o n e q u a r t e r s e c o n d

    d u r a t i o n * . T h i s w a s t h e s h o r t e s t p u l s e po s s ib l e , a n d g a v e a g o o d c o m p r o m i s e b e t w e e n t h e r e q u i r e m e n t s

    t h a t t h e a i r c r a f t s h o u l d n o t h a v e r e s p o n d e d s i g n i fi c a n tl y b y t h e t i m e t h e p e a k o f t h e p u l s e h a d b e e n r e a c h e d ,

    a n d t h a t u n s t e a d y a e r o d y n a m i c e f f ec t s s h o u l d b e n e g li g ib l e A p p e n d i x A ). In s o m e c a s e s a c o m b i n a t i o n

    o f e l e v a t o r a n d a i l e r o n m o v e m e n t o c c u r r e d d u e t o t h e d i f fi c u lt y o f m o v i n g t h e c o n t r o l c o l u m n p r e c i s e l y

    i n t h e d e s i r e d d i r e c ti o n . F o r t h e e l e v a t o r t es ts , b o t h t h e i n it i al r e s p o n s e d u r i n g t h e p u l s e a n d t h e e n s u i n g

    l o n g i t u d i n a l s h o r t - p e r i o d o s c i l la t i o n o f th e a i r c r a f t w e r e u s e d i n t h e a n a l y si s . H o w e v e r , f o r t h e a i l e r o n

    p u l s e s , o n l y t h e i n i t i a l r e s p o n s e h a s b e e n a n a l y s e d , a s t h e h i n g e m o m e n t s i n d u c e d b y t h e d u t c h r o l l

    o s c i l l a t i o n w e r e t o o s m a l l t o m e a s u r e a c c u r a t e l y . A t 4 0 0 0 0 ft , c o n t r o l p u l s e s w e r e r e c o r d e d i n le v e l f l ig h t

    a t M a c h n u m b e r s f r o m 0 - 8 6 t o 1 - 6, f u r t h e r t e st s w e r e m a d e i n l ev e l f li g h t a t 1 0 0 0 0 ft , a t M a c h n u m b e r s f r o m

    0.6 to 1 .2.

    S o m e s u p p l e m e n t a r y t e s t s w e r e m a d e , in w h i c h r e c o r d s w e r e t a k e n d u r i n g l e v el f li g h t a n d t u r n s a t

    c o n s t a n t n o r m a l a c c e l e r a t i o n . T h e s e t e s ts c o v e r e d a r a n g e o f M a c h n u m b e r s f r o m 0 . 85 t o 1 - 07 a t 4 0 0 0 0 ft

    an d f r om 0 .55 t o 0 -97 a t 10 000 f t.

    * F o r a f u l ly i r re v e r s ib l e s y st e m n o f u r t h e r m o v e m e n t s h o u l d o c c u r . H o w e v e r , t h e h y d r a u l i c j a c k s d i d

    a l l o w s o m e s m a l l re s i d u a l m o v e m e n t o f t h e c o n t r o l s u r f a c e.

  • 7/25/2019 Flight measurements

    5/29

    4 M etho d of Analysis

    The incidence vane readings have been corrected for the effects of boom interference evaluated by wind-

    tunnel calibrations 4, and, in addition at subsonic speeds, for estimated wing and body upwash. Calculation

    showed that the effect of pitching velocity on the vane readings was negligible, and this was therefore

    ignored.

    The control surfaces are subject to aeroelastic distortion, especially at high speed. Flight pressure-

    plotting tests made earlier have shown tha t the aerodynamic loading is reasonably uniform, and making

    this assumption, the mean angular distortion of the control is directly related to the jack load. In ground

    tests s the distortion of the controls was measured under uniform loading conditions. This distortion was

    measured relative to the jack output point since the control surface transmitters were attached at this

    position. The effective stiffnesses of the elevator and aileron are respectively two thousand lb ft/degree

    and about forty thousand lb ft/degree. Two factors contribute to this large difference in stiffness. Firstly,

    the jack load is applied near the aileron mid-span, whereas it is applied at the root-end of the elevator.

    Secondly, in the case of the elevator, flexibility of the linkage between the jack output and elevator roo t

    accounts for abou t two-thirds of the measured distortion. In the present flight tests, it has been calculated

    that significant elevator distortion occurred and this has been allowed for, but that the aileron distortions

    were negligible.

    Appendix A derives the relations between the measured control jack loads and the aerodynamic and

    inertia loadings on the controls. The jack loads were measured by strain gauges, and although these were

    carefully matched some drift occurred due to differential-temperatureeffects. Thus it has not been possible

    to determine absolute values of jack loads very accurately, but as the rate of drift was sufficiently slow in

    relation to the duration of most of the manoeuvres executed during the tests, incremental values of the jack

    moments could be measured with confidence.

    The dynamic response of the recording galvanometers and ratiometers has been allowed for in the

    analysis. Simple laboratory checks showed that amplitude ratio effects were just significant in some cases.

    A number of assumptions have been made in the analysis of the flight results and these are listed below.

    a) All hinge-moment derivatives are linear within the range covered during each individual test, but

    they are not necessarily linear over the full range of control angles and incidences covered in the flight

    tests.

    b) The shape of a control pulse may be represented by the first ha lf of a sine wave.

    c) The change in aircraft incidence, up to the instant where an elevator pulse has its maximum, is

    small.

    d) The changes in sideslip and rate of roll, up to the instant where an aileron pulse has its maximum, are

    small.

    e) Movement of the controls is small, but possibly significant, during the aircraft oscillations following

    an elevator pulse.

    f) The distorted elevator can be represented by an undistorted control at an appropriate mean angle.

    g) In applying the distortion corrections the aerodynamic and inertia loadings are assumed uniform

    over the control surface.

    h) Calibrations of the control jack load and the surface distortions may be extrapolated linearly to

    the considerably higher flight loading conditions.

    4.1. Elevator Pulses

    Fig. 3a illustrates an idealised elevator pulse test, showing time histories of the elevator and aileron

    jack moments, and incidence, during and following the pulse. A corresponding actual flight record is

    shown for comparison, Fig. 3b. The essential differences between the actual and idealised records are that,

    in practice, a small, but negligible, change of incidence occurs before the peak of the pulse, and also the

    elevator does no t returri precisely to its trimmed value at the cessation of the pulse. However, these effects

    are quite small and thus it is possible to use simple methods of analysis. This analysis is conveniently split

    into two parts, treating first the response during the pulse and then the ensuing aircraft oscillation.

  • 7/25/2019 Flight measurements

    6/29

    From the increments in the control jack loads and the elevator angle between the trimmed conditions

    and values at the peak of the elevator pulse according to equat ions B.7 and B.8 of Appendix B the hinge

    moment derivatives b2~ and OCm /Otlmay be derived b2E is the elevator hinge moment due to elevator

    angle derivative and OCHA/Orl s the aileron hinge moment due to elevator angle derivative. This latter

    derivative is not normally considered but it was found in these tests to be of a very considerable magnitude.

    The inertia term in equations B.7 and B.8 amounts typically to 5 per cent of the total measured hinge

    moment.

    The elevator pulse excites the longitudinal short period osci llation of the aircraft. Appendix C equat ions

    C.4 and C.5 shows how measurements made during the oscillation allow bl~ and b~ to be determined.

    bl~ is the elevator hinge moment due to incidence derivative and b~. is the aileron hinge moment due

    to incidence derivative. In this case the inertia term amounts typically to 15 per cent of the measured total

    hinge moment. The analysis uses values of the recorded quantities only at the peaks of the oscillation.

    In practice it was found that reliable results could be obta ined at supersonic speeds; however at subsonic

    speeds due to increased residual control motion following the pulse and increased damping of the air-

    craft oscillation the method could only be applied in some cases. In this regime an alternative technique

    was required to ob tain measurements of b~ and bt~ and this is discussed in Section 4.3.

    4.2. Aileron pulses.

    Figs. 4a and b show idealised and actual flight records of an aileron pulse. The initial response of the

    aircraft is a rapid accelerat ion in roll with practically no change in sideslip and rate of roll. The aileron and

    elevator hinge moments closely follow the aileron angle input.

    Equations B.10 and B.11 of Appendix B show how b2~ and

    OC~J O~

    can be obtained from measure-

    ments of incremental control loads and the aileron angle between the trimmed conditions and the peak of

    the pulse b2~ is the aileron hinge momen t due to aileron-angle derivative and

    OCn~JO~

    s the elevator hinge

    moment due to aileron-angle derivative. The lat ter derivative represents the effect on the elevator hinge

    moment of aileron angle deflection which was found to be considerable in the present tests. The inertia

    terms in these cases amoun t typically to15 per cent of the total hinge moment.

    4.3.

    Steady Turns.

    At subsonic speeds the damping of the longitudinal short period oscillation of the aircraft is high and

    as mentioned earlier under these conditions it is not possible to extract bl~ and b~A from elevator pulse

    tests. However by measuring the elevator and aileron jack loads in steady flight at the same Mach number

    but at two different values of normal acceleration it is possible to evaluate b~ and b~A as shown in

    Appendix D. The required tests were made by accelerating the aircraft in level flight through the desired

    range of Mach number and then decelerating the aircraft in a steady turn. By comparing values recorded

    at the same Mach number during the two parts of such a flight test the dat a required for analysis are

    obtained. It should be noted that in this case absolute rather than incremental jack loads are required

    and as an appreciable time interval is involved between the recording of corresponding test points

    strain gauge drift may become significant and as a consequence the accuracy is reduced. Also any two flight

    points used in this analysis differ not only in incidence but also in the elevator and aileron angles required

    to trim. The cont ributions due to control movement terms are generally larger than those due to bl~ and

    b~. which are to be extracted from the tests. As a consequence the accuracy of the final result is further

    reduced.

    5. Results and Discussion.

    Fig. 5 6 and 7 show the ranges of aileron angle elevator angle and incidence explored during the tests.

    These envelopes are presented because tunnel tests show that in some cases hinge moments vary non-

    linearly with incidence and control angle; thus values of derivatives depend on the range of control angle

    and incidence used in a particular test. As an example Fig. 8 shows some tunnel measurements of aileron

    hinge moment at M = 1-02 and the range of elevator angle and incidence covered in the flight tests at

    10 000 ft and 40 000 ft. It can be seen that bl~ and 8Cm /~tl would be expected to differ at the two

    altitudes.

    5

  • 7/25/2019 Flight measurements

    7/29

    F i g s. 9 to 1 4 s h o w t h e v a r i a t i o n w i t h M a c h n u m b e r o f t h e m e a s u r e d v a l u es o f bl~ b2~ aCHJO~ b l~

    b2~ and

    OCm /Or .

    Th e f l i g h t r e s u l ts i n c l u d e d a t a f ro m t e s t s a t 1 0 0 0 0 f t a n d 4 0 0 0 0 f t u s i n g b o t h p u l s e a n d

    s t e a d y t u rn t e c h n i q u e s . W h e re p o s s i b l e c o m p a ra b l e w i n d t u n n e l d a t a 2 3 a r e a l s o s h o w n . In t h e c a s e s

    w h e re t h e t u n n e l t e s t s s h o w e d n o n - l i n e a r v a r i a t i o n s w i t h i n c i d e n c e a n d c o n t ro l a n g l e , t h e d e r i v a t i v e s

    w e re e x t r a c t e d b y c o n s i d e r i n g t h e i n c i d e n c e a n d c o n t ro l a n g l e a p p ro p r i a t e t o t h e c o r r e s p o n d i n g f l i g h t

    con d i t ion s (F ig . 8 ).

    Th e f l i g h t v a l u e s o f t h e e l e v a t o r h i n g e m o m e n t d u e t o i n c i d e n c e d e r i v a t i v e b ~ , F i g . 9 , s h o w s o m e

    s c a t te r , p a r t i c u l a r l y a t t r a n s o n i c s p e e d s w h e re a s n o t e d i n S e c t i o n 4 .3 t h e a c c u ra c y o f t h e a n a l y s i s i s p a r t i -

    c u l a r ly p o o r , b u t t h e v a r i a t i o n w i t h M a c h n u m b e r i s w e l l d e f in e d , b ~ s h o w s a r a p i d i n c r e a se a t t r a n s o n i c

    s p e e d s a n d a g r a d u a l d e c r e a s e a t s u p e r s o n i c s p e e d s. Th e r e i s n o d e t e c t a b l e d i f fe r e n c e b e t w e e n t h e r e s u l t s a t

    1 0 0 0 0 f t a n d 4 0 0 0 0 f t, a n d t h i s s u g g e s ts t h a t t h e f a i r l y s i m p l e m e t h o d u s e d t o c o r r e c t t h e r e s u l t s f o r t h e

    a e ro e l a s t i c d i s t o r t i o n o f t h e e l e v a t o r h a s b e e n a d e q u a t e , a n d c o n f i rm s t h e t u n n e l r e s u l ts w h i c h s h o w n o

    n o n - l i n e a r i t i e s o v e r t h e r a n g e o f e l e v a t o r a n g l e a n d i n c i d e n c e e x p l o re d . Th e c o m p a r i s o n w i t h w i n d -

    t u n n e l r e s u l ts i s g o o d .

    F o r t h e e l e v a t o r h i n g e m o m e n t d u e t o e l e v a t o r - a n g l e d e r i v a t iv e b 2~ , F i g . 1 0, t h e s a m e g e n e ra l r e m a rk s

    a s m a d e fo r b l ~ a p p l y , b E i s r o u g h l y t w i c e a s l a rg e a s b l ~ .

    F i g . 1 1 s h o w s t h e v a r i a t i o n o f t h e e l e v a t o r h i n g e m o m e n t d u e t o a i l e ro n -a n g l e d e r i v a t iv e , OC n JO~ w i t h

    M a c h n u m b e r . Th e r e s u l t s s h o w v e ry li t t le s c a t te r , a n d t h e d e r i v a t i v e is w e l l d e f i n e d . OCH~/c3 i s smal l a t

    s u b s o n i c a n d s u p e r s o n i c s p e e d s , b u t i n c r e a s e s r a p i d l y a t t r a n s o n i c s p e e d s . Th i s d e r i v a t i v e h a s n o rm a l l y

    b e e n i g n o re d b y d e s i g n e r s , b u t c l e a r l y i t s ef f e ct o n t h e c o n t ro l h i n g e m o m e n t s o f t h i s c o n f i g u ra t i o n a t

    t r a n s o n i c s p e e d s i s v e ry s i g n if i c a n t. Th e w i n d - t u n n e l te s t s d o n o t p ro v i d e d a t a o n t h i s d e r i v a t i v e .

    Th e f l i g h t r e s u l t s f o r th e a i l e ro n h i n g e m o m e n t d u e t o i n c i d e n c e d e r i v a t i v e b ~a a r e s h o w n i n F i g . 1 2.

    In t h e s u b s o n i c r a n g e r e s u l t s f r o m t h e t w o a l t e rn a t e t e s t p ro c e d u re s a r e s h o w n . Th e y d i f fe r q u i t e s i g ni f ic -

    a n t l y . F r o m t h e p r e v i o u s d i s c u s s i o n s o n t h e s t e a d y t u rn t e s ts , i t w o u l d a p p e a r t h a t t h e s e a r e g e n e ra l l y le s s

    r e l i a b l e , a n d a s a c o n s e q u e n c e m o re w e i g h t h a s b e e n g i v e n w h e n d ra w i n g a m e a n l i n e t h ro u g h t h e t e s t

    p o i n t s t o t h e r e s u l t s o f t h e p u l s e t e s t s. Th e r e i s a r a p i d i n c r e a s e i n b tA a t t r a n s o n i c s p e e d s fo l l o w e d b y a

    r a p i d d e c re a s e a t s u p e r s o n i c s p e e d s . N o a e ro e l a s t i c c o r r e c t i o n s h a v e b e e n a p p l i e d s i n c e t h e c a l c u l a t e d

    d i s t o r t i o n o f t h e a i l e ro n s w a s n e g l i g ib l e . H o w e v e r , t h e r e a r e q u i t e s i g n i f i c a n t d i f fe r e n c e s b e t w e e n t h e r e s u l t s

    o b t a i n e d a t 1 0 0 00 f t a n d 4 0 0 0 0 f t . Th e s e d i f fe r e n c e s c o u l d b e d u e t o e i t h e r a n a e ro e l a s t i c d i s t o r t i o n o f t h e

    w i n g , o r a n o n - l i n e a r v a r i a t i o n o f h i n g e m o m e n t o v e r t h e d i f f e r e n t r a n g e s o f e l e v a t o r a n g l e a n d i n c i d e n c e

    a p p ro p r i a t e t o t h e t w o t e s t h e i gh t s . A t t r a n s o n i c s p e e d s w i n d - t u n n e l r e s u l ts 2 ,a s h o w m a rk e d n o n - l i n e a r

    v a r i a t i o n s o f h i n g e m o m e n t w i t h i n c i d e n c e a n d e l e v a t o r a n g l e , f o r e x a m p l e a s s h o w n i n F i g . 8. A t s u p e r s o n i c

    s p e e d s w i n d - t u n n e l v a l u e s o f t h e d e r i v a t i v e e x t r a c t e d fo r t h e 4 0 0 0 0 f t f l i g h t c o n d i t i o n s a r e c o n s i d e ra b l y

    h i g h e r t h a n t h e c o r r e s p o n d i n g f l i g h t m e a s u re m e n t s . N o c o r r e s p o n d i n g w i n d - t u n n e l d a t a a r e a v a i l a b le fo r

    t h e 1 0 0 0 0 ft f l i g h t c o n d i t i o n s a s t h e a p p ro p r i a t e r a n g e s o f a i r c r a f t p a r a m e t e r s w e re n o t c o v e re d i n t h e

    t u n n e l p ro g r a m m e . H o w e v e r , e x t r a p o l a t i o n o f t u n n e l d a t a i n t h e r a n g e M = 1 .1 t o 1 . 2 , s u g g e s t s t h a t b t a

    a t c o n d i t i o n s a p p r o p r i a t e t o f l i g h t a t 1 0 0 0 0 f t i s a p p ro x i m a t e l y 0 -6 l e ss t h a n a t 4 0 0 0 0 f t. Th i s d i f f e re n c e

    i s a l m o s t i d e n t i c a l t o t h a t b e t w e e n f l i g h t r e s u l ts a t t h e t w o t e s t a l t it u d e s . Th i s s u g g e s ts t h a t t h e a p p a re n t

    e f f ec t s o f a l t i tu d e i n t h e f l i g h t r e s u l t s s h o w n i n F i g . 1 2 a r e m a i n l y d u e t o n o n - l i n e a r i t i e s i n t h e h i n g e

    m o m e n t c h a ra c t e r i s t i c s .

    Th e r e s u l ts f o r t h e a i l e ro n h i n g e m o m e n t d u e t o a i l e ro n -a n g l e d e r i v a t i v e b z, ,, F i g . 1 3 , s h o w v e ry l i tt l e

    s c a t t e r. Th e r e s u l t s a t 1 0 0 0 0 f t a n d 4 0 0 0 0 ft a r e d i f f e re n t . A g a i n i t i s t h o u g h t t h a t t h i s i s p ro b a b l y c a u s e d

    b y n o n - l i n e a r e f f ec t s, b u t n o w i n d - t u n n e l r e s u l ts a r e a v a i l a b l e fo r c o m p a r i s o n .

    F i g . 1 4 s h o w s t h e v a r i a t i o n o f t h e a i l e ro n h i n g e m o m e n t d u e t o e l e v a t o r d e r i v a ti v e ,

    aCnJarl

    w i t h M a c h

    n u m b e r . Th i s d e r i v a t i v e h a s b e e n g e n e ra l l y i g n o re d i n t h e p a s t ; h o w e v e r , i n t h is c o n f i g u ra t i o n , a l t h o u g h

    i t i s s m a l l a t s u b s o n i c a n d s u p e r s o n i c s p e e d s , i t i s s i g n i f i c a n t a t t r a n s o n i c s p e e d s a n d i s i n d e e d t h e n o f

    t h e s a m e m a g n i t u d e a s b 2~ . W i n d - t u n n e l r e s u l ts s h o w a t r a n s o n i c p e a k i n g o o d a g r e e m e n t w i t h t h e f l ig h t

    m e a s u re m e n t s , b u t a t s u p e r s o n i c s p e e d s , w h e re a s t h e v a r i a t i o n i s s i m i l a r , t h e a g re e m e n t i s n o t s o g o o d .

    Th e e f f ec t o f t h e i n t e r - c o n t ro l g a p o n

    3CnA/~?r

    m u s t b e c o n s i d e ra b l e , h e n c e i t i s p o s s i b l e t h a t R e y n o l d s

    n u m b e r e f fe c ts m a y b e c a u s i n g t h i s d i s c r e p a n c y . Th e p r e s e n t t e st s h a v e s h o w n t h a t a t t r a n s o n i c s p e e d s t h e

    i n f l u e n c e o f o n e t r a i li n g e d g e c o n t ro l o n t h e h i n g e m o m e n t o f a n a d j a c e n t c o n t ro l i s c o n s i d e ra b l e .

  • 7/25/2019 Flight measurements

    8/29

    6 Conclusions

    The elevator and aileron hinge-moment derivatives of the Fairey Delta 2 have been determined, using

    dynamic techniques, up to Mach numbers of 1.2 and 1.6 at 10 000 ft and 40 000 ft respectively. Where

    possible, comparison has been made with wind-tunnel results 2 a obtained with a 1/9th scale model.

    The results are summarised in Figs. 8 to 13.

    All the derivatives show a charadteristic rapid increase at transonic speeds followed by a reduction at

    supersonic speeds. For the elevator, it has been necessary to correct for the aeroelastic distortion of the

    cont rol; a relatively simple method of analysis has been used with success, and the results of tests at 10 000

    ft and 40 000 ft agree well with one another. On the basis of ground tests, it was calculated that no signi-

    ficant aeroelastic distortion of the ailerons occurred. In this case, the 10 000 ft and 40 000 ft results show

    considerable differences; wind-tunnel tests suggest this is probably due to non-linearity of the hinge-

    moment characteristics over the range of elevator angle and incidence appropriate to the two test heights.

    The results show that at transonic speeds the influence of one trailing-edge control on the hinge moment

    of an adjacent control can be considerable. The influence of this derivative on control hinge moments has

    normally been ignored by designers in the past; it would appear that this effect should be taken into

    account in appropriate cases.

    Although some of the flight results show considerable scatter, the derivatives are reasonably well

    defined an dt he agreement with wind-tunnel results is reasonable in view of the difficulties involved in the

    test techniques and the non-linear variation of some of the derivatives.

  • 7/25/2019 Flight measurements

    9/29

    L I S T O F S Y M B O L S

    A

    OCL

    a -~- - - -

    Oa

    B

    boE

    OCn

    b 1 -

    Oa

    OCu~

    b2~ aC~

    c

    HA

    C ~ o V~ SA cA

    H E

    CH = Po V?SgcE

    CL

    0 = 32 18

    H

    Hj

    Hk

    A

    iA -~ m s 2

    B

    in

    = m ~

    I

    J

    I

    mA

    mE

    m

    n

    P

    A i r c r a f t ro l l in g m o m e n t o f i n e rt i a

    L i f t - c u rv e s l o p e

    A i r c r a f t p i t c h i n g - m o m e n t i n e r t ia

    C o n s t a n t i n e q u a t i o n (A .2 )

    M e a n c h o rd o f c o n t ro l , a f t o f t h e h i n g e l in e

    W i n g m e a n a e r o d y n a m i c c h o r d

    A i l e ro n h i n g e -m o m e n t c o e f f i c i e n t

    E l e v a t o r h i n g e - m o m e n t c o e f f ic i e nt

    Li f t coef f ic ien t

    A e r o d y n a m i c h in g e m o m e n t o f a c o n t r o l , n o se u p p o s it i ve

    E l e v a t o r j a c k m o m e n t , n o s e u p p o s i t i ve

    A i l e r o n j a c k m o m e n t , n o s e u p p o s it iv e

    M o m e n t o f in e r t i a o f a c o n t r o l a b o u t t h e h i n g e l i n e

    C i r c u l a r f r e q u e n c y o f t h e a i r c r a f t l o n g i t u d i n a l s h o r t -p e r i o d

    o s c i l l a t i o n

    A i l e r o n r o l l in g p o w e r

    A i l e r o n m a s s

    E l e v a t o r m a s s

    A i r c r a f t m a s s

    N o r m a l a c c e l e r a t i o n

    A i r c r a f t r a t e o f r o l l, p o s i ti v e t o s t a rb o a rd

    s lugs / f t2

    s lugs / f t2

    ft

    f t s e c 2

    l b f t

    lb / f t

    lb / f t

    s lugs / f t2

    se c - ~

    s lugs

    s lugs

    s lugs

    ' a ' u n i t s

    r a d / s e c

  • 7/25/2019 Flight measurements

    10/29

    r~/~)

    1 A

    l g

    S A

    S

    S

    s

    T

    V

    i

    X A

    X E

    Ya

    YE

    ~ d ~ n

    o

    N O T E :

    Suff ices

    A

    E

    2

    = 0.002378

    A d o t a b o v e a n y

    L I S T O F S YMBOLS - - - c o n t i n u e d

    A ir c r af t r a t e o f p i t ch p o s i t i v e n o se u p r a d / s e c

    A m p l i t u d e r a t i o o f r a t e o f p i t c h t o n o r m a l a c c e l e r a t i o n i n th e l o n g i tu d in a l

    sh o r t p e r io d o sc i l la t i o n

    See Fig. 15 f t

    See

    Fig. 15 f t

    Ai le ron a rea a f t o f h inge f t 2

    Elev a tor a rea a f t o f h inge f t2

    W in g a r e a f t 2

    W in g s e misp a n f t

    D u r a t i o n o f c o n t r o l p u l s e s e c

    t rue a i r speed f t / sec

    E q u iv a l e n t a i r sp e e d f t /s e c

    See Fig. 15 f t

    See

    Fig . 15 f t

    See

    Fig. 15 f t

    See

    Fig. 15 f t

    Airc ra f t inc idence rad ians

    E le v a to r p i t c h in g p o w e r

    I n c r e me n ta l v a lu e s o f p a r a m e te r s

    S w e e p o f c o n t r o l h in g e l in e d e g r e e s

    E le v a to r a n g le t r a il i n g e d g e d o w n p o s i ti v e me a s u r e d i n a p l a n e p a r a ll e l t o

    the a i rc ra f t cen t re l ine rad ians

    A i l e r o n an g l e t r ai l in g e d g e o f e i t h e r su rf a c e d o w n p o s i t iv e me a s u r e d i n a

    p l a n e p a r a l le l t o t h e a i r c r a f t c e n t r e l i n e r a d i a n s

    Air dens i ty a t sea leve l s lugs / f t 3

    o f t h e a b o v e q u a n t i t i es d e n o te s d i f f er e n t ia t i o n w i th r e sp e c t t o t ime .

    A i l e r o n

    E le v a to r

    C o n d i t i o n s i n s t e a d y t u r n s a t d i f fe r en t n o r ma l a c c e l e ra t i o n s

  • 7/25/2019 Flight measurements

    11/29

    R E F E R E N C E S

    N o . A u t h o r s )

    1 W . E . A . A c u m . .

    2 P . G . H u t t o n a n d D . M o r t o n

    3 G . F . M o s s a n d R . W . H a y w a r d

    4 F . W . D e e a n d D . G . M a b e y

    R . R o s e , A . A . W o o d f i e l d a n d

    C. S . Barnes

    6 M . S h i n b r o t . . . . . .

    7 W . E . A . A c u m . . . .

    8 F . W . D e e . . . . . .

    9 M . D . D o b s o n . . . . . .

    10 D . J . K e t t l e . . . . . .

    11 S. N e u m a r k . . . . . .

    12 D . R . A n d r e w s . . . . . .

    Ti t le, etc.

    T h e c o m p a r i s o n o f t h e o r y a n d e x p e r i m e n t f o r o s c i ll a t in g w in g s .

    A . R . C . C . P . 6 8 1 . M a r c h 1 9 6 2 .

    R e s u l t s o f p r e s s u r e p l o t t in g a n d c o n t r o l h i n g e m o m e n t t e st s o n a

    1 / 9 sc a l e m o d e l o f F a i r e y D e l t a 2 i n t h e A . R .A . t r a n s o n i c t u n n e l.

    A . R . A . M o d e l t e s t n o t e J 1 2 / 1 .

    U n p u b l i s h e d M . O . A . R e p o r t .

    W i n d t u n n e l c a l i b r a t i o n s o f i n c i d e n c e v a n e s f o r u s e o n t h e F a i r e y

    ER 103 .

    J l . R . aeronau t . Soc . Vol . 67 , No . 628 , p . 267 . Apr i l 1963 .

    F l i g h t m e a s u r e m e n t s o f t h e l if t, l o n g i t u d i n a l t r i m a n d d r a g o f th e

    F a i r e y D e l t a 2 a t M a c h n u m b e r s u p t o 1 . 6 5 a n d c o m p a r i s o n s

    w i t h w i n d - t u n n e l r e s u lt s .

    R . A . E . T . R . 6 7 0 3 6 . J u n e 1 9 6 7 .

    O n t h e a n a l y s is o f l i n e a r a n d n o n - l i n e a r d y n a m i c a l s y s te m s f r o m

    t r a n s i e n t - r e s p o n s e d a t a .

    N A C A T N 3 2 8 8 . D e c e m b e r 1 9 5 4 .

    A e r o d y n a m i c f o r c e s o n a r e c t a n g u l a r w i n g o s c i ll a ti n g in a s u p e r -

    s o n i c a i r s t r e a m .

    R . M. 2763 , A .R .C . Au gus t 1950 .

    F l i g h t m e a s u r e m e n t s a t s u b s o n i c s p e e d s o f t h e a i l e r o n r o ll i n g

    p o w e r a n d l a t e r a l s t a b i l i t y d e r i v a t i v e s lv a n d y v o n a 6 0 d e g

    d e l t a w i n g a i r c r a f t ( F a i r e y D e l t a 2 ) .

    A . R . C . C . P . 7 3 9 . J u n e 1 96 3.

    W i n d t u n n e l t e s ts a t s u p e r s o n i c s p e e d s o f t h e F a i r e y D e l t a 2 .

    A . R . C . C . P . 6 7 2 . O c t o b e r 1 9 6 2 .

    8 f t x 6 f t t r a n s o n i c w i n d t u n n e l t e s t s o n a 1 / 2 4 s c a le m o d e l o f t h e

    F a i r e y D e l t a 2 ( E R 1 03 ).

    A . R . C . C . P . 6 5 6 . M a y 1 9 6 2 .

    A n a l y s is o f s h o r t - p e r i o d l o n g i t u d i n a l o s c i l la t i o ns o f a n a i r c r a f t:

    i n t e r p r e t a t i o n o f fl i g h t te s t s.

    A .R~C. R . M . 2940 . Se p t e m be r 1952 .

    M e a s u r e m e n t s i n fl i g h t o f t h e l o n g i t u d i n a l s t a b i l i t y d e r i v a t i v e s

    o f a 6 0 d e g d e l t a w i n g a i r c r a f t ( F a i r e y D e l t a 2 ) .

    A . R . C . C . P . 6 3 9 . A p r i l 1 95 9.

    10

  • 7/25/2019 Flight measurements

    12/29

    APPENDIX A

    The Hinge Moments Actin9 on Elevator and Aileron Controls.

    Fig. 15 shows the relevant geometric data for the control configuration under discussion. The hinge

    line of both surfaces is swept, and this introduces certain difficulties in the definition of the various quan-

    tities involved. Unfortunately there is no clearly established rule to guide us here, and it is therefore

    proposed to use the following definitions which have also been adopted for the Royal Aeronautical

    Society aerodynamic data sheets. Control angles and chords are measured in a plane parallel to the plane

    of symmetry of the aircraft, whilst the hinge moments are measured about the swept contro l hinge line.

    A further difficulty arises as the conventional definition for positive aileron deflection is trailing edge

    down for the starboard aileron and t railing edge up for the port surface, whereas trailing edge down is

    normally considered positive in hinge moment nota tion ; the latter definition is used here.

    At any instant in flight the sum of the control jack moment, the aerodynamic hinge moment and the

    inertia reactions is zero. Using the definit ions shown in Fig. 15, it can be shown for the starboard elevator

    that the control jack moment is given by:

    - H s = H Z + r E me g n - ( x e r~ m t + I z cos )~)g1-Ie sec 2 - ( Y e re m e - I e sin )~)p

    (A.1)

    where the small term due to the aircraft acceleration along the flight path has been ignored. Hj is the jack

    moment, H E is the aerodynamic hinge moment, both measured trailing edge down positive, and IE the

    control inertia about the hinge axis. Similar equations may be written for the other three control surfaces.

    The aerodynamic hinge moment is a function of control deflection and the aerodynamic quantities

    describing the aircraft motion, these relationships not always being linear. In theory such a situation

    can be dealt with by an equations of motion technique such as that proposed for the extraction of

    aircraft stability derivatives by Shinbrot 6, but this would require a resolution of the test data well beyond

    the accuracy available from the present flight tests. As the control pulses and consequent aircraft responses

    used during the flight tests were generally rather small, it was assumed that the hinge-moment character-

    istics could be linearised for the range of parameters covered in each test, and the formal analysis has

    been made using linearised equations.

    Consequent ly for the elevator, H e is expanded as

    H e = Po V ~ S ece b o ~ + b ~ c~ + b 2 ~ t l + - - ~ - ~ qCeV +

    0

    + O Cn ~ OcE O C~ &c~ ]

    (A.2)

    The term

    OCn~/O~

    represents the elevator hinge moment induced by aileron deflection; in the present

    tests this term was found to be comparable in magnitude with primary control derivatives bl~ and bat.

    As the strain gauges used to measure the jack moments were unable to give reliable absolute values,

    almost all the analysis was made using incremental values. As a consequence b o could not be determined.

    The frequency and amplitude of the control movements used were considerably larger than those of

    the resulting aircraft motion and thus one would expect any unsteady aerodynamic effects to be more

    important for the former. Estimates based on Acum 1 v suggest that at supersonic speeds unsteady con-

    tributions are ver~small compared with those from the steady aerodynamic effects ; while at the subsonic

    speeds tested they might produce up to 2 per cent change in the peak hinge moment , and a phase displace-

    ment of 12 deg between the peaks of the control input and resulting hinge moment. In fact, the flight

    11

  • 7/25/2019 Flight measurements

    13/29

    r e c o r d s s h o w e d t h a t t h e p e a k o f t h e h in g e mo me n t d id n o t l a g b y mo r e t h a n 1 0 d e g b e h in d t h e p e a k o f

    the cont ro l input . S ince th is i s equiva len t to le ss than 2 pe r cen t in ampl i tude , i t has been assumed tha t

    uns teady e f fec ts have a negl ig ib le in f luence on the leve l o f the h inge m om ent peaks .

    T h u s e q u a t i o n A . 2 ) i s r e d u c e d t o

    . aCH ~ \

    A H E = Po V~ SE cE bl~ Aa + b2E A t / + - - - ~ A ~ A.3)

    w h e r e t h e s y mb o l A d e n o t e s i n c r e me n ta l v a lu e s .

    F o r t h e s t a r b o a r d e l e v a to r e q u a t i o n s A . 1 ) a n d A . 3 ) g iv e

    - A H j

    = Po V SECE

    bl~ Ac~+b2~ A

    OC/tE

    \

    + r E mE g A n - x E rE mE + I E c o s 4 ) A 0 -

    - Ig sec 4 A/~ - YE re m E - Ig sin 4) A/~. A.4)

    A s imi l ar e x p r e s s io n ma y b e w r i tt e n f o r th e s t a r b o a r d a i l er o n i n c r e me n ta l ja c k mo m e n t .

    - - A H K = P o V : S A c A b l . 4 A c ~+ b 2 A

    A~ + - - ~ -CHA At/) +

    + r A ma g A n - xA rA ma + Ia cos 4) A0 -

    - 1 A sec 4 A~ - YA rA rnA --IA sin 4) Ai0. A.5)

    12

  • 7/25/2019 Flight measurements

    14/29

    APPENDIX B

    Eva lua t ion o f b 2 and C ross -con tro l D er iva t ives f rom Con tro l Pu lses .

    If a control pulse is of short duration , at the instan t of maximum control application the aircraft will

    not have responded sufficiently to affect significantly the aerodynamic hinge moments. Consequently

    at that instant , incremental values measured from the initial t rim condition, Aa, Ap and Aq are negligible,

    but in the present tests their time derivatives are significant.

    In the elevator pulses analysed no significant aileron movement occurred, and consequently A/~ was

    zero. The incremental values of the elevator and aileron jack moments, for both the port and starboard

    sides are given by:

    - A H s = Po V 2 S ~ c E b 2 ~ A t / + r e m e g A n - ( x ~ r ~ m e + I ~ c o s 2 ) A g l - I E s e c 2 A i i

    (B.1)

    ( 3 C H . 4

    - A H r = P o V 2 S a c A -~ q A t / + r A mA g A n - ( x A r A m A + IA

    cos 2) A~. (B.2)

    These equations can be solved for b2~ and

    OCHA/Ot/,

    the remaining terms being either known aircraft

    parameters or variables of motion. In fact, only At/was measured, A/] and A ~ were not measured and An

    was measured by an instrument too coarse to give the required resolution. As we are dealing here with the

    initial response to a control pulse before rate of pitch and incidence have had time to build up to any

    extent, the effects of aircraft damping ma y be ignored, giving:

    2 g O C , ,

    A~ = - - A t / (B.3)

    CL iB ~ at/

    An - OCL

    At/ (B.4)

    Ot/ C L

    Values of

    OCm/Ot/and OCL/Otl

    have been obtained from earlier tests made on the aircraft and reported

    in Ref. 5.

    The most plausible procedure for estimating the value of A is to assume that the elevator movement

    can be approximated to a sine wave in this region, say

    A t / ( t) = A t/m a X s in l I T )

    where T is the duration of the control pulse.

    (B.5)

    The value coinciding with the maximum t/is,

    A = -A t/ . (B.6)

    Having thus conveniently defined all the variables in terms of At/, the peak value of elevator, equations

    (B.1) and (B.2) can now be solved for b2~ and aCHA/0t for both port and starboard controls

    - A H s S F r E m E O CL 2 ( x ~ r E m E + I ~ c o s 2 ) O C m

    b 2 E = l p o V 2 S E c E A r l S t C E L m O r r t l i B ~ O t

    / s e o ) 2 1 B T ,

    13

  • 7/25/2019 Flight measurements

    15/29

    rt 1 2 L m : : B . 8 )

    Po V~ SA CA Art SA ca art m tB c Ort ]

    Con side r ing the a i le ron pulse , the acce le ra t ion in ro l l i s de te rm ined as for ~ in equ a t ion (B .3).

    2g

    P - CL iA~S ~ A~ . (B.9)

    F l igh t s and tunne l 9'10 va lues of l~ sho w reaso nable agreemen t , and wh ere poss ib le fl igh t va lues hav e been

    used . Apply ing a pro ced ure ident ica l to the e leva tor case , equa t ions fo r the eva lua t ion of b2. and the c ross

    de r iva t ive

    O C m J a ~

    c a n t h e n b e o b t a in e d , g iv in g

    r s e c 1

    b~ = po v ~ s ~ ~ s~ ~ L ~ o ~ k T 2 y A r A l~ B .1 0 )

    mZ S

    O C~_._ - A H , b 2 E A ~ + S 2 y E r ~ m e - I ~ s i n 2 t ~ (B.10)

    4 P V i S E c ~ A ~ a c SE cE m i S

    where the a l te rna te s igns apply to s ta rboa rd and por t r e spec t ive ly . In the present te s ts , a sma l l cor rec t ion

    for At /ha s bee n re ta ine d in equ atio n (B.11) as this term is signif icant, a l th ou gh A is negligible .

    14

  • 7/25/2019 Flight measurements

    16/29

    A P P E N D I X C

    Determination o f b 1 rom the Stick Fixe d Longitudinal Short Period Oscil lations.

    F o r t h is m o t io n i n c r e me n ta l v a lu e s a r e me a s u r e d b e tw e e n s u c c e s s iv e p e a k s o f t h e a i r c r a ft o s c i l la t io n .

    In th e pres ent te s t s , Ap, AiO, A# and A~ a re negl ig ible. Fol lo win g s im i la r r easonin g to tha t o f Append ix B ,

    i t can be shown f rom Ref . 11 tha t the a i r c ra f t mot ions in normal acce le ra t ion and p i tch ing a re g iven by ,

    a Aa

    An - (C.1)

    CL

    A 4

    = - ~

    ~ A < ~

    o 2 )

    This r e la t ion has .been de r ived ignor ing the e ffec t o f the da mp ing de r iva t ives , s ince the dam ping was sma l l

    in the f ligh t te s t s . J i s the f r equen cy of the longi tud ina l sho r t pe r io d osc i l la t ion an d (77/~) s the am pl i tud e

    r a t i o o f p i t c h in g v e lo c i t y t o n o r ma l a c c e l e r a ti o n i n t h i s o s c i l l a ti o n . B o th t h e s e p a r a me te r s , a n d t h e u n -

    t r imm ed l if t curve s lope , were m easu red in p rev iou s f l igh t te s t s 1z .

    T h e i n c r e me n ta l j a c k mo m e n t f o r t h e e l e v a to r is , f r o m e q u a t i o n ( A .4 ),

    b OCH~ \

    - A H a = P o V g S E C~

    1 E A c ~ + b 2 EA i ? + ~ - A ~ )

    I D I

    r e m ~ g + ( x ~ r e m e + I e c o s 2 ) < ~

    ~-~LAa. (C.3)

    F r o m th is e q u a t i o n b l e m a y b e d e r iv e d , a s b2 E a n d

    OCHE/O~

    a r e k n o w n f r o m A p p e n d ix B . I n t h e p r e s e n t

    tests , the term invo lving A~ is negligible . Th us

    = A H s A~? a S [ r J ~ m m ~ + ( x ~ r e m E + i ~ c o s 2 ) Z _ ( 7 ~

    (C.4)

    b l~ = Po V ~ S E c~ A c~ b z ~ - ~ S e c e r a g \ n i l

    In the case of the a i le ron , the te rm s in bo th A q and A~ a re negl ig ib le in the pres ent te s t s . Thus ,

    m g \ n ) J

    c . 5 )

    i5

  • 7/25/2019 Flight measurements

    17/29

    A P P E N D I X D

    Evaluation of Elevator and Aileron Hinge M om ent D erivat ives due to incidence bl fro m f l ight at dif ferent

    values o f normal acceleration.

    I n f li g h t a t c o n s t a n t n o r m a l a c c e l e r a t i o n , t h e a n g u l a r a c c e l e r a t i o n te r m s c a n b e i g n o r e d a n d e q u a t i o n s

    A.1) an d A.2) r ed uce t o ,

    c ~ C ~

    - H j = Po V ~ S E c ~ b o ~ + b ~ + b B ~ q + - U - j + rE m ~ gn

    D . I )

    a s i m i l a r e q u a t i o n m a y b e w r i t t e n f o r t h e a i le r o n s .

    T a k i n g t e s ts a t t h e s a m e M a c h n u m b e r , b u t d i f f e re n t n o r m a l a c c e l e r a ti o n s , sa y , n l a n d n 2, w e g e t ,

    l E k O o SE cE A b 2E

    w h e r e s u f fi c e s 1 a n d 2 r e f e r t o t h e d i f f e r e n t t e s t c o n d i t i o n s a n d A s ig n i fi e s t h e i n c r e m e n t b e t w e e n t e s t c o n -

    d i t i ons , b2E an d a C n J O ~ h a v e b e e n d e r i v e d i n A p p e n d i x B .

    A s i m i l a r e x p r e s s i o n c a n b e d e r i v e d f o r t h e a i l e r o n s .

    16

  • 7/25/2019 Flight measurements

    18/29

    T A B L E 1

    Leading Aircraft Dimensions

    G r o s s w i n g a r ea

    S e m i - s p a n

    N o m i n a l c e n t r e li n e c h o r d

    T i p c h o r d

    M e a n a e r o d y n a m i c c h o rd

    W i n g s e c t i o n

    T r a i l i n g -e d g e a n g l e

    L e a d i n g - e d g e s w e e p b a c k

    T r a i l i n g - e d g e s w e e p b a c k

    T w i s t

    D i h e d r a l

    I n c i d e n c e w i t h r e s p e c t t o f u s e l ag e d a t u m

    M e a n w e i g h t a t t e s t c o n d i t i o n

    P i t c h i n g m o m e n t o f i n e r t i a c o e f f ic i e n t , iB

    R o l l i n g m o m e n t o f i n e r t i a c o e f f i c ie n t , i a

    S = 360 f t 2

    s = 13-42 ft

    2 5 f t

    1 83 ft

    = 16 75 ft

    4 ~ S y m m e t r i c a l , m a x

    t ic

    a t 2 9. 5 ~ c h o r d

    5.2

    59.9

    0

    0

    0

    + 1 5

    12800 Ib

    0 .269

    0 .0558

    17

  • 7/25/2019 Flight measurements

    19/29

    T A B L E 2

    Control Surface Details

    A i l e r o n

    r n A , m a s s

    I A, m o m e n t o f i n e r ti a a b o u t t h e h in g e

    S A, a r e a a f t o f h i n g e

    CA , m e a n c h o r d a f t o f h i n g e

    rA

    A ~ F i g . 1 5

    YA

    2 , s w e e p o f h i n g e

    H o r n - b a l a n c e a r e a

    R i g g e d u p a n g l e

    Elevator

    rg /E ass

    I ~ , m o m e n t o f i n e r t i a a b o u t t h e h i n g e

    S E, a r e a a f t o f h i n g e

    c ~, m e a n c h o r d a f t o f h i n g e

    x e F i g . 1 5

    Y~

    2 , s w e e p o f h i n g e

    2 3 8 s l u g s

    2 7 7 s l u g s f t z

    1 6 0 4 f t 2

    2 7 0 f t

    0 6 5 f t

    8 - 5 2 f t

    1 0 - 0 1 f t

    9 . 7

    0 - 5 7 f t 2

    3

    3 1 5 s l u g s

    6 1 7 s l u g s f t 2

    2 0 - 1 8 f t z

    3 6 9 f t

    0 7 5 f t

    7 5 7 f t

    4 53 f t

    9 . 7

    18

  • 7/25/2019 Flight measurements

    20/29

    O O

    L 2 ~ J ~ j I

    S CA L~ ~

    L L v_

    F I G . 1 . G e n e r a l a r r a n g e m e n t o f t h e F a i r e y D e l t a 2.

  • 7/25/2019 Flight measurements

    21/29

    . . . . - ' ' ; -

    ~:: :~

    . , ~ f

    . ~ . 4

    r - - ~

    ? ' ~ r ( t ~ . ' ~ * :

    \

    F l o 2 T h e F a i r e y D e l t a 2

  • 7/25/2019 Flight measurements

    22/29

    bO

    (3111

    I - . a

    Iij

    Z

    Qw

    < \ \

    I I

    1 2 1 4

    M A C H N U M B E R

    1 6

    El

    F IG . 9 . E l e v a t o r h i n g e m o m e n t d u e t o i n c i d e n c e

    d e r i v a t i v e v r s u s M a c h n u m b e r .

  • 7/25/2019 Flight measurements

    26/29

    -2- 2

    + I 0 ~ 0 0 0 ~ P U L S E

    1 5

    -I .6

    -I ,4

    - 1 2

    ~2E ~

    - I 0

    + 4 * . - I - / /

    - 0 - g + f I

    t

    4 I

    - 0 6 I

    +

    +

    1-

    +

    X

    +.

    i l

    y .

    ^

    X

    \

    \

    T U N N E L R E S U L T ~ FO R

    4-070 OO,,Ct CON DITIO NS

    - 0 4

    - 0 . 2

    O - A .

    0 .4 - 0 .6 0 .8 1 .0 I - P I - 4-

    M A C . . . H N U M B E R

    FIG. 10. Ele vat or hing e mom ent due to elevator

    angle derivative

    v r s u s

    Mach number.

    1 . 6

    - 0 8

    - 0 - 6 .

    c3CH~

    - 0 2

    [ : o o o o I

    0 - 4 - 0 - 6 0 .8 I 'O I -P . . I - 4- I - 6

    M A C N N U M B E R

    FIG. 11. Elevator hinge moment due to aileron

    angle derivative versus Mach number.

  • 7/25/2019 Flight measurements

    27/29

    Ix.)

    - ~ - 4 ,

    - 2 0

    - I - i

    - - I - I

    -I-4-

    ~ A

    - I - 0

    -0-

    - -0 ,

    - 0 " 2

    4o,0o 0 c~, PULSE

    + i 0 , 0 0 0 ~ P U L S E

    e 4 0 .0 0 0 Ft TU RN e

    I 0 0 0 0 ~ - ~

    T U R N

    o

    0

    A T U N N E L R E ~ U I - S F O F t

    ~q ~ ~, 4 0 .~ 0 ~]0 F+. CONOITI0~S

    I \ 1 \ / ~

    ~

    I

    I \ I ' ' , 1

    o / 1 1 7 c . z

    - -t , l ~ . . I ~

    = I , ' ~ + + I " ' T

    I

    Jr

    '\ I

    4 0 , O O O F t

    l l , l ~ 1

    ~I I +

    'ti o o o o

    m . ~ + ~ r

    + ~ l

    AA

    0 . 4 -

    FIG. 12.

    0 - 6 0 -~ I - 0 1 2 1 4 - 1 5

    M A E H N U M B E R

    Aileron hinge moment due to incidence

    Derivative ver sus Mach number.

    - I - 8

    - I 6

    - I

    -beA

    - I - 0

    -0 g

    - 0 6

    - 0 - 4

    - 0 2

    l m

    + 1 0 ,0 0 0 f' k PUL SE

    IO,OOOfl:

    l

    f

    O i - A

    0 - 4 - 0 6 0 - 8 1 . 0 I - P - 1 . 4- I - 6

    M A C H N U M B E R

    FIG. 13. Aileron hinge moment due to aileron

    angle derivative

    ver sus

    Mach number.

    40 ,000~

  • 7/25/2019 Flight measurements

    28/29

    Fo

    r~

    R

    2 0

    -1 6

    1.4

    -1 2

    I .0

    - 0 . 8

    - 0 6

    : R

    S

    A I R C R A F T

    C E I t T R E O F _

    G R A V I T Y

    ~ A

    ~ E

    - 0 - 4

    0 2

    0

    I ~ - ~ ; ~ v ~ : :P I ' U I r I ' ~ 1

    M A C H H U M B E R

    F I G . 1 4. A i l e r o n h i n g e m o m e n t ' d u e t o e l e v a t o r -

    a n g l e d e r i v a t i v e

    v r su s

    M a e h n u m b e r .

    I ' C { : )

    E L E V A T O R C E N T R E

    O F G R A V I T Y

    A I L E R O N C E N T R E

    O F G R A V I T Y

    F I G . 1 5. C o n t r o l g e o m e t r i c d a t a .

  • 7/25/2019 Flight measurements

    29/29

    R . M . N o . 3 4 8 5

    rown copyright 1 9 6 7

    P u b l i s h e d b y

    HER MAJESTY S STATIONERY OFFICE

    T o b e p u r c h a s e d f r o m

    4 9 H ig h H o l b o r n , L o n d o n w . c . l

    4 2 3 O x f o r d S t r e e t . L o n d o n w . 1

    1 3A C a s t l e S t r e e t , E d i n b u r g h 2

    1 0 9 S t . M a r y S t r e e t , C a r d i f f

    B r a z e n n o s e S t re e t , M a n c h e s t e r 2

    5 0 F a i r f a x S t r e e t , B r i s t o l 1

    3 5 S m a l l b r o o k , R i n g w a y , B i r m i n g h a m 5

    7 - I 1 L i n e n h a l l S t r e e t , B e l f a s t 2

    o 1 th r o u g h a n y b o o k s e l l e r