flotation frothers. when = 0 o, cos = 1, g flotation = 0, no flotation when = 90 o, cos = 0, g...
Embed Size (px)
TRANSCRIPT

FLOTATION
frothers

when = 0o, cos = 1, Gflotation = 0, no flotation
when = 90o, cos = 0, G = -lg. full flotation
Thus, flotation reagents can be classified into
a) collector (decreases G)
b) frother (no or negligable change of G)
c) depressor (increases G)
water
bubble
particle particle
water
initial statefinal state
flotation
(a part of sphere)
bubble
Gflotation= Gfinal- Ginitial = [sg - (sl+ lg)] A
sg = sl+ lgcos

flo t4
Role of frother
1. Gas dispersion
2. Froth formation
3. Speeding up flotation
4. Improving selectivity of flotation (by interaction with collector)

pulp
froth
frother structure with depth

frother structure
H. Khoshdast, A. Sam, Flotation Frothers: Review of Their Classifications, Properties and Preparation, The Open Mineral Processing Journal, 2011, 4, 25-44 25, 1874-8414/11 2011

Other classifications of frothers
H. Khoshdast, A. Sam, Flotation Frothers: Review of Their Classifications, Properties and Preparation, The Open Mineral Processing Journal, 2011, 4, 25-44 25, 1874-8414/11 2011

Neutral frothers applied in flotationLaskowski, 1988 (with some modifications)
Group Frother 1. aliphatic alcohols
a) linear from amyl to decanol
b) branched iso-amyl methyloisobutylocarbinol
c) with additional group diacetone 2. Cyclic
a) linear cyclohexanol b) branched terpineol
3. Aromatic cresols xylenols
4. Alkoxy-hydrocarbons 1,1,3-trietoxybuthane
5. Polyglycols
R(X)nOH R=H lub CnH2n+1 X=EO (ethylene oxide), PO (propylene oxide) BO (butylene oxide) from 3 to 7

Other classifications of frothers
Class Property of aqueous solution
Liquid-gas interactions at
flotation concentrations
Froth/foam
Surface active
Form colloidal solutions (fatty acids
amine, sulfonates, sulfates)
Stronly reduce water surface tension
Form two (foam) and three (froths) phase
systems
Form true solutions (alcoholes)
Change aqueous surface tension
Form two (foam) and three (froths) phase
systems
Surface inactive
Organic compounds forming true solutions
(ethyl acetal, ethyl diacetone)
Do not change aqueous surface
tension
Form only three phase system (froth)
Inorganic electrolyties Increase surface tension of water
Form weak foams and strong froths with
hydrophobic particles
Frothers classification (Lekki and Laskowski, 1974)

0.1 1 10 100 1000frother concentration, mmol/dm 3
0
20
40
60
80
su
rfa
ce
te
nio
n,
mN
/m
MIBC
CMC
Aston et al., 1983
CMC – critical micellization concentration
MIBC – metyloizobutylokarbinol
Properties of frothers CMC
a b c
Collector ions can be present in aqueous solution as free ions(a), premicellar species, (b) spherical micelles (c).
Structures appear with increasing surfactant concentration in aqueous solution. Symbol o denotes ion appositively charged
to surfactant ion

Properties of frothers
0 4 8 12 16 20frother concentration, ppm
0
0.4
0.8
1.2
1.6
2
bu
bb
le s
ize
, m
m
MIBC
CCCLaskowski, 2004
Tucker et al., 1994
CCC
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
0 0.02 0.04 0.06 0.08 0.1
Sau
ter
mea
n bu
bble
siz
e, m
m
frother concentration, mmol/dm3
CCC95
bubble coalescence
minimum bubble size
Data of Finch, J.A., Nesset, J., Acuna, C., 2008, Role of frother on bubble production and behaviour in flotation, Miner. Eng., 21, 949–957. CCC95 denotes 95% in Sauter mean bubble size reduction compared to mean bubble size in water only. Plotted by Kowalczuk, Ind. Eng.Chem. Res., 2013
DF250

Atrafi et al., 2012, Mineral Eng., vol. 36-38, 138-144
in flotation important is dynamic surface tension

Relationship between flotation selectivity coefficient a and concentration of CxPy frother. ppm = g/dm. Note location of CCC. Kowalczuk, Ind. Eng.Chem. Res., 2013
0 20 40 60 80 100 120100
101
102
103
104
105
106
C1P3C1P5C1P7C2P5C2P3C3P3C3P5C4P1C4P3C4P5
frother concentration, ppm
sele
ctivi
ty o
f flot
ation
a
CCC
CCC vs frother dose

HLB (Hydrophobic - Lipophilic balanse)
HLB = 7 + hydrophilic groups – lipophylic groups
Hydrophilic groups-O- 1.3 -OH (free) 1.9-OH (sorbitan ring) 0.5-SO4Na 38.7-COOK 21.1-COONa 19.1-COOH 2.1-SO3(H) (sulfonate) ~11-tertiary amin 9.4-ester (free) 2.4
Lipophilic groups -CH, –CH2–, CH3–, =CH– 0.475-(CH2-CH2-CH2-O–) 0.15

HLB Application
1.5-3 Antifoaming reagents
3,5-6 Emulsification reagents
4-10 Frothers
7-9 Wetting reagent s
8-18 Emulsifikation reagents (oil in water)
13-15 Detergents
15-18 Solubilization reagents
Application of surfactants depending on their HLB

MWHLB
MWHLB80014.105
71.209CCC95
CCC vs HLB
Kowalczuk, Ind. Eng.Chem. Res., 2013
0.0
1.0
2.0
3.0
4.0
5.0
0.000 0.020 0.040 0.060 0.080 0.100 0.120
CC
C95,
mm
ol/
dm3
HLB/MW
Aliphatic alcohols Polypropylene glycol alkyl ethersPolypropylene glycols Commercial

DFI and other
0 2 4 6 8 10 12 14 16
nCeff
0
100
200
300
400
500
600
700
800
DF
I, s
dm
3/m
mo
le
0.0
1.0
2.0
3.0
4.0
1-C
CC
, m
mo
le/d
m3
0
40
80
120
max
, %
0.0
0.2
0.4
0.6
Jw
,=
25
%, cm
/s
DFI ( )
1-CCC
max
Jw.=25%
Comparison of different frothers properties (DI, CCC, Jw) and ability to mechanical flotation max.
They are similar (Szyszka et al., 2008)

Quartz flotation in the presence of different frothers (Szyszka et al., 2008)

Drzymala, unpublished , 2013

a
ar
)100(
a – selectivity coefficient of flotation – useful component recovery in concentrater – non-useful components recovery in tailing
70 80 90 10050
60
70
80
90
100
Cu recovery in concentrate, Se, %
rec
ov
ery
of
no
n-C
u c
om
po
ne
nts
in t
aili
ng
, Se
no
, %
LUBIN copper ore
lab. tests, rep. 174
a=101.3
30 g/Mg
alfa-terpineol
fractionated flotation
50 g/Mg
20 g/Mg
Drzymala, unpublished , 2013

Frother family Type n m HLB MW g/molCCC95,
mmol/dm3
Aliphatic alcohols Cn
1-Propanol 3 7.48 60 3.9331-Butanol 4 7 74 0.8511-Pentanol 5 6.53 88 0.2841-Hexanol 6 6.05 102 0.1081-Heptanol 7 5.58 116 0.0691-Octanol 8 5.1 130 0.0622-Propanol 3 7.48 60 5.1172-Butanol 4 7 74 1.0412-Pentanol 5 6.53 88 0.3412-Hexanol 6 6.05 102 0.1082-Heptanol 7 5.58 116 0.0782-Octanol 8 5.1 130 0.0623-Pentanol 5 6.53 88 0.4663-Hexanol 6 6.05 102 0.127
Propylene glycol ethers CnPm
Propylene glycol methyl ether 1 1 8.28 90 0.489Propylene glycol propyl ether 3 1 7.33 118 0.246Propylene glycol butyl ether 4 1 6.85 132 0.159Di(propylene glycol) methyl ether 1 2 8.13 148 0.176Di(propylene glycol) propyl ether 3 2 7.18 176 0.091Di(propylene glycol) butyl ether 4 2 6.7 190 0.063
Tri(propylene glycol) methyl ether 1 3 7.98 206 0.073Tri(propylene glycol) propyl ether 3 3 7.03 234 0.047Tri(propylene glycol) butyl ether 4 3 6.55 248 0.028
Polypropylene glycols Pm
Di propylene glycol 2 9.25 134 0.396Tri propylene glycol 3 9.125 192 0.172Tetra propylene glycol 4 9 250 0.088Poly propylene glycol 425 7 8.625 425 0.014Poly propylene glycol 725 12 8 725 0.010Poly propylene glycol 1000 17 7.375 1000 0.008
Commercial
FX120-01 6 6.05 102 0.108DowFroth 250 DF250 1 4 7.83 264 0.038DowFroth 1021 DF1021 1 6.7 7.48 420 0.014FX160-05 3 2.5 7.11 207 0.072FX160-01 1 3.8 7.86 251 0.048F150 7 8.625 425 0.014F160 4 2.5 6.63 217 0.037
Frother properties
Zhang, W., Nesset, J.E., Rao, R., Finch, J.A., 2012, Minerals, 2, 208–227.