flows and networks (158052)

33
Flows and Networks (158052) Richard Boucherie Stochastische Operations Research -- TW wwwhome.math.utwente.nl /~ boucherierj /onderwijs/158052/158052.html Introduction to theorie of flows in complex networks: both stochastic and deterministic apects Size 5 ECTS 32 hours of lectures : 16 R.J. Boucherie focusing on stochastic networks 16 W. Kern focusing on deterministic networks Common problem How to optimize resource allocation so as to maximize flow of items through the nodes of a complex network Material: handouts / downloads Exam: exercises / (take home) exam References: see website

Upload: yachi

Post on 14-Feb-2016

31 views

Category:

Documents


0 download

DESCRIPTION

Introduction to theorie of flows in complex networks: both stochastic and deterministic apects Size 5 ECTS 32 hours of lectures : 16 R.J. Boucherie focusing on stochastic networks 16 W. Kern focusing on deterministic networks Common problem - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Flows and Networks (158052)

Flows and Networks (158052)

Richard BoucherieStochastische Operations Research -- TW

wwwhome.math.utwente.nl/~boucherierj/onderwijs/158052/158052.html

Introduction to theorie of flows in complex networks: both stochastic and deterministic apects

Size5 ECTS

32 hours of lectures : 16 R.J. Boucherie focusing on stochastic

networks 16 W. Kern focusing on deterministic networks

Common problemHow to optimize resource allocation so as to

maximize flow of items through the nodes of a complex network

Material: handouts / downloads

Exam: exercises / (take home) exam

References: see website

Page 2: Flows and Networks (158052)

Motivation and main question

Motivation

Production / storage system

Internet http://www.warriorsofthe.net/

trailer

Road traffic

Main questions

How to allocate servers / capacity to nodes orhow to route jobs through the systemto maximize system performance, such as throughput, sojourn time, utilization

QUESTIONS ??

Page 3: Flows and Networks (158052)

Aim: Optimal design of Jackson network

• Consider an open Jackson network

with transition rates

• Assume that the service rates and arrival rates

are given

• Let the costs per time unit for a job residing at queue j be

• Let the costs for routing a job from station i to station j be

• (i) Formulate the design problem (allocation of routing

probabilities) as an optimisation problem.

• (ii) Provide the solution to this problem

kk

jjj

jkjjk

pnTnq

pnTnq

pnTnq

000

00

))(,(

))(,(

))(,(

ja

jkb

0j

Page 4: Flows and Networks (158052)

Flows and network: stochastic networks

Contents

1. Introduction; Markov chains

2. Birth-death processes; Poisson process, simple queue;reversibility; detailed balance

3. Output of simple queue; Tandem network; equilibrium distribution

4. Jackson networks;Partial balance

5. Sojourn time simple queue and tandem network

6. Performance measures for Jackson networks:throughput, mean sojourn time, blocking

7. Application: service rate allocation for throughput optimisationApplication: optimal routing

Page 5: Flows and Networks (158052)

Today:

• Introduction / motivation course• Discrete-time Markov chain• Continuous time Markov chain• Birth-death process• Example: pure birth process• Example: pure death process• Simple queue• General birth-death process:

equilibrium• Reversibility, stationarity• Truncation• Kolmogorov’s criteria• Summary / Next• Exercises

Page 6: Flows and Networks (158052)

Today:

• Introduction / motivation course• Discrete-time Markov chain• Continuous time Markov chain• Birth-death process• Example: pure birth process• Example: pure death process• Simple queue• General birth-death process:

equilibrium• Reversibility, stationarity• Truncation• Kolmogorov’s criteria• Summary / Next• Exercises

Page 7: Flows and Networks (158052)

Markov chain

• Xn n=1,2,… stochastic process

• State space : all possible states

• Transition probability

• Markov property

• time-homogeneous

• Property

)|(),( 1 iXjXPjip nn

},...,1,0{ NS

Nijip

NjijipN

j

0,1),(

,0,0),(

0

),...,|( 1111 jXjXjXP nnnn

)|(),...,|(

11

1111

nnnn

nnnn

jXjXPjXjXjXP

Page 8: Flows and Networks (158052)

Markov chain : equilibrium distribution

• n-step transition probability

• Evaluate:

• Chapman-Kolmogorov equation

• n-step transition matrix

• Initial distribution

• Distribution at time n

• Matrix form

),()|()|( 0 jiPiXjXPiXjXP nnmnm

),(),(),(1

2 jkpkipjiPN

k

),(),(),(1

jkPkiPjiP mn

N

kmn

),)((),( jiPjiPPP nn

nn

)()( 0 iqiXP ))(),..,1(( Nqqq

),()()()(1

jkPkqjXPjp n

N

knn

nnnn PNpp qp ))(),..,1((

Page 9: Flows and Networks (158052)

Markov chain: classification of states

• j reachable from i if there exists a path from i to j• i and j communicate when j reachable from i and

i reachable from j • State i absorbing if p(i,i)=1• State i transient if there exists j such that j

reachable from i and i not reachable from j • Recurrent state i process returns to i infinitely

often = non transient state• State i periodic with period k>1 if k is smallest

number such that all paths from i to i have length that is multiple of k

• Aperiodic state: recurrent state that is not periodic

• Ergodic Markov chain: alle states communicate, are recurrent and aperiodic (irreducible, aperiodic)

007.0003.002.08.000001.04.05.000007.03.00000005.05.000006.04.0

P

Boucherie
plaatjes uit boek op bord tekenen!
Page 10: Flows and Networks (158052)

Markov chain : equilibrium distribution

• Assume: Markov chain ergodic

• Equilibrium distribution

independent initial state

stationary distribution

• normalising

interpretation probability flux

)(),(lim)|(lim 0 jjiPiXjXP nnnn

)(),(),(1 jjiPjiP nn

),(),(),(1

1 jkpkiPjiP n

N

kn

),()()(1

jkpkjN

k

n

nPP qππ

lim

1)(1

kN

k

SjjjtXPSjjjXP

),())((

),())0((

Page 11: Flows and Networks (158052)

Discrete time Markov chain: summary

• stochastic process X(t) countable or finite state space SMarkov property

time homogeneous independent tirreducible: each state in S reachable from any other state in Stransition probabilities

Assume ergodic (irreducible, aperiodic) global balance equations (equilibrium eqns)

solution that can be normalised is equilibrium distributionif equilibrium distribution exists, then it is unique and is limiting distribution

))(|)(())(,...,)(|)((

11

1111

nnnn

nnnn

jtXjtXPjtXjtXjtXP

))(|)(( jtXktXP

))(|)1((),( jtXktXPkjp

1),(

kjpSk

).()()( jkpkjSk

)())0(|)((lim kjXktXPt

Page 12: Flows and Networks (158052)

Today:

• Introduction / motivation course• Discrete-time Markov chain• Continuous time Markov chain• Birth-death process• Example: pure birth process• Example: pure death process• Simple queue• General birth-death process:

equilibrium• Reversibility, stationarity• Truncation• Kolmogorov’s criteria• Summary / Next• Exercises

Page 13: Flows and Networks (158052)

Continuous time Markov chain• stochastic process X(t)

countable or finite state space S

Markov property

transition probability

irreducible: each state in S reachable from any other state in S

Chapman-Kolmogorov equation

transition rates or jump rates

))(|)(())(...,)(,)(|)(( 11

itXjstXPjtXjtXitXjstXP nn

))0(|)((),( iXjtXPjiPt

),(),(),( jkPkiPjiP stk

st

jihjiPjiq h

h

),(lim),(0

)(),(),( hohjiqjiPh

Page 14: Flows and Networks (158052)

Continuous time Markov chain

• Chapman-Kolmogorov equation

transition rates or jump rates

• Kolmogorov forward equations: (REGULAR)

Global balance equations

),(),(),( jkPkiPjiP stk

st

jihjiPjiq h

h

),(lim),(0

)],()(),()([0

)],(),(),(),([),('

)],(),(),(),([

]1),()[,(),(),(),(),(

),(),(),(

kjqjjkqk

kjqjiPjkqkiPjiP

kjPjiPjkPkiP

jjPjiPjkPkiPjiPjiP

jkPkiPjiP

jk

ttjk

t

hthtjk

hthtjk

tht

htk

ht

Page 15: Flows and Networks (158052)

Markov jump chain

• Hier tranparant met sprongketen, is nodig in bewijs verderop.

Page 16: Flows and Networks (158052)

Continuous time Markov chain: summary

• stochastic process X(t) countable or finite state space SMarkov property

transition rates independent t

irreducible: each state in S reachable from any other state in SAssume ergodic and regular

global balance equations (equilibrium

eqns)

π is stationary distribution

solution that can be normalised is equilibrium distributionif equilibrium distribution exists, then it is unique and is limiting distribution

)],()(),()([0 kjqjjkqkjk

)())0(|)((lim kjXktXPt

))(|)(())(...,)(,)(|)(( 11

itXjstXPjtXjtXitXjstXP nn

jihjiPjiq h

h

),(lim),(0

Page 17: Flows and Networks (158052)

Today:

• Introduction / motivation course• Discrete-time Markov chain• Continuous time Markov chain• Birth-death process• Example: pure birth process• Example: pure death process• Simple queue• General birth-death process:

equilibrium• Reversibility, stationarity• Truncation• Kolmogorov’s criteria• Summary / Next• Exercises

Page 18: Flows and Networks (158052)

Birth-death process• State space

• Markov chain, transition rates

• Bounded state space:

q(J,J+1)=0 then states space bounded above at J

q(I,I-1)=0 then state space bounded below at I

• Kolmogorov forward equations

• Global balance equations

otherwisejkjj

ratedeathjkjratebirthjkj

kjq

0)()(

1)(1)(

),(

ZS

)1()1()]()()[()1()1(0

)1()1,()]()()[,()1()1,(),(

jjjjjjj

jjiPjjjiPjjiPdtjidP

tttt

Page 19: Flows and Networks (158052)

Example: pure birth process• Exponential interarrival times, mean 1/

• Arrival process is Poisson process• Markov chain? • Transition rates : let t0<t1<…<tn<t

• Kolmogorov forward equations for P(X(0)=0)=1

• Solution for P(X(0)=0)=1

jkjk

kjq

hohjtXjhtXPhojtXjhtXP

hohjtXjhtXPjntnXjtXjtXjhtXP

1),(

)(1))(|)(()())(|2)((

)())(|1)(())(,...,0)0(,)(|1)((

),0()0,0(

),0()1,0(),0(

jPdt

dP

jPjPdtjdP

tt

ttt

0,...,2,1,0,!)(),0( tjejtjP tj

t

Page 20: Flows and Networks (158052)

Example: pure death process• Exponential holding times, mean 1/

• P(X(0)=N)=1, S={0,1,…,N}

• Markov chain? • Transition rates : let t0<t1<…<tn<t

• Kolmogorov forward equations for P(X(0)=N)=1

• Solution for P(X(0)=N)=1

jkjjkj

kjq

hohjjtXjhtXPhojtXjhtXP

hohjjtXjhtXPjntnXjtXjtXjhtXP

1),(

)(1))(|)(()())(|2)((

)())(|1)(())(,...,0)0(,)(|1)((

),0(),(

),0()1,0()1(),(

NPNdtNNdP

jPjjPjdt

jNdP

tt

ttt

0,,...,2,1,0,1),(

tNjeejN

jNPjNtjt

t

Page 21: Flows and Networks (158052)

Simple queue• Poisson arrival proces rate , single server

exponential service times, mean 1/

• Assume initially empty:

P(X(0)=0)=1, S={0,1,2,…,}

• Markov chain? • Transition rates :

0,0,][

0,11

),(

)(][1))(|)(()())(|1)(()())(|1)((

jjkjjkjjk

jk

kjq

hohhjtXjhtXPhohjtXjhtXPhohjtXjhtXP

Page 22: Flows and Networks (158052)

Simple queue• Poisson arrival proces rate , single server

exponential service times, mean 1/

• Kolmogorov forward equations, j>0

• Global balance equations, j>0

0,0,][

0,11

),(

jjkjjkjjk

jk

kjq

)1()0(0)1(])[()1(0

)1,()0,()0,(

)1,(])[,()1,(),(

jjj

iPiPdtidP

jiPjiPjiPdtjidP

ttt

tttt

Page 23: Flows and Networks (158052)

Simple queue (ctd)

j j+1

Equilibrium distribution: <

Stationary measure; summable eq. distrib.

Proof: Insert into global balance

Detailed balance

j

jj

)/)(/1(

)/)(0()(

).1()1()1,()( jjqjjjqj

Page 24: Flows and Networks (158052)

Birth-death process• State space

• Markov chain, transition rates

• Definition: Detailed balance equations

• Theorem: A distribution that satisfies detailed balance is a stationary distribution

• Theorem: Assume that

then

is the equilibrium distrubution of the birth-death prcess X.

0,)0(0,)()(

0,1)(1)(

),(

jjkjjkjj

ratedeathjjkjratebirthjkj

kjq

,...}2,1,0{ NS

).1()1()1,()( jjqjjjqj

1

1 )1,(),1()0(

rrqrrqj

rSj

Sjrrqrrqj

j

r

,)1,(),1()0()(

1

Page 25: Flows and Networks (158052)

Today:

• Introduction / motivation course• Discrete-time Markov chain• Continuous time Markov chain• Birth-death process• Example: pure birth process• Example: pure death process• Simple queue• General birth-death process:

equilibrium• Reversibility, stationarity• Truncation• Kolmogorov’s criteria• Summary / Next• Exercises

Page 26: Flows and Networks (158052)

Reversibility; stationarity• Stationary process: A stochastic process is

stationary if for all t1,…,tn,

• Theorem: If the initial distribution is a stationary distribution, then the process is stationary

• Reversible process: A stochastic process is reversible if for all t1,…,tn,

NOTE: labelling of states only gives suggestion of one dimensional state space; this is not required

))(),...,(),((~))(),...,(),(( 2121 nn tXtXtXtXtXtX

1)(

jSj

))(),...,(),((~))(),...,(),(( 2121 nn tXtXtXtXtXtX

Page 27: Flows and Networks (158052)

Reversibility; stationarity• Lemma: A reversible process is stationary.

• Theorem: A stationary Markov chain is reversible if and only if there exists a collection of positive numbers π(j), jS, summing to unity that satisfy the detailed balance equations

When there exists such a collection π(j), jS, it is the equilibrium distribution

• Proof

Skjjkqkkjqj ,),,()(),()(

Page 28: Flows and Networks (158052)

Lemma 1.9 / Corollary 1.10:

If the transition rates of a reversible Markov process with

state space S and equilibrium distribution are

altered by changing q(j,k) to cq(j,k) for

where c>0 then the resulting Markov process is

reversible in equilibrium and has equilibrium distribution

where B is the normalizing constant.

If c=0 then the reversible Markov process

is truncated to A and the resulting Markov

process is reversible with equilibrium distribution

Truncation of reversible processes

Sjj ),(

10

ASkAj \,

ASjjBcAjjB\)(

)(

Ajkj

Ak

)()(

A

S\A

Page 29: Flows and Networks (158052)

Time reversed processX(t) reversible Markov process X(-t) also, butLemma 1.11: tijdshomogeneity not inherited for

non-stationary process

Theorem 1.12 : If X(t) is a stationary Markov process with transition rates q(j,k), and equilibrium distribution π(j), jS, then the reversed processX(-t) is a stationary Markov process with transition rates

and the same equilibrium distribution

Theorem 1.13: Kelly’s lemmaLet X(t) be a stationary Markov processwith transition rates q(j,k). If we can find a collection of numbers q’(j,k) such that q’(j)=q(j), jS, and a collection of positive numbers (j), jS, summing to unity, such that

then q’(j,k) are the transition rates of the time-reversed process, and (j), jS, is the equilibrium distribution of both processes.

)(),()(),('

jjkqkkjq

Skj ,

),(')(),()( jkqkkjqj Skj ,

Page 30: Flows and Networks (158052)

Kolmogorov’s criteria• Theorem 1.8:

A stationary Markov chain is reversible iff

for each finite sequence of states

Notice that

),(),()...,(),(),(),()...,(),(

122311

113221

jjqjjqjjqjjqjjqjjqjjqjjq

nnn

nnn

)0,(),(),()...,(),(),(),()...,(),(),0()0()(

112231

132211

jqjjqjjqjjqjjqjjqjjqjjqjjqjqj

nnn

nnn

Sjjj n ,...,, 21

Page 31: Flows and Networks (158052)

Today:

• Introduction / motivation course• Discrete-time Markov chain• Continuous time Markov chain• Birth-death process• Example: pure birth process• Example: pure death process• Simple queue• General birth-death process:

equilibrium• Reversibility, stationarity• Truncation• Kolmogorov’s criteria• Summary / Next• Exercises

Page 32: Flows and Networks (158052)

Summary / next:

Basic queueing model; basic tools• Markov chains• Birth-death process• Simple queue• Reversibility, stationarity• Truncation• Kolmogorov’s criteria

• Nextinput / output simple queuePoisson procesPASTAOutput simple queueTandem netwerkJackson networkPartial balanceKelly/Whittle network

Page 33: Flows and Networks (158052)

Exercises[R+SN] 1.1.2, 1.1.4, 1.1.5, 1.2.7, 1.2.8,

1.3.2, 1.3.3 (next time), 1.3.5, 1.3.6, 1.5.1, 1.5.2, 1.5.5, 1.6.2, 1.6.3, 1.6.4, 1.7.1, 1.7.8 (next time)

[N] 10.1,6,7,8,9,10,12,13,15