fluid mechaics 4 project[1]

Upload: tonimelo

Post on 07-Apr-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/6/2019 Fluid Mechaics 4 Project[1]

    1/19

    NAME: S J SEGOOA

    STUDENT NO: 820406333

    COURSE: B-TECH MECHANICALUNIVERSITY OF JOHANNESBURG

    1

  • 8/6/2019 Fluid Mechaics 4 Project[1]

    2/19

    CONTECNT(S)

    NAME PAGES

    ACKNOWLEGDEMENT 3

    AIM 4

    NOMECLATURE 4

    SUMMARY 5

    THEORY BACKGROUND 5

    PROBLEM STATEMENT 7

    ASSUMPTION 8

    FORMULAR SHEET 8

    DESING CALCULATIONS 9

    FINAL RESULTS 15

    DISSCUSSION 16

    CONCLUSION 16

    RECOMMENDATION 17

    APPENDICIES 18

    REFFERENCE 17

    2

  • 8/6/2019 Fluid Mechaics 4 Project[1]

    3/19

    ACKNOWLEGDEMENT

    This project made as person get to appreciate the important of pipes installation

    underground and surface level. Though I had sleepless night trying to get it together.

    And it wouldnt have being possible to accomplish what was required of me if it

    wasnt the following people

    Mrs V Mendes, your knowledge and experience made it possible for me to get

    understanding of pipe networks and fluid mechanics in general. Be assured

    that your effort, dedication, and hardship you had to go through in making this

    course as easy as it a seam has gone to waste.

    With out the support and encouragement from my parents, sisters, brothers

    and nephew it wouldnt have being easy task to get this project done.

    To my girlfriend thanks for the understanding that you have to spent some

    time without me as I was busy with this project.

    And again without the help of my fellow student I was not going to be an easy

    task to get this project and I want to thank and wish you all the best in this

    chosen profession.

    To all the references that I used I would like to express my gratitudes. They

    make putting this project together to be very enjoyable and quite a learning

    experience

    AIM

    3

  • 8/6/2019 Fluid Mechaics 4 Project[1]

    4/19

    The aim of this project was to determine the amount of flow rate following in each o f

    the pipes connected to each other by means of using hardy cross method and others.

    And to determine the suitable material to that environment and to meet the need of the

    people. The figure below shows the pipe connections that are we must find their flow

    rate.

    NOMENCLATURE

    NAME SYMBOL UNITS

    Flow rate Q M3/s

    Diameter D m

    Length L m

    Density(water) m3/kg

    Viscosity

    Pressure P Pa

    Velocity V m/s

    Design coefficient C N/AFriction factor N/A

    Hazen Williams

    coefficient

    C N/A

    Reynolds number Re

    efficiency N/A

    Friction Head Hf M

    Mass flow M Kg

    Power P W

    Change -

    4

  • 8/6/2019 Fluid Mechaics 4 Project[1]

    5/19

    SUMMARY

    The aim of this project is to help student to think logically and analytically. And also

    to make them aware of real situation out the in the world. This project required

    student to determine the amount of flow rate in each pipe, select correct diameter,

    material friction factor for each pipe. This industrial park consists of 900mm pipedivides into three 450 mm pipes at certain elevation. The 450 mm pipes run to pipe

    network at different elevation. And loop 1 & 2 have the same material, loop 3, 4, 5, 6,

    & 7 have the same material. All loops have different diameter. And each student had

    to use the number a allocated to him and mine was 8m3/s on the X and 5m3/s on the

    Y.

    THEORY OF FLUID MECHANICS (PIPE NETWORK)

    The different methods that we can be used to determine the amount of flow rate anddiameter of the pipe in pipe network. Hardy cross method is the one of the simplest

    that we can use.

    And the following rules has to be meet in pipe network

    1. Flow into each junction must be equal to flow out of each junction.

    2. Algebraic sum of head losses round each loop must be zero.

    Hardy cross method

    The distribution discharge is made arbitrarily but in such a way that the continuity at

    each node is being fulfilled.

    Head loss in each pipe can be calculated using this formula

    Hf= (10.67*l*Q1.852)/(C1.852*D4.8655)

    Quantity for each loop is calculated using this formula Q= ( hf)/ [m (hf/Q)]

    Corrections are now applied to each pipe loop and all loops.

    This procedure is repeated until Q is very small

    In most case you have to choose clockwise as positive.

    Multiple pipes reach greatest complexity in distribution

    Problems, e.g. city water supply

    Basic principles are presented here

    Pipe network is the aggregation of connected pipes

    Used to distribute waterNetwork consists of various size pipes, geometric

    Orientations, hydraulic characteristics, plus

    Pumps, valves, fittings, etc

    Individual pipes numbered 121

    Closed circuits given Roman Numerals IVII

    Hazen Williamss equations

    Advantages to HazenWilliams approach

    1. Coefficient Chw is rough measure of relative

    Roughness2. Effect of Reynolds number is included in formula

    5

  • 8/6/2019 Fluid Mechaics 4 Project[1]

    6/19

    3. Effect of roughness on velocity are given directly

    Disadvantages to HazenWilliams approach

    1. Empirical

    2. Can not be applied to all fluids in all conditions

    Material selection

    It is important to select the material that is suitable for water flow underground and

    that will be able to sustain all the necessary condition into account like corrosion,

    price, fatigue, friction losses, availability and etc. In this mater will discuss the cast

    iron asphalt coated and cast iron wrought plain.

    Cast Iron is an iron-carbon alloy with a typical carbon content of 3.0-4.5 wt. %. Also

    Si (0.5-3.5 wt. %) and small amounts of Mn, S and P are always present. The main

    advantages of cast iron are its low price and the ability to make products of a complex

    shape in a single production step. Furthermore, cast iron offers a reasonable resistanceagainst corrosion. In general, the mechanical properties are lower than those of cast or

    wrought steels, especially when loaded in tension. In compression high loads can be

    supported. The mechanical properties of cast iron depend on the morphology of the

    carbon. This morphology depends on composition and process parameters. In grey

    cast iron the carbon is present in plates (lamellar) of pure graphite. In white cast iron

    carbon is incorporated in compound with iron: Fe3C (cementite). In nodular cast iron

    the carbon is present in sphere shaped graphite particles (nodulae). Nodular cast iron

    has better properties than lamellar, especially tensile strength and strain. Below its a

    table of Hazen Williamss coefficient of different material

    Material Hazen Williams Coefficient C

    Asbestos cement 140

    Brass 130-140

    Cast iron-new unlined 130

    Cast iron-asphalt coated 100

    Cast iron-cement lined 150

    Cast iron-wrought plain 100

    Concrete 100-140

    Copper or brass 130-140

    PVC, CPVC 150

    Steel new unlined 140-150Wooden or masonry pipe smooth 120

    Metal pipes-very to extremely smooth 130-140

    Ductile iron pipe 140

    Galvanized iron 120

    Plastic 130-150

    In this case I will use cast iron and concrete pipes because it will be able to sustain all

    environmental condition and its availability and cost. In loop 1 & 2 is

    concrete{C=130} and other loop is cast iron with hazen coefficient {C=150}.

    PROBLEM STATEMENT

    6

  • 8/6/2019 Fluid Mechaics 4 Project[1]

    7/19

    Compute the flow rate of water in each pipe using spreadsheet or computer program

    for the below.

    The figure represent a small industrial park consists of 900mm pipe divides into three

    450 mm pipes a certain elevation. The 450 mm pipes run to pipe network at different

    elevation. Loop 1 and 2 have the same pipe material, loop 3,4,5,6, and 7 have thesame material. All loops have different diameter.

    ASSUMPTION MADE

    v

    7

  • 8/6/2019 Fluid Mechaics 4 Project[1]

    8/19

    Our project required us to assume the flow rate and diameter of each pipe and work

    from that in order to get the correct flow rate in each pipe. The assumptions made are

    table below.

    Pipe Diameter(mm) Flow rate(m3/s) Hazen coefficient1 150 1.333 130

    2 150 2.834 130

    3 150 -2.001 130

    4 150 -1.333 130

    5 250 -2.001 150

    6 250 -3.668 150

    7 250 -2.668 150

    8 250 1.918 150

    9 200 -1.918 130

    10 200 -2.5 13011 200 2.5 130

    12 300 3.418 150

    13 350 1.209 150

    14 300 1.209 150

    15 350 -0.752 150

    16 100 0.955 150

    17 100 -0.045 150

    18 400 -0.752 150

    19 400 -0.293 150

    20 400 -1.293 150

    21 300 1.295 150

    FORMULAR SHEEET

    The formulas below are the ones I used calculate the head loss, Q and the new flow

    Hf=[10.67*L*Q1.852]/[C1.852*D4.8655] units m

    Q= [hf]/ [mhf/Q] units m3/s where m is constant =1.852

    f= [0.2083(100/C) 1.852 Q1.852]/D4.8655

    Qnew= Qass + Q

    Re= (d v )/ for turbulent Re is greater than 4000

    DESIGN CALCULATIONS.

    The first assumption

    pipe D

    (mm)

    L

    (m)

    C Q

    (m3

    /s)

    Hf

    (m)

    Hf/Q Q Qnew

    1 150 1000 130 1.333 22545.23 16913.15 -0.206 1.073

    8

  • 8/6/2019 Fluid Mechaics 4 Project[1]

    9/19

    2 150 925 130 2.834 84305.43 229747.86 -1.321 1.513

    3 150 1000 130 -2.001 -47838.65 16880.26 0.798 -1.203

    4 150 925 130 -1.333 -20854.34 15644.67 -0.206 -1.593

    38157.67

    79185.94

    10 200 1000 130 -2.5 -17822.34` 7128.94 1.061 -1.43911 200 925 130 2.5 16485.67 6594.27 1.061 3.561

    9 200 1000 130 -1.918 -10909.77 5688.10 1.533 -0.385

    2 150 925 130 2.834 -84305.43 229747.86 1.321 -1.513

    -96551.87

    49159.34

    3 150 1000 130 2.001 47838.65 16880.26 -0.798 1.203

    5 250 350 150 -2.001 -3056.65 1527.67 -1.058 -3.059

    6 250 671 150 -3.668 -3286.68 896.04 -1.058 -4.726

    7 250 400 150 -2.668 -2083.16 780.79 -1.058 -3.726

    8 250 650 150 1.918 1837.03 957.78 -0.586 1.332

    41248.98

    21042.54

    9 200 1000 130 1.918 10909.77 5688.10 -1.533 0.385

    12 300 800 150 3.418 2714.85 794.28 -0.472 2.946

    14 300 650 150 1.209 321.87 266.23 -0.683 0.526

    21 300 800 150 -1.295 -449.91 347.42 0.121 -1.174

    22 300 1000 150 -3.586 -308.93 1034.28 -0.472 -4.058

    8 250 650 150 -1.918 -1837.03 957.78 0.586 -1.332

    7950.62

    9087.99

    13 350 763 150 1.209 178.47 147.62 0.211 1.4215 350 400 150 -0.752 -38.83 51.64 0.623 -0.129

    14 300 650 150 -1.209 -321.87 266.23 0.683 -0.526

    -182.23

    465.49

    21 300 800 150 1.295 449.91 347.42 -0.121 1.174

    18 400 125 150 0.752 6.34 8.43 -0.181 0.571

    19 400 800 150 -0.293 -7.08 24.16 -0.593 -0.886

    20 400 125 150 -1.293 -17.29 13.37 -0.593 -1.886

    431.88

    393.3815 350 400 150 0.752 38.83 51.64 -0.623 0.129

    16 100 125 150 0.955 8383.39 8778.42 -0.412 0.543

    17 100 400 150 -0.045 -93.62 2080.37 -0.412 -0.457

    18 400 125 150 -0.752 -6.34 8.43 0.181 -0.571

    8322.26

    10918.86

    1st correction

    pipe D

    (mm)

    L

    (m)

    C Q

    (m3/s)

    Hf

    (m)

    Hf/Q Q Qnew

    1 150 1000 130 1.073 15084.82 14058.54 0.046 1.119

    9

  • 8/6/2019 Fluid Mechaics 4 Project[1]

    10/19

    2 150 925 130 1.513 26367.73 17427.45 0.02 1.533

    3 150 1000 130 -1.203 -18643.23 15497.29 0.134 -1.069

    4 150 925 130 -1.593 -29007.79 24112.88 0.046 -1.547

    -6198.47

    72096.16

    10 200 1000 130 -1.439 -6407.79 4452.95 0.026 -1.41311 200 925 130 3.561 31741.89 8913.76 0.026 3.587

    9 200 1000 130 -0.385 -552.16 1441.67 -0.382 -0.765

    2 150 925 130 -1.513 -26362.73 17427.45 -0.02 -1.533

    -1580.79

    32233.83

    3 150 1000 130 1.203 18643.23 15497.29 -0.134 1.069

    5 250 350 150 -3.059 -2348.16 767.62 -0.088 -3.147

    6 250 671 150 -4.726 -10075.14 2131.85 -0.088 -4.814

    7 250 400 150 -3.726 -3866.94 1037.83 -0.088 -3.814

    8 250 650 150 1.332 935.12 702.03 -0.496 0.836

    3288.11

    20136.62

    9 200 1000 130 0.385 552.16 1441.67 0.382 0.767

    12 300 800 150 2.946 2016.67 699.82 0.408 3.354

    14 300 650 150 0.526 68.91 131.01 0.702 1.228

    21 300 800 150 -1.174 -375.17 319.56 0.792 -0.382

    22 300 1000 150 -4.058 -4663.41 1149.19 0.408 -3.65

    8 250 650 150 -1.332 -935.12 702.03 0.496 -0.836

    -3359.87

    4443.28

    13 350 763 150 1.42 240.40 169.30 -0.294 1.12615 350 400 150 -0.129 -1.48 11.50 -0.397 -0.526

    14 300 650 150 -0.526 -68.91 131.01 -0.702 -1.228

    169.71

    311.1

    21 300 800 150 1.174 375.17 319.51 -0.792 0.382

    18 400 125 150 0.571 3.81 6.66 -0.487 0.084

    19 400 800 150 -0.886 -52.67 60.82 -0.384 -1.25

    20 400 125 150 -1.886 -37.79 18.45 -0.384 -2.27

    288.52

    405.4915 350 400 150 0.129 1.48 11.48 0.397 0.526

    16 100 125 150 0.543 2946.48 5426.29 0.103 0.646

    17 100 400 150 -0.457 -6851.22 14991.73 0.103 -0.354

    18 400 125 150 -0.571 -3.81 6.66 0.487 -0.084

    -3907.07

    20436.17

    2nd correction

    pipe D

    (mm)

    L

    (m)

    C Q

    (m3/s)

    Hf(m)

    Hf/Q Q Qnew

    1 150 1000 130 1.119 16304.32 14570.44 0.011 1.13

    10

  • 8/6/2019 Fluid Mechaics 4 Project[1]

    11/19

    2 150 925 130 1.533 27016.88 17623.3 -0.038 1.495

    3 150 1000 130 -1.069 -14980.8 14013.88 -0.035 -1.104

    4 150 925 130 -1.547 -27016.88 17623.53 0.011 -1.536

    1323.52

    63831.38

    10 200 1000 130 -1.413 -1695.03 4384.31 0.049 -1.36411 200 925 130 3.587 32172.45 8969.18 0.049 3.636

    9 200 1000 130 -0.765 -1988.48 2599.32 0.117 -0.648

    2 150 925 130 -1.533 -27016.88 17623.53 0.038 -1.495

    -3027.94

    33576.34

    3 150 1000 130 1.069 14980.83 14013.88 0.035 1.104

    5 250 350 150 -3.147 -2474.79 786.40 0.046 -3.101

    6 250 671 150 -4.814 -10425.34 2165.63 0.046 -4.768

    7 250 400 150 -3.814 -4037.79 1058.67 0.046 -3.768

    8 250 650 150 0.836 394.64 472.06 0.114 0.95

    -1562.45

    18496.64

    9 200 1000 130 0.767 1988.48 2599.32 -0.117 0.65

    12 300 800 150 3.354 2621.46 781.59 -0.068 3.286

    14 300 650 150 1.228 331.30 269.79 -0.304 0.924

    21 300 800 150 -0.382 -46.90 122.78 -0.318 -0.7

    22 300 1000 150 -3.65 -3832.45 1049.99 -0.068 -3.718

    8 250 650 150 -0.836 -394.64 472.06 -0.114 -0.95

    667.25

    5295.53

    13 350 763 150 1.126 156.44 138.94 0.236 1.36215 350 400 150 -0.526 -20.03 38.08 0.231 -0.295

    14 300 650 150 -1.228 -331.80 269.79 0.304 -0.924

    -195.39

    446.81

    21 300 800 150 0.382 46.90 122.78 0.318 0.7

    18 400 125 150 0.084 0.11 1.30 0.245 0.329

    19 400 800 150 -1.25 -103.94 83.15 0.250 -1

    20 400 125 150 -2.27 -105.96 21.60 0.250 -2.02

    -105.96

    228.8315 350 400 150 0.526 20.03 38.08 -0.231 0.295

    16 100 125 150 0.646 4064.47 6291.75 0.005 0.651

    17 100 400 150 -0.354 -4269.31 12060.19 0.005 -0.349

    18 400 125 150 -0.084 -0.11 1.30 -0.245 -0329

    -184.92

    18391.32

    3rd correction

    pipe D

    (mm)

    L

    (m)

    C Q

    (m3/s)

    Hf(m)

    Hf/Q Q Qnew

    1 150 1000 130 1.13 16602.38 14692.38 0.005 1.135

    11

  • 8/6/2019 Fluid Mechaics 4 Project[1]

    12/19

    2 150 925 130 1.495 25789.71 17250,65 0.01 1.505

    3 150 1000 130 -1.104 -15901.86 14403.86 -0.009 -1.113

    4 150 925 130 -1.536 -27114.87 17652.91 0.005 -1.531

    -624.64

    63999.8

    10 200 1000 130 -1.364 -5803.05 4254.43 -0.005 -1.36911 200 925 130 3.636 32991.12 9073.46 -0.005 3.631

    9 200 1000 130 -0.648 -1128.23 1735.74 -0.065 -0.715

    2 150 925 130 -1.495 -25789.71 17250.65 -0.01 -1.505

    270.13

    32314.28

    3 150 1000 130 1.104 15901.86 14403.86 0.009 1.113

    5 250 350 150 -3.101 -2408.22 776.59 0.014 -3.087

    6 250 671 150 -4.768 -10241.59 2147.99 0.014 -4.754

    7 250 400 150 -3.768 -3948.06 1047.79 0.014 -3.754

    8 250 650 150 0.95 205.95 216.79 -0.046 0.904

    -490,06

    18593.02

    9 200 1000 130 0.65 1128.23 1735.74 0.065 0.715

    12 300 800 150 3.286 2523.88 768.07 0.060 3.346

    14 300 650 150 0.924 195.64 211.73 0.027 1.011

    21 300 800 150 -0.7 -143.99 205.69 0.127 -0.573

    22 300 1000 150 -3.718 -3965.73 1066.63 0.060 -3.658

    8 250 650 150 -0.95 -205.95 216.79 0.046 -0.904

    -467.92

    4204.65

    13 350 763 150 1.362 222.54 163.39 -0.027 1.33515 350 400 150 -0.295 -6.86 23.27 -0.02788 -0.32288

    14 300 650 150 -0.924 -195.64 211.73 -0.087 -1.011

    20.04

    398.39

    21 300 800 150 0.7 143.99 205.69 -0.127 0.573

    18 400 125 150 0.329 1.37 417 -0.06788 0.26112

    19 400 800 150 -1 -68.76 68.76 -0.067 -1.067

    20 400 125 150 -2.02 -39.50 19.56 -0.067 -2.087

    37.1

    298.1815 350 400 150 0.295 6.86 23.27 0.0278 0.32288

    16 100 125 150 0.651 4122.92 6333.22 0.00088 0.65188

    17 100 400 150 -0.349 -4158.30 11914.91 0.00088 -0.34812

    18 400 125 150 -0329 -1.37 4.17 0.06788 -0.26112

    -29.89

    18275.57

    4thcorrection

    pipe D

    (mm)

    L

    (m)

    C Q

    (m3/s)

    Hf(m)

    Hf/Q Q Qnew

    1 150 1000 130 1.135 16738.70 14747.75 0.002 1.137

    2 150 925 130 1.505 26110.11 17348.91 -0.011 1.494

    12

  • 8/6/2019 Fluid Mechaics 4 Project[1]

    13/19

    3 150 1000 130 -1.113 -16142.78 14503.85 0.004 -1.1081

    4 150 925 130 -1.531 -26951.63 17603.94 0.002 -1.529

    -2456

    64204.45

    10 200 1000 130 -1.369 -5842.50 4267.72 0.013 -1.356

    11 200 925 130 3.631 32907.15 9062.83 0.013 3.6449 200 1000 130 -0.715 -1754.51 2453.85 0.033 -0.682

    2 150 925 130 -1.505 -26110.11 17348,91 0.011 -1.494

    -799.97

    33133.31

    3 150 1000 130 1.113 16142.78 14503.85 -0.0049 1.1081

    5 250 350 150 -3.087 -2388.12 773.61 -0.0029 -3.0899

    6 250 671 150 -4.754 -10185.97 2142.61 -0.0029 -4.7569

    7 250 400 150 -3.754 -3920.94 1044.47 -0.0029 -3.7569

    8 250 650 150 0.904 456.15 504.59 0.0171 0.9211

    103.9 18969.13

    9 200 1000 130 0.715 1754.51 2453.85 -0.033 0.682

    12 300 800 150 3.346 2609.89 780.00 -0.020 3.326

    14 300 650 150 1.011 231.11 228.60 -0.052 0.959

    21 300 800 150 -0.573 -99.38 173.45 -0.054 -0.627

    22 300 1000 150 -3.658 -3848.02 1051.95 -0.020 -3.678

    8 250 650 150 -0.904 -456.15 504.59 -0.0171 -0.9211

    191.96

    5192.44

    13 350 763 150 1.335 214.44 160.63 0.032 1.367

    15 350 400 150 -0.32288 -8.11 25.13 0.0325 -0.290414 300 650 150 -1.011 -231.11 228.60 0.052 -0.959

    -24.78

    414.36

    21 300 800 150 0.573 99.38 173.45 0-054 0.627

    18 400 125 150 0.26112 0.893 3.42 0.0354 0.29562

    19 400 800 150 -1.067 -75.53 72.66 0.034 -1.033

    20 400 125 150 -2.087 -41.96 20.11 0.034 -2.053

    -17.217

    269.64

    15 350 400 150 0.32288 8.11 25.13 -0.0325 0.2908316 100 125 150 0.65188 4133.25 6340.51 -0.00005 0.65183

    17 100 400 150 -0.34812 -4138.91 11889.31 -0.00005 -0.34817

    18 400 125 150 -0.26112 -0.893 3.42 -0.0345 -0.29562

    1.557

    18258.37

    5th correction

    pipe D

    (mm)

    L

    (m)

    C Q

    (m3/s)

    Hf(m)

    Hf/Q Q Qnew

    1 150 1000 130 1.137 16793.36 14769.89 0.0029 1.1399

    2 150 925 130 1.494 25757.78 17240.81 0.00323 1.49723

    3 150 1000 130 -1.1081 -16011.41 14449.43 0.00197 -1.10613

    13

  • 8/6/2019 Fluid Mechaics 4 Project[1]

    14/19

    4 150 925 130 -1.529 -26886.47 17584.35 0.002 -1.5261

    -346.74

    64044.48

    10 200 1000 130 -1.356 -5740.17 4233.16 -0.00033 -1.35633

    11 200 925 130 3.644 33125.68 9090.47 -0.00033 3.64367

    9 200 1000 130 -0.682 -1607.49 2357.02 -0.00833 -0.690332 150 925 130 -1.494 -25757.78 17240.81 -0.00323 -1.49723

    20.24

    32921.46

    3 150 1000 130 1.1081 16011.41 14449.43 -0.00197 1.10613

    5 250 350 150 -3.0899 -2392.28 774.22 0.00093 -3.08897

    6 250 671 150 -4.7569 -10197.48 2143.72 0.00093 -4.75597

    7 250 400 150 -3.7569 -3926.55 1045.16 0.00093 -3.75597

    8 250 650 150 0.9211 472.25 512.71 -0.00707 0.91403

    -32.65

    18925.249 200 1000 130 0.682 1607.49 2357.02 0.00833 0.69033

    12 300 800 150 3.326 2581.07 776.03 0.008 3.334

    14 300 650 150 0.959 209.58 218.54 0.018 0.977

    21 300 800 150 -0.627 -117.42 187.27 0.01720 -0.6098

    22 300 1000 150 -3.678 -3887.07 1056.84 0.008 -3.67

    8 250 650 150 -0.9211 -472.25 512.71 0.00707 -.091403

    -78.6

    5108.41

    13 350 763 150 1.367 224.05 163.90 -0.010 1.357

    15 350 400 150 -0.2904 -6.67 22.96 -0.01005 -0.30045

    14 300 650 150 -0.959 -209.58 218.54 -0.018 -0.977

    7.8

    405.40

    21 300 800 150 0.627 117.42 187.27 -0.0172 0.6098

    18 400 125 150 0.29562 1.12 3.80 -0.00925 0.28637

    19 400 800 150 -1.033 -73.02 70.68 -0.00925 -1.0422

    20 400 125 150 -2.053 -40.71 29.83 -0.0092 -2.0622

    4.81

    405.40

    15 350 400 150 0.29083 6.67 22.96 0.01005 0.30043

    16 100 125 150 0.65183 4132.66 6340.10 0.00005 0.6518817 100 400 150 -0.34817 -4140.01 11890.76 0.00005 -0.34812

    18 400 125 150 -0.29562 -1.12 3.80 0.00925 -0.28637

    1.137

    -1.8

    18258.37

    SUMMARY OF FINAL RESULTS

    pipe D

    (mm)

    L

    (m)

    C Q

    (m3/s)

    Hf(m)

    Hf/Q Q Qnew

    1 150 1000 130 1.1399 16872.78 14801.98 0.0015 1.1414

    2 150 925 130 1.49723 25703.52 17224.10 0.00198 1.494283 150 1000 130 -1.10613 -15958.73 14427.5 -0.0009 -1.10703

    14

  • 8/6/2019 Fluid Mechaics 4 Project[1]

    15/19

    4 150 925 130 -1.5261 -26792.10 17555.93 0.0015 -1.5246

    -174.53

    64009.51

    10 200 1000 130 -1.35633 -5742.76 4234.04 -0.00048 -1.35681

    11 200 925 130 3.64367 33120.12 9089.77 -0.00048 3.64319

    9 200 1000 130 -0.69033 -1644.04 2381.53 0.00002 -0.696312 150 925 130 -1.49723 -25703.52 17224.10 -0.00198 -1.49428

    29.8

    32921.46

    3 150 1000 130 1.10613 15958.73 14427.5 0.0009 1.10703

    5 250 350 150 -3.08897 -2390.94 774.03 0.0024 -3.08657

    6 250 671 150 -4.75597 -10193.79 2143.37 0.0024 -4.75357

    7 250 400 150 -3.75597 -3922.87 1044.71 0.0024 -3.7526

    8 250 650 150 0.91403 465.56 509.37 0.0029 0.9169

    -83.31

    18898.989 200 1000 130 0.69033 1644.04 2381.53 -0.00002 0.69631

    12 300 800 150 3.334 2592.58 777.62 0.0005 3.3335

    14 300 650 150 0.977 -216.92 222.03 -0.0044 0.9726

    21 300 800 150 -0.6098 -111.52 182.89 -0.0057 -0.6155

    22 300 1000 150 -3.67 -3871.43 1054.89 -0.0005 -3.6705

    8 250 650 150 -.091403 -465.56 509.37 -0.0029 -0.9169

    -78.6 5108.41

    13 350 763 150 1.357 221.03 162.88 0.0039 1.3609

    15 350 400 150 -0.30045 -7.1 26.63 0.00392 -0.29653

    14 300 650 150 -0.977 -216.92 222.03 0.0044 -0.9726

    -2.99

    411.54

    21 300 800 150 0.6098 111.52 182.89 0.0057 0.6155

    18 400 125 150 0.28637 1.06 3.70 0.00522 0.29159

    19 400 800 150 -1.0422 -74.23 71.22 0.0052 -1.037

    20 400 125 150 -2.0622 -41.046 29.90 0.0052 -2.057

    4.81

    405.40

    15 350 400 150 0.30043 7.1 26.63 -0.00392 0.29651

    16 100 125 150 0.65188 4133.25 63405.51 -

    0.000002

    0.65186

    17 100 400 150 -0.34812 -4138.91 11899.31 -

    0.00000

    2

    -

    0.34883

    2

    18 400 125 150 -0.28637 -1.06 3.70 -0.00522 -0.29159

    -1.8

    18258.37

    Q1=- hf/m (hf/Q) = - (-174.53)/(1.852*64009.51) = 0.00015

    15

  • 8/6/2019 Fluid Mechaics 4 Project[1]

    16/19

    Q2= - hf/m (hf/Q) = - (29.8)/ (1.852*32929.44) =-0.00048

    Q3= - hf/m (hf/Q) = -(-83.31)/ (1.852*18898.98) = 0.0024

    Q4=- hf/m (hf/Q) = - (5.63)/ (1.852*5128.33) = -0.0005

    Q5=- hf/m (hf/Q) = - (-2.99 (1.852*411.54) = 0.0039

    Q6=- hf/m (hf/Q) = - (-2.696)/ (1.852*277.71) = 0.0052

    Q7=- hf/m (hf/Q) = - (0.38)/ (1.852*75325.15) = -0.000002

    NB: refer to free hand sketch of the small industrial park labelling all the info and the

    final flow in each pipe. The formulas used are listed above the calculation.

    DISCUSSION

    The aim of this project was do determine the amount of flow rate in the small

    industrial park. And assume the diameter that will be suitable for enough delivery of

    water, and selection of pipe material base on its properties, advantage and

    disadvantage.

    NB The flow rate with negative sings means the flow is anti-clockwise and positive

    means the flow is clockwise direction.

    From the calculation it can be possible to calculate the Reynolds number and other

    fluid parameters since the value of Q, d, L, & hf is know foe each pipe.

    The amount of13m3/s its entering the industrial park and 13m3/s is going out of the

    industrial park.

    CONCLUSION

    The project was successfully completed and the amount of flow rate and diameter ofeach pipe now is known and the friction losses in its pipe are known. And now we can

    be able to calculate the velocity at which the water is flow and be able to determine if

    its Laminar or turbulent because we will be able to get the Reynolds number from Re

    = dp v / andother parameters since we have primary parameters. But most of pipe

    flow its turbulent flow with Reynolds number above 2400.

    RECOMMENDATION

    16

  • 8/6/2019 Fluid Mechaics 4 Project[1]

    17/19

    It is recommended that the university provide us with the programme to calculate as it

    would have made this project easy and save time. And it will be exposing us to the

    software so we get to be familiar with it.

    REFERENCES

    Senior Lecture in Fluid Mechanics: Mrs V Mendes @ University of Johannesburg

    htpp://www.engineeringtoolbox.com/hazen-williams-water-d-797.htm

    Fluid Mechanics, Fundamentals and applications: Cengel, JA &Cimbala, JM:, 1st

    edition, 620.106 CEN

    Fluid Mechanics: Douglas, JF & Gasiorek, JM: 2nd edition, 620.106 DOU

    Pipes & pipelines principles & practice: Myles K & Associates: 2nd edition, 621.8672

    PIP

    APPENDEICS

    17

  • 8/6/2019 Fluid Mechaics 4 Project[1]

    18/19

    Here I have attached series of pipe picture that your can find the industries and rough

    work of calculations that took me two weeks to get the correct answers. And copy of

    flow/friction loss table for stainless steel pipe and others.

    Concrete pipes

    18

    http://www.freefoto.com/preview/13-68-8?ffid=13-68-8&k=Pipehttp://www.freefoto.com/preview/13-68-6?ffid=13-68-6&k=Pipehttp://www.freefoto.com/preview/13-68-2?ffid=13-68-2&k=Pipehttp://www.freefoto.com/preview/13-68-1?ffid=13-68-1&k=Pipe
  • 8/6/2019 Fluid Mechaics 4 Project[1]

    19/19

    PVC PIPES

    NB: Attached copies of calculation rough work.