fluids - ohio state university

21
Chapter 10 Fluids

Upload: others

Post on 23-Feb-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Fluids - Ohio State University

Chapter(10

Fluids

Page 2: Fluids - Ohio State University

Fluids'in'Motion

In#steady'flow the#velocity#of#the#fluid#particles#at#any#point#is#constant#as#time#passes.

Unsteady'flow exists#whenever#the##velocity#of#the#fluid#particles#at#a#point#changes#as#time#passes.

Turbulent'flow is#an#extreme#kind#of#unsteady#flow#in#which#the##velocity#of#the#fluid#particles#at#a#point#change#erratically#in#both#magnitude#and#direction.

Page 3: Fluids - Ohio State University

Fluids'in'Motion

Fluid&flow&can&be&compressible or&incompressible.&&Most&liquids&are&nearly&incompressible.

Fluid&flow&can&be&viscous such&that&the&fluid&does&not&flow&readily&due&to&internalfrictional&forces&being&present&(e.g.&honey),

or&nonviscous such&that&the&fluid&flows&readily&due&to&no&internal&frictional&forces&being&present&&(e.g.&water&is&almost&nonviscous).

An&incompressible,&nonviscous fluid&is&called&an&ideal'fluid.

Page 4: Fluids - Ohio State University

Fluids'in'Motion

Steady'flow'is'also'sometimes'called streamline'or'laminar flow'since'the'neighboring'layers'of'fluid'slide'by'each'other'smoothly,'i.e.'each'particle'of'the'fluid'follows'a'smooth'path'and'the'paths'do'not'cross.

Streamlines are'often'used'to'represent'the'trajectories'of'the'fluid'particles.

Page 5: Fluids - Ohio State University

Fluids'in'Motion

Making'streamlines'with'dye'ina'flowing'liquid,

and'smoke,'in'a'wind'tunnel.

Page 6: Fluids - Ohio State University

The$Equation$of$Continuity

The$mass$of$fluid$per$second$that$flows$through$a$tube$is$calledthe$mass$flow$rate.

Page 7: Fluids - Ohio State University

The$Equation$of$Continuity

2222 vAtm !=""

1111 vAtm !=""

Δm = ρΔV = ρ A vΔtdistance!

Consider)the)steady)(laminar))flow)of)a)fluid)through)a)tube)with)a)varying)cross)sectional)area:

Since mass must be conserved as the fluid flows ⇒ Δm1

Δt=Δm2

Δt

Page 8: Fluids - Ohio State University

The$Equation$of$Continuity

222111 vAvA !! =

EQUATION)OF)CONTINUITY

The)mass)flow)rate)has)the)same)value)at)every)position)along)a)tube)that)has)a)single)entry)and)a)single)exit)for)fluid)flow.

SI$Unit$of$Mass$Flow$Rate:$$kg/s

Page 9: Fluids - Ohio State University

The$Equation$of$Continuity

Incompressible$fluid:$$ 2211 vAvA =

Volume$flow$rate$Q:$$ Q ≡ Av = A ΔlΔt

=AΔlΔt

=ΔVΔt

Page 10: Fluids - Ohio State University

The$Equation$of$Continuity

Example:$$A"Garden"Hose

A"garden"hose"has"an"unobstructed"openingwith"a"cross"sectional"area"of"2.85x10<4m2.""It"fills"a"bucket"with"a"volume"of"8.00x10<3m3

in"30"seconds.

Find"the"speed"of"the"water"that"leaves"the"hosethrough"(a)"the"unobstructed"opening"and"(b)"an"obstructedopening"with"half"as"much"area.

Page 11: Fluids - Ohio State University

The$Equation$of$Continuity

AvQ =

( ) ( ) sm936.0m102.85

s 30.0m1000.824-

33

=!

!==

"

AQv

(a)

(b) 2211 vAvA =

v2 =A1A2v1 =

A1A12( )v1 = 2( ) 0.936m s( ) =1.87m s

Page 12: Fluids - Ohio State University

Bernoulli�s*Equation

The$fluid$accelerates$from$higher$to$lower$pressure$regions$from$Newton’s2nd law$due$to$the$unbalancednon9conservative$forces

According$to$the$pressure9depthrelationship,$the$pressure$is$lowerat$higher$levels,$provided$the$areaof$the$pipe$does$not$change.

Consider$the$steady$flow$of$an$incompressible$and$nonviscous$fluid$in$twosituations:

Incorporate*both*of*these*situations*into*a*single*equation!

Page 13: Fluids - Ohio State University

Bernoulli�s*Equation

Wnc = E1 −E2 = 12mv1

2 +mgy1( )− 12mv2

2 +mgy2( )

Wnc = ΔWnc = ΔF( )s"# $%2→1∑

2→1∑ = ΔP( )As

ΔV!

"

#($

%)2→1∑ = ΔP( )

2→1∑"

#(

$

%)

P2−P1! "# $#

ΔV = P2 −P1( )ΔV

Combined)situation:)

Use)the)Work4Energy)theorem)to)derive)a)relationship)among)P,)v,)and)yat)two)different)points)along)the)tube)! look)at)the)fluid)elements)at)1)and)2.

Page 14: Fluids - Ohio State University

Bernoulli�s*Equation

P2 −P1( )ΔV = 12mv1

2 +mgy1( )− 12mv2

2 +mgy2( )

( ) ( ) ( )2222

11

212

112 gyvgyvPP !!!! +"+="

BERNOULLI�S*EQUATION

In*steady*flow*of*a*nonviscous,*incompressible*fluid,*the*pressure,*the*fluid*speed,*and*the*elevation*at*two*points*are*related*by:

2222

121

212

11 gyvPgyvP !!!! ++=++

Page 15: Fluids - Ohio State University

Applications+of Bernoulli�s+Equation

Example:++Efflux&Speed

The$tank$is$open$to$the$atmosphere$atthe$top.$$Find$and$expression$for$the$speed$of$the$liquid$leaving$the$pipe$atthe$bottom.

Page 16: Fluids - Ohio State University

Applications+of Bernoulli�s+Equation

2222

121

212

11 gyvPgyvP !!!! ++=++

atmPPP == 2102 !v

hyy =! 12

ghv !! =2121

ghv 21 =

For$an$element$offluid$of$mass,$m12mv1

2 =mgy

12 2gh( )

2= gy

⇒ y = h

Page 17: Fluids - Ohio State University

When%a%moving%fluid%is%contained%in%a%horizontal%pipe,%all%parts%of%ithave%the%same%elevation,%i.e.%y1 = y2,%and%Bernoulli’s%equation%simplifies%to:

P1 + 12 ρv1

2 = P2 + 12 ρv2

2

Thus,%P +%½ρv2 remains%constant,%so%that

If%v increases%! P decreases

If%v decreases%! P increases

Applications+of Bernoulli�s+Equation

Page 18: Fluids - Ohio State University

Example:)An)enlarged)horizontal)blood)vessel

A1 A2 = 1.7A1

P1P2

v1 = 0.40 m/s v2

! Find%P2 – P1!Blood = 1060 kg/m3

P1 + 12 ρv1

2 = P2 + 12 ρv2

2 ⇒ P2 −P1 = 12 ρ v1

2 − v22( )

Use the continuity equation to find v2

A1v1 = A2v2 ⇒ v2 =A1

A2

v1

∴P2 −P1 = 12 ρ v1

2 −A1

A2

$

%&

'

()

2

v12

*

+,,

-

.//=

12 ρv1

2 1− A1

A2

$

%&

'

()

2*

+,,

-

.//=

12 1060( ) 0.402( ) 1− A1

1.7A1

$

%&

'

()

2*

+,,

-

.//

= 55 Pa = 0.41 mmHg

Applications)of Bernoulli�s)Equation

Page 19: Fluids - Ohio State University

Applications+of Bernoulli�s+Equation

Conceptual+Example:++Tarpaulins*and*Bernoulli�s*Equation

When%the%truck%is%stationary,%the%tarpaulin%lies%flat,%but%it%bulges%outwardwhen%the%truck%is%speeding%downthe%highway.

Account%for%this%behavior.

Page 20: Fluids - Ohio State University

Applications+of Bernoulli�s+Equation

Page 21: Fluids - Ohio State University

Applications+of Bernoulli�s+Equation