fluorescence correlation & image correlation methods

23
Fluorescence Correlation & Image Correlation Fluorescence Correlation & Image Correlation Methods Methods Paul Wiseman Department of Physics Department of Chemistry McGill University Montreal, Canada

Upload: barclay-kim

Post on 30-Dec-2015

94 views

Category:

Documents


0 download

DESCRIPTION

Fluorescence Correlation & Image Correlation Methods. Paul Wiseman Department of Physics Department of Chemistry McGill University Montreal, Canada. Overview for Tutorial. Optical Microscopy Dynamics vs. Resolution Fluorescence Correlation Spectroscopy (FCS) - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Fluorescence Correlation & Image Correlation Methods

Fluorescence Correlation & Image Correlation Fluorescence Correlation & Image Correlation MethodsMethods

Paul Wiseman

Department of Physics

Department of Chemistry

McGill University

Montreal, Canada

Page 2: Fluorescence Correlation & Image Correlation Methods

Overview for TutorialOverview for Tutorial

Optical Microscopy Dynamics vs. Resolution

Fluorescence Correlation Spectroscopy (FCS)

Image Correlation Spectroscopy (ICS)

Image Cross-Correlation Spectroscopy (ICCS)

Spatio-Temporal Image Correlation Spectroscopy

Reciprocal Space Image Correlation Spectroscopy

Page 3: Fluorescence Correlation & Image Correlation Methods

Optical ResolutionOptical Resolution

-10 -5 5 10

-0.4

-0.2

0.2

0.4

0.6

0.8

1J0() or J0()2

Bessel Function of Order zero and its Square

-20 -10 10 20

-0.6

-0.4

-0.2

0.2

0.4

0.6

J1() or J1()2

Bessel Function of Order one and its Square

)"(Jinc"

J I I 2

2

1o

-20 -10 0 10 20

-20

-10

0

10

20

q1

light ofh wavelengt

length focal lens f

Diameter Aperture D

D

f 1.22 q

First Zero to

1

Radius

-20-10

010

20

-20

-10 0

10 20

3D PSF

z

Airy Disk in Focal Plane(cross section of PSF)

Page 4: Fluorescence Correlation & Image Correlation Methods

Rayleigh Resolution Criterion Circular ApertureRayleigh Resolution Criterion Circular Aperture

Obj.Lens d

Ultimate Goal of MicroscopyResolve to closely separate Point sources from the object planeWithin the image plane

Object Point~ (x) Image~ {J1(x)/x}2

RayleighResolutionCriterionq1~1.22 f/(D)

D

Angular D

1.22

Spatial D

f 1.22 L

Min

Min

Page 5: Fluorescence Correlation & Image Correlation Methods

Diffraction Limited Optical Resolution…Diffraction Limited Optical Resolution…

Optical Resolution ~ /2

Macromolecules ~ /50

-1 -0.5 0 0.5 1

-4

-2

0

2

4

Gaussian Beam Focus

~ 500 nm

Truly Interacting SpeciesDance Partners Versus Simply

“Colocalized”

Optical MicroscopyDynamics at the Price of Spatial Resolution

Page 6: Fluorescence Correlation & Image Correlation Methods

Goal: Measure the Biomolecular DanceGoal: Measure the Biomolecular Dance

Paxillin-dsRed (red) & -actinin GFP (green)in CHO CellTIRF Microscopy Total time = 50 min t =15 s

170 m

Optical Microscopy

Dynamics…At the price of Limited Spatial Resolution

Fluorescence MicrscopySpecificity

Low Detection Limits (singleMolecule)

Page 7: Fluorescence Correlation & Image Correlation Methods

Fluctuation Magnitudes & Fluctuation TimesFluctuation Magnitudes & Fluctuation Times

Elson and Magde ; Magde, et al. Biopolymers (1974) 13, 1-27 ; 29-61

Obj.Lens

Fluorescence Correlation Spectroscopy (FCS)

-1 -0.5 0 0.5 1

-4

-2

0

2

4

Fig. 1 Overview of Fluctuation Spectroscopy

<i>

i(t)=i(t) –<i>

Intensity Fluctuations Laser Focus ~ 1 um3

Fluorophores excited in focus

Molecular Dynamics

Number in the Focus fluctuates

i(t)

f

i i(t)

t

Page 8: Fluorescence Correlation & Image Correlation Methods

Fluctuation Magnitudes & Fluctuation TimesFluctuation Magnitudes & Fluctuation Times

t

i(t)

<i>=26.36

i(t) = i(t) - <i>Fluctuation Magnitude

f = Characteristic Fluctuation Time

Page 9: Fluorescence Correlation & Image Correlation Methods

FCS: Fluctuations & DynamicsFCS: Fluctuations & Dynamics

Focal Volume 1 m3

Fast DynamicsShort f

Page 10: Fluorescence Correlation & Image Correlation Methods

FCS: Fluctuations & DynamicsFCS: Fluctuations & Dynamics

Focal Volume 1 m3

Slow DynamicsLong f

Page 11: Fluorescence Correlation & Image Correlation Methods

FCS InstrumentationFCS Instrumentation

LaserM1

M2BE

Sample

Dichroic

Pinhole

Mirror

Filters

APD AMP

SignalAutocorrelator

PhotonDetector

Computer

TemporalACF

Page 12: Fluorescence Correlation & Image Correlation Methods

Correlation Function Decay Model: 2DCorrelation Function Decay Model: 2D

N. L. Thompson; Topics in Fluorescence Spectroscopy (1991) 1, 337-378

N α

M N α M g(0) τg 2R

1iii

R

1iii

2iR

1ii

For 2D System; Laser TEM00 Modei= Qi/Q1 Ratio of Fluorescent Yields

Correlation Function Amplitude: g(0)Number Density <N> per Beam AreaAggregation State

2R

1iii

R

1ii

2i

N α

N α 0g

Correlation Function Decay: Mi

Fluctuation Relaxation TermsTransport and Kinetics Properties

R

1iiM τg

Sum over all fluorescent species

Page 13: Fluorescence Correlation & Image Correlation Methods

PMT 3

TiSapph. laser

+L1 pinhole+L2

PMT 2 PMT 1Sample

M4

M1

M2 M3

Dichroic mirror

Filter

Dichroic mirrors

100fs, 780-920nm pulse 82MHz rep-rate

Em. Filters

Image Correlation SpectroscopyImage Correlation Spectroscopy

t=0 t=1 t=2 t=3 t=4

Page 14: Fluorescence Correlation & Image Correlation Methods

TIRF Microscopy ~ 100 nm z depth of fieldTIRF Microscopy ~ 100 nm z depth of field

Laser

Laser BeamFluorescence

NA 1.45Obj. Lens

Sample

CCD Camera

Dichroic &Em. Filter

ND Filters

Page 15: Fluorescence Correlation & Image Correlation Methods

Slow or Static Distributions?Slow or Static Distributions?

Receptor Occupation Number Varies across the Membrane

Intensity Fluctuations Laser Beam Rasters across Sample

<(i)2>/<i> 2 = 1/<N> Mean Number of “Independent” Clusters per Beam Area

Page 16: Fluorescence Correlation & Image Correlation Methods

A

Confocal Image

Spatial Image Correlation SpectroscopySpatial Image Correlation Spectroscopy

Petersen et al. Biophys. J. 65, 1135-1146 (1993); Wiseman and Petersen, Biophys. J. 76, 963-977 (1999)

211

i

y ,x δi ηy , ξxδi ηξ,r

N

1

i

y ,x δi 0,0r 2

2

11

Spatial AC Function WhiteNoise

i - t)y,i(x, ty,x,i

Page 17: Fluorescence Correlation & Image Correlation Methods

Spatial Autocorrelation Function (ACF)Spatial Autocorrelation Function (ACF)

Image i(x,y)

CorrelateImageWithItself

} lag variable pixel shift in y

}

lag variable pixel shift in x

Spatial ACFr11(,)

Correlation FunctionMathematical CorrelationOf Image with Itself

Page 18: Fluorescence Correlation & Image Correlation Methods

Spatial Autocorrelation Function (ACF)Spatial Autocorrelation Function (ACF)

Image i(x,y)

FFT

Inve

rse

FFT

Norm

aliza

tion

F {i(x,y)}

F {i(x,y)}*

*

Power Spectrum

F {i(x,y)}

Spatial ACFr11(,)

complexconjugate

multiplication

Page 19: Fluorescence Correlation & Image Correlation Methods

A

Confocal Image

Spatial Image Correlation SpectroscopySpatial Image Correlation Spectroscopy

Petersen et al. Biophys. J. 65, 1135-1146 (1993); Wiseman and Petersen, Biophys. J. 76, 963-977 (1999)

211

i

y ,x δi ηy , ξxδi ηξ,r

N

1

i

y ,x δi 0,0r 2

2

11

Spatial AC Function WhiteNoise

i - t)y,i(x, ty,x,i

Page 20: Fluorescence Correlation & Image Correlation Methods

Nonlinear Least Squares FittingNonlinear Least Squares Fitting

B

ω

η ξ-exp (0,0)g ηξ,g

2o

22

1111

GaussianFitting Function

N

1 0,0g11

GaussianFitting Function

<N> Independent Fluorescent Entities; Aggregation

Page 21: Fluorescence Correlation & Image Correlation Methods

Image Correlation Spectroscopy (ICS)Image Correlation Spectroscopy (ICS)

Temporal ACF

t t

11 i i

) t ,y i(x, t)y, i(x, ,0 ,0r

Srivastava and Petersen Methods Cell Sci. 18, 47-54 (1996)

t=0

t=1

t=2

t=3

t=n

Temporal Autocorrelationof i(x,y,t) = i(x,y,t) - <i>Through Time Series

DecayTransportDynamics

Diffusion Coeff.&

Flow Speeds

OffsetImmobilePopulation

Page 22: Fluorescence Correlation & Image Correlation Methods

Temporal ICSTemporal ICS

t t

11 i i

) t ,y i(x, t)y, i(x, ,0 ,0r

Time Lag = 0

t=0

t=1

t=2

t=3

t=n

t=4

= 0

Time Lag = 1

= 1

Time Lag = 2

= 2

Time Lag = 3

= 3

Time Lag = 4

= 4

Time Lag = n

= n

How to Calculate Normalized Fluctuation Autocorrelation Function

Page 23: Fluorescence Correlation & Image Correlation Methods

3D Diffusion Model3D Diffusion Model

0.2 m blue fluorescent spheres in sucrose/water solutions Temperature 21C, 0% sucrose, 2P Microscopy 30f/s

5 m

Wiseman et al. J. Microscopy 200, 14-25 (2000)