folienmaster eth zürich · 1. overview 2. aerodynamic basics 3. performance considerations 4....

16
| | Autonomous Systems Lab 151-0851-00 V :: Sebastian Verling, Philipp Oettershagen Marco Hutter, Michael Blösch, Roland Siegwart, Konrad Rudin and Thomas Stastny Autonomous Systems Lab 24.11.2015 Robot Dynamics - Fixed Wing UAS: Stability and Dynamic Model 1 Robot Dynamics Fixed Wing UAS: Control and Solar UAS

Upload: others

Post on 29-May-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Folienmaster ETH Zürich · 1. Overview 2. Aerodynamic Basics 3. Performance Considerations 4. Stability 5. Simplified Dynamic Model 6. UAV Control Approaches 7. Case Studies Lecture

||Autonomous Systems Lab

151-0851-00 V

:: Sebastian Verling, Philipp Oettershagen

Marco Hutter, Michael Blösch, Roland Siegwart, Konrad Rudin and Thomas Stastny

Autonomous Systems Lab

24.11.2015Robot Dynamics - Fixed Wing UAS: Stability and Dynamic Model 1

Robot DynamicsFixed Wing UAS: Control and Solar UAS

Page 2: Folienmaster ETH Zürich · 1. Overview 2. Aerodynamic Basics 3. Performance Considerations 4. Stability 5. Simplified Dynamic Model 6. UAV Control Approaches 7. Case Studies Lecture

||Autonomous Systems Lab

1. Overview

2. Aerodynamic Basics

3. Performance

Considerations

4. Stability

5. Simplified Dynamic

Model

6. UAV Control

Approaches

7. Case Studies

Lecture 3:

Control and Solar UAS

1. Fixed Wing UAS Control

Introduction

Control Concepts

Simple Control Scheme

2. Solar (U)AS Case Studies

History and Overview of Solar

Powered Flight

Scaling Laws

Example for Power

Consumption

Sky-Sailor

senseSoar

Contents:

Fixed Wing UAS

24.11.2015 2Robot Dynamics

Page 3: Folienmaster ETH Zürich · 1. Overview 2. Aerodynamic Basics 3. Performance Considerations 4. Stability 5. Simplified Dynamic Model 6. UAV Control Approaches 7. Case Studies Lecture

||Autonomous Systems Lab

Control of airplanes is not easy:

Inherently non-linear

Low control authority

Actuator saturation

„double integrator“ characteristics

MIMO: 4 inputs, 6 DoF, thus underactuated

Introduction

24.11.2015 3Robot Dynamics

Page 4: Folienmaster ETH Zürich · 1. Overview 2. Aerodynamic Basics 3. Performance Considerations 4. Stability 5. Simplified Dynamic Model 6. UAV Control Approaches 7. Case Studies Lecture

||Autonomous Systems Lab

A popular concept: cascaded control loops

Control = low level part

Stabilize attitude and speed

Guidance = high level part

Follow pathes or trajectory

Effect: Reject constant low frequency

perturbation (constant wind)

Control & Guidance

Guidance

SKY-SAILORLLCHLC

Inner Loop

Outer Loop

24.11.2015 4Robot Dynamics

Page 5: Folienmaster ETH Zürich · 1. Overview 2. Aerodynamic Basics 3. Performance Considerations 4. Stability 5. Simplified Dynamic Model 6. UAV Control Approaches 7. Case Studies Lecture

||Autonomous Systems Lab

Many control techniques :

Cascaded PID loops

Optimal Control

Robust Control

The chosen control techniques determined according to:

Computational Power

Type of flight (aerobatics - level flight)

Control Concepts

24.11.2015 5Robot Dynamics

Page 6: Folienmaster ETH Zürich · 1. Overview 2. Aerodynamic Basics 3. Performance Considerations 4. Stability 5. Simplified Dynamic Model 6. UAV Control Approaches 7. Case Studies Lecture

||Autonomous Systems Lab

Some remarks about the conventions used in this lecture:

Input limits/units:

Aileron:

Down deflection / left = positive deflection

positive deflections will induce negative moments!!

The Plant

Velocities (Body Fr.): u,v,w

Turn rates (Body Fr.): p,q,r

Position (Earth Fr.): x,y,z

Tait-Bryan angles: ,,

Nonlinear

Aircraft

Dynamics

Forces

Moments

u,v,w

p,q,r

x,y,z

,,

Propulsion,

Mechanics,

Aerodynamics

Elevator

Aileron

Rudder

Throttle

Tzyxrqpwvu ,,,,,,,,,,,x

State

vector:

v

wuVT

22

y

Output

e.g.:

thr

rudd

ail

elev

u

Input

vector:

1,0;1,1;1,1;1,1 thrruddailelev

rightailleftailail ,,

24.11.2015 6Fixed Wing UAS: Control and Fuel Case Studies

Page 7: Folienmaster ETH Zürich · 1. Overview 2. Aerodynamic Basics 3. Performance Considerations 4. Stability 5. Simplified Dynamic Model 6. UAV Control Approaches 7. Case Studies Lecture

||Autonomous Systems Lab

The Plant: Separation of the Linearized System

Δu, Δw;

Δq;

Δthr

elev

Longitudinal

Plant

Δv;

Δp, Δr;

Δ Δrudd

ail

Lateral

Plant

im

re

2

-2

-2

Short Period

Mode:

ω = 5 rad/s

Phugoid

Mode:

ω = 0.6 rad/s

im

re

4

-4

-4

Roll Subsidence

Mode

Spiral Mode

Dutch Roll

Mode

ω = 5 rad/s

Corresponding Poles (Aerobatic Model Airplane)

Subsystem

24.11.2015 7Fixed Wing UAS: Control and Fuel Case Studies

Page 8: Folienmaster ETH Zürich · 1. Overview 2. Aerodynamic Basics 3. Performance Considerations 4. Stability 5. Simplified Dynamic Model 6. UAV Control Approaches 7. Case Studies Lecture

||Autonomous Systems Lab

The Plant: Separation of the Linearized System

Short Period Mode: oscillation of angle of attack

Phugoid mode: exchange between kinetic and potential energy

Spiral Divergence

Dutch Roll

Mode:

combined yaw-

roll oscillation

Grafics adapted from:

http://history.nasa.gov/SP-367/chapt9.htm and

http://www.fzt.haw-hamburg.de/pers/Scholz/Flugerprobung.html

24.11.2015 8Fixed Wing UAS: Control and Fuel Case Studies

Page 9: Folienmaster ETH Zürich · 1. Overview 2. Aerodynamic Basics 3. Performance Considerations 4. Stability 5. Simplified Dynamic Model 6. UAV Control Approaches 7. Case Studies Lecture

||Autonomous Systems Lab

Optimal Control: LQR (1)

I Linearize the system

around the operating point

xCy

uBxAx

uuxxx

uxfA

,

,

uuxxu

uxfB

,

),(

),(

,

uygy

uxfx

uuxxx

uxgC

,

),(

x,u

where Δx, Δy and Δu constitute differences to the linearization point24.11.2015 9Robot Dynamics

Page 10: Folienmaster ETH Zürich · 1. Overview 2. Aerodynamic Basics 3. Performance Considerations 4. Stability 5. Simplified Dynamic Model 6. UAV Control Approaches 7. Case Studies Lecture

||Autonomous Systems Lab

Optimal Control: LQR (2)

II Define the cost integral

Choose the Matrices Q and R:

Q punishes deviations of the states from the set-point

R punishes deviations of the control inputs from the set-point

0

)()()()( dtttttJ TTRuuQxx

Considerations for the choice of Q and R

• Diagonal Q and R

• Minimal lateral velocity v (coordinated turn, increased drag

otherwise)

• Small variation on airspeed

• Action on ailerons as small as possible (drag!)

• Fast control on roll and pitch

24.11.2015 10Robot Dynamics

Page 11: Folienmaster ETH Zürich · 1. Overview 2. Aerodynamic Basics 3. Performance Considerations 4. Stability 5. Simplified Dynamic Model 6. UAV Control Approaches 7. Case Studies Lecture

||Autonomous Systems Lab

Optimal Control: LQR (3)

III )()( tt xKu Find the corresponding control law

By solving the (algebraic) Matrix-Riccatti Equation

(for P and K):

(use MATLAB…)

PBRK

0QPBPBRPAPA

T

TT

1

1

24.11.2015 11Robot Dynamics

Page 12: Folienmaster ETH Zürich · 1. Overview 2. Aerodynamic Basics 3. Performance Considerations 4. Stability 5. Simplified Dynamic Model 6. UAV Control Approaches 7. Case Studies Lecture

||Autonomous Systems Lab

Problems:

Non-linear effects when further away from operating point

Computation Costs arising from:

Linearization

Solution to Riccatti Equation:

Too expensive, cannot be done on-line

Way out: compute gains off-line as a look-up table

for discretized state space: Gain-Scheduling

Optimal Control: LQR (4)

24.11.2015 12Robot Dynamics

Page 13: Folienmaster ETH Zürich · 1. Overview 2. Aerodynamic Basics 3. Performance Considerations 4. Stability 5. Simplified Dynamic Model 6. UAV Control Approaches 7. Case Studies Lecture

||Autonomous Systems Lab

Attitude

Controller

PI1: PI with anti-reset wind-up

PD2

: Gain scaled with 1/VT2

Body Rate

Controller

rd

qd

pdPD

2

PD2

PD2

Simple Cascaded Control Scheme

Airplane

Dynamics

rudd

elev

ail

x

PI1

PI1d

d

Constrain to

coordinated turn:

V

gd

tan

d

d

d

Jr

thr

• Bandwidths of inner Loops must

be sufficiently larger!

Trajectory

Generation

and

Guidance

24.11.2015 13Robot Dynamics

Page 14: Folienmaster ETH Zürich · 1. Overview 2. Aerodynamic Basics 3. Performance Considerations 4. Stability 5. Simplified Dynamic Model 6. UAV Control Approaches 7. Case Studies Lecture

||Autonomous Systems Lab

L1 Guidance

24.11.2015 14Robot Dynamics

Theroy and Graphics from:

S. Park, J. Deyst, and J. P. How, “A New Nonlinear Guidance Logic for Trajectory Tracking”, Proceedings of the AIAA Guidance, Navigation and Control Conference, Aug

2004. AIAA-2004-4900

Following a Trajectory on Horizontal Plane

Page 15: Folienmaster ETH Zürich · 1. Overview 2. Aerodynamic Basics 3. Performance Considerations 4. Stability 5. Simplified Dynamic Model 6. UAV Control Approaches 7. Case Studies Lecture

||Autonomous Systems Lab 24.11.2015Robot Dynamics 15

TECS (Total Energy Control System)

Control Altitude and Airspeed

Page 16: Folienmaster ETH Zürich · 1. Overview 2. Aerodynamic Basics 3. Performance Considerations 4. Stability 5. Simplified Dynamic Model 6. UAV Control Approaches 7. Case Studies Lecture

||Autonomous Systems Lab 24.11.2015Robot Dynamics 16

TECS (Total Energy Control System)