for each protein the number of predicted tmds were …...2012/08/24  · bauer j, chen k, hiltbunner...

21
0 200 400 600 800 1000 1200 present only in LOPIT1&2 present in all experiments present only in LOPIT3&4 Number of proteins no TMD with TMD Figure S1. Number of proteins with and without predicted TMDs identified and quantitated in the four LOPIT experiments For each protein the number of predicted TMDs were extracted from the TAIR server (based on HMMTOP prediction) and the proteins separated into two groups: without any predicted TMD and with one or more predicted TMDs. The 1385 proteins reported in Table S2 were categorised into three groups: present only in LOPIT1 and 2, present in all LOPIT experiments and present only in LOPIT 3 and 4.

Upload: others

Post on 20-Oct-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

  • 0

    200

    400

    600

    800

    1000

    1200

    present only in

    LOPIT1&2

    present in

    all experiments

    present only in

    LOPIT3&4

    Nu

    mb

    er

    of

    pro

    tein

    s

    no TMD

    with TMD

    Figure S1. Number of proteins with and without predicted TMDs identified and quantitated in

    the four LOPIT experiments

    For each protein the number of predicted TMDs were extracted from the TAIR server (based on

    HMMTOP prediction) and the proteins separated into two groups: without any predicted TMD and

    with one or more predicted TMDs. The 1385 proteins reported in Table S2 were categorised into three

    groups: present only in LOPIT1 and 2, present in all LOPIT experiments and present only in LOPIT 3

    and 4.

  • Figure S2. Positional analysis of amino acid composition of TMDs from different organellesThe position relative to the cytosolic edge of the TMDs is plotted on the horizontal axis and thenormalised proportion of each amino acid is plotted on the vertical axis.

    0 10 20 30

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    Position

    Pro

    port

    ion

    ERGolgi/TGNPM

    Cysteine composition

    0 10.0 20.0 30.0

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    Position

    Pro

    port

    ion

    ERGolgi/TGNPM

    Aspartic acid composition

    0 10.0 20.0 30.0

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    Position

    Pro

    port

    ion

    ERGolgi/TGNPM

    Glutamic acid composition

    0 10 20 30

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    Position

    Pro

    port

    ion

    ERGolgi/TGNPM

    Phenylalanine composition

    0 10 20 30

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    Position

    Pro

    port

    ion

    ERGolgi/TGNPM

    Glycine composition

    0 10 20 30

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    Position

    Pro

    port

    ion

    ERGolgi/TGNPM

    Histidine composition

    0 10 20 30

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    Position

    Pro

    port

    ion

    ERGolgi/TGNPM

    Isoleucine composition

    0 10 20 30

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    Position

    Pro

    port

    ion

    ERGolgi/TGNPM

    Lysine Composition

    0 10 20 30

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    Position

    Pro

    port

    ion

    ERGolgi/TGNPM

    Leucine composition

    0 10 20 30

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    Position

    Pro

    port

    ion

    ERGolgi/TGNPM

    Methionine composition

    0 10 20 30

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    Position

    Pro

    port

    ion

    ERGolgi/TGNPM

    Asparagine composition

    0 10 20 30

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    Position

    Pro

    port

    ion

    ERGolgi/TGNPM

    Proline composition

    Pro

    port

    ion

    0 10 20 30

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    Position

    ERGolgi/TGNPM

    Glutamine composition

    0 10 20 30

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    Position

    Pro

    port

    ion

    ERGolgi/TGNPM

    Arginine composition

    0 10 20 30

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    Position

    Pro

    port

    ion

    ERGolgi/TGNPM

    Serine composition

    0 10 20 30

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    Position

    Pro

    port

    ion

    ERGolgi/TGNPM

    Threonine composition

    0 10 20 30

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    Position

    Pro

    port

    ion

    ERGolgi/TGNPM

    Tryptophan composition

    0 10 20 30

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    Position

    Pro

    port

    ion

    ERGolgi/TGNPM

    Tyrosine composition

    0 10 20 30

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    Position

    Pro

    port

    ion

    ERGolgi/TGNPM

    Alanine composition

    0 10 20 30

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    Position

    Pro

    port

    ion

    Valine composition

    ERGolgi/TGNPM

  • DUF579_consensus 78 PQQNLAEISISFNILKKLAPANFLVFGL--GRDSLMWASLNPRGKTLFLEEDLEWFQKVTKD-----SPFLRAHHVRY 148 (289aa)3cvo 14 LTMPPAEAEALRMAYEEA--EVILEYGS---GGSTVVAAELPGKHVTSVESDRAWARMMKAWLAANPPAEGTEVNIVW 86 (202aa)3ntv 53 PIVDRLTLDLIKQLIRMNNVKNILEIGTAIGYSSMQFASISDDIHVTTIERNETMIQYAKQNLATYHFENQVRIIEGN 130 (232aa)

    2gpy 36 PIMDLLGMESLLHLLKMAAPARILEIGTAIGYSAIRMAQALPEATIVSIERDERRYEEAHKHVKALGLESRIELLFGD 113 (233aa)Secondary structure ZZZZZZZZZZZZZ 11111 AAAAAAAAA 222222 BBBBBBBBBBBBB 333333

    A

    B

    Figure S3. HHpred alignment output of DUF579 query sequence against the PDB database

    (A) Graph summarizing the alignment positions and color-coded significances of the database

    sequence matches; (B) Multiple alignment of DUF579 and the top three HHpred targets, PDB entries

    of MT structures (3CVO, 3NTV and 2GPY), showing the SAM binding domain. The topology of the

    SAM-binding domain consists of alternating strands (1, 2, and 3) and helices (Z, A and B). Colors

    indicate predicted secondary structure, red – helices, blue – strands.

    β α

    α β

  • A

    Figure S4. HHpred alignment output of KOB1 query sequence against the PDB database.

    (A) Graph summarizing the alignment positions and color-coded significance of the top three matches,

    PDB entries of GT structures (1QG8, 3BCV and 3CKJ); (B) Multiple alignment of KOB1 and the

    highest Arabidopsis database matches; sequences of the two KOB1 related proteins, and the DUF23-

    containing GTNC and GT92. Colors indicate predicted secondary structure, red – helices, blue –

    strands. The putative catalytic DxD motif is indicated in a rectangle.

    α β

    BAT3G08550 (KOB1) 139 GLDQILPWMFYH-KVLGVSTFFLFVEGKAATPSISKVLESI---PGVKVIYRTKELEEKQAKSRIWNETWLSSFFYKPCN 214 (533aa)

    AT3G57200 125 GLEQTLPWIYFH-KVIGVSTFYLFVEGKAASPSISKVLESI---PGVKVIYRTKELEEKQAKSRIWNETWLSSFFYKPCN 200 (514aa)AT2G41451 106 GLEQTLPWIFYH-KVIGVETFYLFVEGTAASPNVSRVLETI---PGVNVIYRTRELEEEQAKSRIWNETWLEKFFYKPCN 181 (451aa)

    AT1G27200 (GTNC) 302 QAPFLREWIMYH-SWLGVERWFIYDNN--SDDGIQEEIELLSSENYNVSRHVWPW----------IKT------------ 361 (575aa)

    AT4G37420 (GTNC) 319 VAKYLREWVMYH-AAIGIQRFIIYDNG--SDDELNDVVKGLNSEKYDVIKVLWIW----------PKT------------ 378 (588aa)

    AT5G40720 (GTNC) 286 AANVLREWVMYH-AGIGVQRWFIYDNN--SDDDIVSEIKNLENRGYNISRHFWPW----------IKT------------ 345 (583aa)

    AT3G27330 (GTNC) 289 AAAVLREWVMYH-AGIGVQRWFIYDNN--SDDDIIAEIENLERRGYNISRHFWPW----------IKT------------ 348 (913aa)AT5G44670 (GT92) 270 SPQRIREWIAYHVRFFGERSHFVLHDAGGITEEVFEVLKPWIELGRVTVHD------------IREQER----------- 329 (519aa)

    AT4G20170 (GT92) 255 SPQRVREWIAYHVRFFGERSHFVLHDAGGIHEEVFEVLKPWIELGRVTLHD------------IRDQER----------- 311 (504aa)

    AT2G33570 (GT92) 245 SASRMREWMAYHAWFFGDKSHFVFHDAGGVSPEVRKVLEPWIRAGRVTVQN------------IRDQSQ----------- 309 (496aa)

    AT3G08550 (KOB1) 215 Y-ELFVKQSLNMEMAIVMARDA-GMDWILHLDTDELIY-------PAGAREYSLRRLLLDV-----PPNVDMVIFPNYES 293 (533aa)AT3G57200 201 Y-ELFVKQSLNMEMAITMAQDA-GMEWIIHLDTDELIH-------PSGTHEYSLRKLLGNI-----SADVDVVIFPNYES 264 (514aa)

    AT2G41451 182 Y-ELFVKQNLNMEMAITMARDA-GMDWILHLDTDELVH-------PSGTREYSLRNLLRDV-----PADVDEVIFTNYES 245 (451aa)

    AT1G27200 (GTNC) 362 -------QEAGFSHCAVRAKEE--CNWVGFFDVDEFYYFPTHRSQGLPSKNALKSLVSNYTS----WDLVGEIRTDCHSY 421 (575aa)

    AT4G37420 (GTNC) 379 -------QEAGFSHAAVYGND--TCTWMMYLDVDEFLFSPAWDKQSQPSDQMIRSLLPSD------QSMIGQVSFKSHEF 436 (588aa)

    AT5G40720 (GTNC) 346 -------QEAGFANCAIRAK--SDCDWVAFIDVDEFFYI------PSGQ--TLTNVIRNHTTTPSSSGEIGEIRTPCHSF 401 (583aa)AT3G27330 (GTNC) 349 -------QEAGFSNCAIRAK--SDCDWIAFIDVDEFFYI------PS--GETLTSVIRNYTTT----DSIGEIRTPCHSF 400 (913aa)

    AT5G44670 (GT92) 330 FDGYYHNQFMVVNDCLHRYRFMA--KWMFFFDVDEFIYV------P--AKSSISSVMVSL------EEYSQFTIEQMPMS 383 (519aa)

    AT4G20170 (GT92) 312 FDGYYHNQFMIVNDCLHRYRFMT--KWMFFFDVDEFLHV------PVKET--ISSVMESL------EEYSQFTIEQMPMS 368 (504aa)

    AT2G33570 (GT92) 310 YDGYYYNQFLIVNDCLHRYRYAA--NWTFFFDVDEYIYL------P--HGNTLESVLDEF------SVNTQFTIEQNPMS 361 (496aa)

  • Supplementary References

    Abdel-Ghany SE, Muller-Moule P, Niyogi KK, Pilon M, Shikanai T (2005) Two P-type

    ATPases are required for copper delivery in Arabidopsis thaliana chloroplasts. Plant

    Cell 17: 1233-1251

    Adjobo-Hermans MJ, Goedhart J, Gadella TW, Jr. (2006) Plant G protein heterotrimers

    require dual lipidation motifs of Galpha and Ggamma and do not dissociate upon

    activation. J Cell Sci 119: 5087-5097

    Ahmed SU, Rojo E, Kovaleva V, Venkataraman S, Dombrowski JE, Matsuoka K,

    Raikhel NV (2000) The plant vacuolar sorting receptor AtELP is involved in

    transport of NH(2)-terminal propeptide-containing vacuolar proteins in Arabidopsis

    thaliana. J Cell Biol 149: 1335-1344

    Anders N, Nielsen M, Keicher J, Stierhof YD, Furutani M, Tasaka M, Skriver K,

    Jurgens G (2008) Membrane association of the Arabidopsis ARF exchange factor

    GNOM involves interaction of conserved domains. Plant Cell 20: 142-151

    Anderson DJ, Botella JR (2007) Expression analysis and subcellular localization of the

    Arabidopsis thaliana G-protein beta-subunit AGB1. Plant Cell Rep 26: 1469-1480

    Andriotis VM, Kruger NJ, Pike MJ, Smith AM (2010) Plastidial glycolysis in developing

    Arabidopsis embryos. New Phytol 185: 649-662

    Assaad FF, Qiu JL, Youngs H, Ehrhardt D, Zimmerli L, Kalde M, Wanner G, Peck SC,

    Edwards H, Ramonell K, Somerville CR, Thordal-Christensen H (2004) The

    PEN1 syntaxin defines a novel cellular compartment upon fungal attack and is

    required for the timely assembly of papillae. Mol Biol Cell 15: 5118-5129

    Atmodjo MA, Sakuragi Y, Zhu X, Burrell AJ, Mohanty SS, Atwood JA, 3rd, Orlando

    R, Scheller HV, Mohnen D (2011) Galacturonosyltransferase (GAUT)1 and GAUT7

    are the core of a plant cell wall pectin biosynthetic

    homogalacturonan:galacturonosyltransferase complex. Proc Natl Acad Sci U S A

    108: 20225-20230

    Awai K, Marechal E, Block MA, Brun D, Masuda T, Shimada H, Takamiya K, Ohta H,

    Joyard J (2001) Two types of MGDG synthase genes, found widely in both 16:3 and

    18:3 plants, differentially mediate galactolipid syntheses in photosynthetic and

    nonphotosynthetic tissues in Arabidopsis thaliana. Proc Natl Acad Sci U S A 98:

    10960-10965

  • Awai K, Xu C, Tamot B, Benning C (2006) A phosphatidic acid-binding protein of the

    chloroplast inner envelope membrane involved in lipid trafficking. Proc Natl Acad Sci

    U S A 103: 10817-10822

    Bahaji A, Ovecka M, Barany I, Risueno MC, Munoz FJ, Baroja-Fernandez E, Montero

    M, Li J, Hidalgo M, Sesma MT, Ezquer I, Testillano PS, Pozueta-Romero J

    (2011) Dual targeting to mitochondria and plastids of AtBT1 and ZmBT1, two

    members of the mitochondrial carrier family. Plant Cell Physiol 52: 597-609

    Bar-Peled M, Raikhel NV (1997) Characterization of AtSEC12 and AtSAR1. Proteins

    likely involved in endoplasmic reticulum and Golgi transport. Plant Physiol 114: 315-

    324

    Bauer J, Chen K, Hiltbunner A, Wehrli E, Eugster M, Schnell D, Kessler F (2000) The

    major protein import receptor of plastids is essential for chloroplast biogenesis.

    Nature 403: 203-207

    Bauer M, Dietrich C, Nowak K, Sierralta WD, Papenbrock J (2004) Intracellular

    localization of Arabidopsis sulfurtransferases. Plant Physiol 135: 916-926

    Beaudoin F, Wu X, Li F, Haslam RP, Markham JE, Zheng H, Napier JA, Kunst L

    (2009) Functional characterization of the Arabidopsis beta-ketoacyl-coenzyme A

    reductase candidates of the fatty acid elongase. Plant Physiol 150: 1174-1191

    Berkemeyer M, Scheibe R, Ocheretina O (1998) A novel, non-redox-regulated NAD-

    dependent malate dehydrogenase from chloroplasts of Arabidopsis thaliana L. J Biol

    Chem 273: 27927-27933

    Bernal AJ, Yoo CM, Mutwil M, Jensen JK, Hou G, Blaukopf C, Sorensen I, Blancaflor

    EB, Scheller HV, Willats WG (2008) Functional analysis of the cellulose synthase-

    like genes CSLD1, CSLD2, and CSLD4 in tip-growing Arabidopsis cells. Plant

    Physiol 148: 1238-1253

    Binder BM, Rodriguez FI, Bleecker AB (2010) The copper transporter RAN1 is essential

    for biogenesis of ethylene receptors in Arabidopsis. J Biol Chem 285: 37263-37270

    Bonza MC, Morandini P, Luoni L, Geisler M, Palmgren MG, De Michelis MI (2000) At-

    ACA8 encodes a plasma membrane-localized calcium-ATPase of Arabidopsis with a

    calmodulin-binding domain at the N terminus. Plant Physiol 123: 1495-1506

    Bouvier F, Linka N, Isner JC, Mutterer J, Weber AP, Camara B (2006) Arabidopsis

    SAMT1 defines a plastid transporter regulating plastid biogenesis and plant

    development. Plant Cell 18: 3088-3105

  • Bown L, Kusaba S, Goubet F, Codrai L, Dale AG, Zhang Z, Yu X, Morris K, Ishii T,

    Evered C, Dupree P, Jackson S (2007) The ectopically parting cells 1-2 (epc1-2)

    mutant exhibits an exaggerated response to abscisic acid. J Exp Bot 58: 1813-1823

    Bracha K, Lavy M, Yalovsky S (2002) The Arabidopsis AtSTE24 is a CAAX protease with

    broad substrate specificity. J Biol Chem 277: 29856-29864

    Busquets A, Keim V, Closa M, del Arco A, Boronat A, Arro M, Ferrer A (2008)

    Arabidopsis thaliana contains a single gene encoding squalene synthase. Plant Mol

    Biol 67: 25-36

    Cao D, Froehlich JE, Zhang H, Cheng CL (2003) The chlorate-resistant and

    photomorphogenesis-defective mutant cr88 encodes a chloroplast-targeted HSP90.

    Plant J 33: 107-118

    Carette JE, Verver J, Martens J, van Kampen T, Wellink J, van Kammen A (2002)

    Characterization of plant proteins that interact with cowpea mosaic virus '60K' protein

    in the yeast two-hybrid system. J Gen Virol 83: 885-893

    Carrie C, Kuhn K, Murcha MW, Duncan O, Small ID, O' Toole N, Whelan J (2009)

    Approaches to defining dual-targeted proteins in Arabidopsis. Plant J 57: 1128-1139

    Carrie C, Murcha MW, Kuehn K, Duncan O, Barthet M, Smith PM, Eubel H, Meyer E,

    Day DA, Millar AH, Whelan J (2008) Type II NAD(P)H dehydrogenases are

    targeted to mitochondria and chloroplasts or peroxisomes in Arabidopsis thaliana.

    FEBS Lett 582: 3073-3079

    Chen M, Han G, Dietrich CR, Dunn TM, Cahoon EB (2006) The essential nature of

    sphingolipids in plants as revealed by the functional identification and

    characterization of the Arabidopsis LCB1 subunit of serine palmitoyltransferase. Plant

    Cell 18: 3576-3593

    Chen S, Sanchez-Fernandez R, Lyver ER, Dancis A, Rea PA (2007) Functional

    characterization of AtATM1, AtATM2, and AtATM3, a subfamily of Arabidopsis

    half-molecule ATP-binding cassette transporters implicated in iron homeostasis. J

    Biol Chem 282: 21561-21571

    Chevalier L, Bernard S, Ramdani Y, Lamour R, Bardor M, Lerouge P, Follet-Gueye

    ML, Driouich A (2010) Subcompartment localization of the side chain xyloglucan-

    synthesizing enzymes within Golgi stacks of tobacco suspension-cultured cells. Plant

    J 64: 977-989

  • Chew O, Whelan J, Millar AH (2003) Molecular definition of the ascorbate-glutathione

    cycle in Arabidopsis mitochondria reveals dual targeting of antioxidant defenses in

    plants. J Biol Chem 278: 46869-46877

    Cutler SR, Ehrhardt DW, Griffitts JS, Somerville CR (2000) Random GFP::cDNA

    fusions enable visualization of subcellular structures in cells of Arabidopsis at a high

    frequency. Proc Natl Acad Sci U S A 97: 3718-3723

    Damari-Weissler H, Ginzburg A, Gidoni D, Mett A, Kr assovskaya I, Weber AP,

    Belausov E, Granot D (2007) Spinach SoHXK1 is a mitochondria-associated

    hexokinase. Planta 226: 1053-1058

    Dammann C, Ichida A, Hong B, Romanowsky SM, Hrabak EM, Harmon AC, Pickard

    BG, Harper JF (2003) Subcellular targeting of nine calcium-dependent protein

    kinase isoforms from Arabidopsis. Plant Physiol 132: 1840-1848

    Danyluk J, Perron A, Houde M, Limin A, Fowler B, Benhamou N, Sarhan F (1998)

    Accumulation of an acidic dehydrin in the vicinity of the plasma membrane during

    cold acclimation of wheat. Plant Cell 10: 623-638

    daSilva LL, Taylor JP, Hadlington JL, Hanton SL, Snowden CJ, Fox SJ, Foresti O,

    Brandizzi F, Denecke J (2005) Receptor salvage from the prevacuolar compartment

    is essential for efficient vacuolar protein targeting. Plant Cell 17: 132-148

    Despres B, Bouissonnie F, Wu HJ, Gomord V, Guilleminot J, Grellet F, Berger F,

    Delseny M, Devic M (2003) Three SAC1-like genes show overlapping patterns of

    expression in Arabidopsis but are remarkably silent during embryo development.

    Plant J 34: 293-306

    Desprez T, Juraniec M, Crowell EF, Jouy H, Pochylova Z, Parcy F, Hofte H, Gonneau

    M, Vernhettes S (2007) Organization of cellulose synthase complexes involved in

    primary cell wall synthesis in Arabidopsis thaliana. Proc Natl Acad Sci U S A 104:

    15572-15577

    Dettmer J, Hong-Hermesdorf A, Stierhof YD, Schumacher K (2006) Vacuolar H+-

    ATPase activity is required for endocytic and secretory trafficking in Arabidopsis.

    Plant Cell 18: 715-730

    DeWitt ND, Hong B, Sussman MR, Harper JF (1996) Targeting of two Arabidopsis H(+)-

    ATPase isoforms to the plasma membrane. Plant Physiol 112: 833-844

    Dharmasiri S, Swarup R, Mockaitis K, Dharmasiri N, Singh SK, Kowalchyk M,

    Marchant A, Mills S, Sandberg G, Bennett MJ, Estelle M (2006) AXR4 is

  • required for localization of the auxin influx facilitator AUX1. Science 312: 1218-

    1220

    Dixon DP, Van Lith M, Edwards R, Benham A (2003) Cloning and initial characterization

    of the Arabidopsis thaliana endoplasmic reticulum oxidoreductins. Antioxid Redox

    Signal 5: 389-396

    Dunkley TPJ, Hester S, Shadforth IP, Runions J, Weimar T, Hanton SL, Griffin JL,

    Bessant C, Brandizzi F, Hawes C, Watson RB, Dupree P, Lilley KS (2006)

    Mapping the Arabidopsis organelle proteome. Proceedings of the National Academy

    of Sciences of the United States of America 103: 6518-6523

    Elhafez D, Murcha MW, Clifton R, Soole KL, Day DA, Whelan J (2006) Characterization

    of mitochondrial alternative NAD(P)H dehydrogenases in Arabidopsis: intraorganelle

    location and expression. Plant Cell Physiol 47: 43-54

    Enami K, Ichikawa M, Uemura T, Kutsuna N, Hasezawa S, Nakagawa T, Nakano A,

    Sato MH (2009) Differential expression control and polarized distribution of plasma

    membrane-resident SYP1 SNAREs in Arabidopsis thaliana. Plant Cell Physiol 50:

    280-289

    Escobar-Restrepo JM, Huck N, Kessler S, Gagliardini V, Gheyselinck J, Yang WC,

    Grossniklaus U (2007) The FERONIA receptor-like kinase mediates male-female

    interactions during pollen tube reception. Science 317: 656-660

    Escobar C, Hernandez LE, Jimenez A, Creissen G, Ruiz MT, Mullineaux PM (2003)

    Transient expression of Arabidopsis thaliana ascorbate peroxidase 3 in Nicotiana

    benthamiana plants infected with recombinant potato virus X. Plant Cell Rep 21: 699-

    704

    Eubel H, Meyer EH, Taylor NL, Bussell JD, O'Toole N, Heazlewood JL, Castleden I,

    Small ID, Smith SM, Millar AH (2008) Novel proteins, putative membrane

    transporters, and an integrated metabolic network are revealed by quantitative

    proteomic analysis of Arabidopsis cell culture peroxisomes. Plant Physiol 148: 1809-

    1829

    Ezaki B, Sasaki K, Matsumoto H, Nakashima S (2005) Functions of two genes in

    aluminium (Al) stress resistance: repression of oxidative damage by the AtBCB gene

    and promotion of efflux of Al ions by the NtGDI1gene. J Exp Bot 56: 2661-2671

    Ferro M, Brugiere S, Salvi D, Seigneurin-Berny D, Court M, Moyet L, Ramus C, Miras

    S, Mellal M, Le Gall S, Kieffer-Jaquinod S, Bruley C, Garin J, Joyard J,

    Masselon C, Rolland N (2010) AT_CHLORO, a comprehensive chloroplast

  • proteome database with subplastidial localization and curated information on

    envelope proteins. Mol Cell Proteomics 9: 1063-1084

    Figueroa P, Leon G, Elorza A, Holuigue L, Araya A, Jordana X (2002) The four subunits

    of mitochondrial respiratory complex II are encoded by multiple nuclear genes and

    targeted to mitochondria in Arabidopsis thaliana. Plant Mol Biol 50: 725-734

    Flechner A, Dressen U, Westhoff P, Henze K, Schnarrenberger C, Martin W (1996)

    Molecular characterization of transketolase (EC 2.2.1.1) active in the Calvin cycle of

    spinach chloroplasts. Plant Mol Biol 32: 475-484

    Foresti O, daSilva LL, Denecke J (2006) Overexpression of the Arabidopsis syntaxin

    PEP12/SYP21 inhibits transport from the prevacuolar compartment to the lytic

    vacuole in vivo. Plant Cell 18: 2275-2293

    Fourrier N, Bedard J, Lopez-Juez E, Barbrook A, Bowyer J, Jarvis P, Warren G,

    Thorlby G (2008) A role for SENSITIVE TO FREEZING2 in protecting chloroplasts

    against freeze-induced damage in Arabidopsis. Plant J 55: 734-745

    Frank J, Kaulfurst-Soboll H, Rips S, Koiwa H, von Schaewen A (2008) Comparative

    analyses of Arabidopsis complex glycan1 mutants and genetic interaction with

    staurosporin and temperature sensitive3a. Plant Physiol 148: 1354-1367

    Friedrichsen DM, Joazeiro CA, Li J, Hunter T, Chory J (2000) Brassinosteroid-

    insensitive-1 is a ubiquitously expressed leucine-rich repeat receptor serine/threonine

    kinase. Plant Physiol 123: 1247-1256

    Fujikawa Y, Kato N (2007) Split luciferase complementation assay to study protein-protein

    interactions in Arabidopsis protoplasts. Plant J 52: 185-195

    Fujimoto M, Arimura S, Ueda T, Takanashi H, Hayashi Y, Nakano A, Tsutsumi N

    (2010) Arabidopsis dynamin-related proteins DRP2B and DRP1A participate together

    in clathrin-coated vesicle formation during endocytosis. Proc Natl Acad Sci U S A

    107: 6094-6099

    Gao C, Yu CK, Qu S, San MW, Li KY, Lo SW, Jiang L (2012) The Golgi-Localized

    Arabidopsis Endomembrane Protein12 Contains Both Endoplasmic Reticulum Export

    and Golgi Retention Signals at Its C Terminus. Plant Cell 24: 2086-2104

    Gao W, Li HY, Xiao S, Chye ML (2010) Acyl-CoA-binding protein 2 binds

    lysophospholipase 2 and lysoPC to promote tolerance to cadmium-induced oxidative

    stress in transgenic Arabidopsis. Plant J 62: 989-1003

    Gattolin S, Sorieul M, Hunter PR, Khonsari RH, Frigerio L (2009) In vivo imaging of the

    tonoplast intrinsic protein family in Arabidopsis roots. BMC Plant Biol 9: 133

  • Ge L, Peer W, Robert S, Swarup R, Ye S, Prigge M, Cohen JD, Friml J, Murphy A,

    Tang D, Estelle M (2010) Arabidopsis ROOT UVB SENSITIVE2/WEAK AUXIN

    RESPONSE1 is required for polar auxin transport. Plant Cell 22: 1749-1761

    Geisler M, Frangne N, Gomes E, Martinoia E, Palmgren MG (2000) The ACA4 gene of

    Arabidopsis encodes a vacuolar membrane calcium pump that improves salt tolerance

    in yeast. Plant Physiol 124: 1814-1827

    Geisler M, Girin M, Brandt S, Vincenzetti V, Plaza S, Paris N, Kobae Y, Maeshima M,

    Billion K, Kolukisaoglu UH, Schulz B, Martinoia E (2004) Arabidopsis

    immunophilin-like TWD1 functionally interacts with vacuolar ABC transporters. Mol

    Biol Cell 15: 3393-3405

    Gendre D, Oh J, Boutte Y, Best JG, Samuels L, Nilsson R, Uemura T, Marchant A,

    Bennett MJ, Grebe M, Bhalerao RP (2011) Conserved Arabidopsis ECHIDNA

    protein mediates trans-Golgi-network trafficking and cell elongation. Proc Natl Acad

    Sci U S A 108: 8048-8053

    Goetze TA, Philippar K, Ilkavets I, Soll J, Wagner R (2006) OEP37 is a new member of

    the chloroplast outer membrane ion channels. J Biol Chem 281: 17989-17998

    Gonzalez E, Solano R, Rubio V, Leyva A, Paz-Ares J (2005) PHOSPHATE

    TRANSPORTER TRAFFIC FACILITATOR1 is a plant-specific SEC12-related

    protein that enables the endoplasmic reticulum exit of a high-affinity phosphate

    transporter in Arabidopsis. Plant Cell 17: 3500-3512

    Graumann K, Evans DE (2011) Nuclear envelope dynamics during plant cell division

    suggest common mechanisms between kingdoms. Biochem J 435: 661-667

    He Y, Chen B, Pang Q, Strul JM, Chen S (2010) Functional specification of Arabidopsis

    isopropylmalate isomerases in glucosinolate and leucine biosynthesis. Plant Cell

    Physiol 51: 1480-1487

    Held MA, Be E, Zemelis S, Withers S, Wilkerson C, Brandizzi F (2011) CGR3: a Golgi-

    localized protein influencing homogalacturonan methylesterification. Mol Plant 4:

    832-844

    Helliwell CA, Sullivan JA, Mould RM, Gray JC, Peacock WJ, Dennis ES (2001) A

    plastid envelope location of Arabidopsis ent-kaurene oxidase links the plastid and

    endoplasmic reticulum steps of the gibberellin biosynthesis pathway. Plant J 28: 201-

    208

  • Ho CL, Noji M, Saito M, Yamazaki M, Saito K (1998) Molecular characterization of

    plastidic phosphoserine aminotransferase in serine biosynthesis from Arabidopsis.

    Plant J 16: 443-452

    Hong B, Ichida A, Wang Y, Gens JS, Pickard BG, Harper JF (1999) Identification of a

    calmodulin-regulated Ca2+-ATPase in the endoplasmic reticulum. Plant Physiol 119:

    1165-1176

    Hua J, Grisafi P, Cheng SH, Fink GR (2001) Plant growth homeostasis is controlled by the

    Arabidopsis BON1 and BAP1 genes. Genes Dev 15: 2263-2272

    Ishikawa M, Fujiwara M, Sonoike K, Sato N (2009) Orthogenomics of photosynthetic

    organisms: bioinformatic and experimental analysis of chloroplast proteins of

    endosymbiont origin in Arabidopsis and their counterparts in Synechocystis. Plant

    Cell Physiol 50: 773-788

    Jakobsen MK, Poulsen LR, Schulz A, Fleurat-Lessard P, Moller A, Husted S, Schiott

    M, Amtmann A, Palmgren MG (2005) Pollen development and fertilization in

    Arabidopsis is dependent on the MALE GAMETOGENESIS IMPAIRED ANTHERS

    gene encoding a type V P-type ATPase. Genes Dev 19: 2757-2769

    Jensen JK, Sorensen SO, Harholt J, Geshi N, Sakuragi Y, Moller I, Zandleven J, Bernal

    AJ, Jensen NB, Sorensen C, Pauly M, Beldman G, Willats WG, Scheller HV

    (2008) Identification of a xylogalacturonan xylosyltransferase involved in pectin

    biosynthesis in Arabidopsis. Plant Cell 20: 1289-1302

    Johansen JN, Chow CM, Moore I, Hawes C (2009) AtRAB-H1b and AtRAB-H1c

    GTPases, homologues of the yeast Ypt6, target reporter proteins to the Golgi when

    expressed in Nicotiana tabacum and Arabidopsis thaliana. J Exp Bot 60: 3179-3193

    Kajiura H, Koiwa H, Nakazawa Y, Okazawa A, Kobayashi A, Seki T, Fujiyama K

    (2010) Two Arabidopsis thaliana Golgi alpha-mannosidase I enzymes are responsible

    for plant N-glycan maturation. Glycobiology 20: 235-247

    Kammerloher W, Fischer U, Piechottka GP, Schaffner AR (1994) Water channels in the

    plant plasma membrane cloned by immunoselection from a mammalian expression

    system. Plant J 6: 187-199

    Kang BH, Busse JS, Bednarek SY (2003) Members of the Arabidopsis dynamin-like gene

    family, ADL1, are essential for plant cytokinesis and polarized cell growth. Plant Cell

    15: 899-913

  • Kawai-Yamada M, Jin L, Yoshinaga K, Hirata A, Uchimiya H (2001) Mammalian Bax-

    induced plant cell death can be down-regulated by overexpression of Arabidopsis Bax

    Inhibitor-1 (AtBI-1). Proc Natl Acad Sci U S A 98: 12295-12300

    Kim HU, Li Y, Huang AH (2005) Ubiquitous and endoplasmic reticulum-located

    lysophosphatidyl acyltransferase, LPAT2, is essential for female but not male

    gametophyte development in Arabidopsis. Plant Cell 17: 1073-1089

    Klein EM, Mascheroni L, Pompa A, Ragni L, Weimar T, Lilley KS, Dupree P, Vitale A

    (2006) Plant endoplasmin supports the protein secretory pathway and has a role in

    proliferating tissues. Plant J 48: 657-673

    Komori R, Amano Y, Ogawa-Ohnishi M, Matsubayashi Y (2009) Identification of

    tyrosylprotein sulfotransferase in Arabidopsis. Proc Natl Acad Sci U S A 106: 15067-

    15072

    Konopka CA, Backues SK, Bednarek SY (2008) Dynamics of Arabidopsis dynamin-

    related protein 1C and a clathrin light chain at the plasma membrane. Plant Cell 20:

    1363-1380

    Kovacheva S, Bedard J, Patel R, Dudley P, Twell D, Rios G, Koncz C, Jarvis P (2005) In

    vivo studies on the roles of Tic110, Tic40 and Hsp93 during chloroplast protein

    import. Plant J 41: 412-428

    Kushnir S, Babiychuk E, Storozhenko S, Davey MW, Papenbrock J, De Rycke R,

    Engler G, Stephan UW, Lange H, Kispal G, Lill R, Van Montagu M (2001) A

    mutation of the mitochondrial ABC transporter Sta1 leads to dwarfism and chlorosis

    in the Arabidopsis mutant starik. Plant Cell 13: 89-100

    Larsen PB, Cancel J, Rounds M, Ochoa V (2007) Arabidopsis ALS1 encodes a root tip

    and stele localized half type ABC transporter required for root growth in an aluminum

    toxic environment. Planta 225: 1447-1458

    Lee BH, Lee H, Xiong L, Zhu JK (2002) A mitochondrial complex I defect impairs cold-

    regulated nuclear gene expression. Plant Cell 14: 1235-1251

    Lee J, Lee H, Kim J, Lee S, Kim DH, Kim S, Hwang I (2011) Both the hydrophobicity and

    a positively charged region flanking the C-terminal region of the transmembrane

    domain of signal-anchored proteins play critical roles in determining their targeting

    specificity to the endoplasmic reticulum or endosymbiotic organelles in Arabidopsis

    cells. Plant Cell 23: 1588-1607

  • Li J, Zhao-Hui C, Batoux M, Nekrasov V, Roux M, Chinchilla D, Zipfel C, Jones JD

    (2009) Specific ER quality control components required for biogenesis of the plant

    innate immune receptor EFR. Proc Natl Acad Sci U S A 106: 15973-15978

    Li JY, Fu YL, Pike SM, Bao J, Tian W, Zhang Y, Chen CZ, Li HM, Huang J, Li LG,

    Schroeder JI, Gassmann W, Gong JM (2010) The Arabidopsis nitrate transporter

    NRT1.8 functions in nitrate removal from the xylem sap and mediates cadmium

    tolerance. Plant Cell 22: 1633-1646

    Liebminger E, Huttner S, Vavra U, Fischl R, Schoberer J, Grass J, Blaukopf C, Seifert

    GJ, Altmann F, Mach L, Strasser R (2009) Class I alpha-mannosidases are required

    for N-glycan processing and root development in Arabidopsis thaliana. Plant Cell 21:

    3850-3867

    Lingard MJ, Trelease RN (2006) Five Arabidopsis peroxin 11 homologs individually

    promote peroxisome elongation, duplication or aggregation. J Cell Sci 119: 1961-

    1972

    Logan DC, Leaver CJ (2000) Mitochondria-targeted GFP highlights the heterogeneity of

    mitochondrial shape, size and movement within living plant cells. J Exp Bot 51: 865-

    871

    Loque D, Yuan L, Kojima S, Gojon A, Wirth J, Gazzarrini S, Ishiyama K, Takahashi

    H, von Wiren N (2006) Additive contribution of AMT1;1 and AMT1;3 to high-

    affinity ammonium uptake across the plasma membrane of nitrogen-deficient

    Arabidopsis roots. Plant J 48: 522-534

    Lummer M, Humpert F, Steuwe C, Caesar K, Schuttpelz M, Sauer M, Staiger D (2011)

    Reversible photoswitchable DRONPA-s monitors nucleocytoplasmic transport of an

    RNA-binding protein in transgenic plants. Traffic 12: 693-702

    Marion J, Bach L, Bellec Y, Meyer C, Gissot L, Faure JD (2008) Systematic analysis of

    protein subcellular localization and interaction using high-throughput transient

    transformation of Arabidopsis seedlings. Plant J 56: 169-179

    Marmagne A, Rouet MA, Ferro M, Rolland N, Alcon C, Joyard J, Garin J, Barbier-

    Brygoo H, Ephritikhine G (2004) Identification of new intrinsic proteins in

    Arabidopsis plasma membrane proteome. Mol Cell Proteomics 3: 675-691

    Matsushima R, Kondo M, Nishimura M, Hara-Nishimura I (2003) A novel ER-derived

    compartment, the ER body, selectively accumulates a beta-glucosidase with an ER-

    retention signal in Arabidopsis. Plant J 33: 493-502

  • Miao Y, Li HY, Shen J, Wang J, Jiang L (2011) QUASIMODO 3 (QUA3) is a putative

    homogalacturonan methyltransferase regulating cell wall biosynthesis in Arabidopsis

    suspension-cultured cells. J Exp Bot 62: 5063–5078

    Miao Y, Yan PK, Kim H, Hwang I, Jiang L (2006) Localization of green fluorescent

    protein fusions with the seven Arabidopsis vacuolar sorting receptors to prevacuolar

    compartments in tobacco BY-2 cells. Plant Physiol 142: 945-962

    Mills RF, Doherty ML, Lopez-Marques RL, Weimar T, Dupree P, Palmgren MG,

    Pittman JK, Williams LE (2008) ECA3, a Golgi-localized P2A-type ATPase, plays

    a crucial role in manganese nutrition in Arabidopsis. Plant Physiol 146: 116-128

    Mitsuda N, Enami K, Nakata M, Takeyasu K, Sato MH (2001) Novel type Arabidopsis

    thaliana H(+)-PPase is localized to the Golgi apparatus. FEBS Lett 488: 29-33

    Motohashi R, Ito T, Kobayashi M, Taji T, Nagata N, Asami T, Yoshida S, Yamaguchi-

    Shinozaki K, Shinozaki K (2003) Functional analysis of the 37 kDa inner envelope

    membrane polypeptide in chloroplast biogenesis using a Ds-tagged Arabidopsis pale-

    green mutant. Plant J 34: 719-731

    Mouille G, Ralet MC, Cavelier C, Eland C, Effroy D, Hematy K, McCartney L, Truong

    HN, Gaudon V, Thibault JF, Marchant A, Hofte H (2007) Homogalacturonan

    synthesis in Arabidopsis thaliana requires a Golgi-localized protein with a putative

    methyltransferase domain. Plant J 50: 605-614

    Murcha MW, Elhafez D, Lister R, Tonti-Filippini J, Baumgartner M, Philippar K,

    Carrie C, Mokranjac D, Soll J, Whelan J (2007) Characterization of the preprotein

    and amino acid transporter gene family in Arabidopsis. Plant Physiol 143: 199-212

    Nagasaki N, Tomioka R, Maeshima M (2008) A hydrophilic cation-binding protein of

    Arabidopsis thaliana, AtPCaP1, is localized to plasma membrane via N-

    myristoylation and interacts with calmodulin and the phosphatidylinositol phosphates

    PtdIns(3,4,5)P(3) and PtdIns(3,5)P(2). FEBS J 275: 2267-2282

    Narsai R, Law SR, Carrie C, Xu L, Whelan J (2011) In-depth temporal transcriptome

    profiling reveals a crucial developmental switch with roles for RNA processing and

    organelle metabolism that are essential for germination in Arabidopsis. Plant Physiol

    157: 1342-1362

    Nelson BK, Cai X, Nebenfuhr A (2007) A multicolored set of in vivo organelle markers for

    co-localization studies in Arabidopsis and other plants. Plant J 51: 1126-1136

    Pagant S, Bichet A, Sugimoto K, Lerouxel O, Desprez T, McCann M, Lerouge P,

    Vernhettes S, Hofte H (2002) KOBITO1 encodes a novel plasma membrane protein

  • necessary for normal synthesis of cellulose during cell expansion in Arabidopsis.

    Plant Cell 14: 2001-2013

    Palmieri L, Arrigoni R, Blanco E, Carrari F, Zanor MI, Studart-Guimaraes C, Fernie

    AR, Palmieri F (2006) Molecular identification of an Arabidopsis S-

    adenosylmethionine transporter. Analysis of organ distribution, bacterial expression,

    reconstitution into liposomes, and functional characterization. Plant Physiol 142: 855-

    865

    Parisi G, Perales M, Fornasari MS, Colaneri A, Gonzalez-Schain N, Gomez-Casati D,

    Zimmermann S, Brennicke A, Araya A, Ferry JG, Echave J, Zabaleta E (2004)

    Gamma carbonic anhydrases in plant mitochondria. Plant Mol Biol 55: 193-207

    Paul AL, Sehnke PC, Ferl RJ (2005) Isoform-specific subcellular localization among 14-3-

    3 proteins in Arabidopsis seems to be driven by client interactions. Mol Biol Cell 16:

    1735-1743

    Pendle AF, Clark GP, Boon R, Lewandowska D, Lam YW, Andersen J, Mann M,

    Lamond AI, Brown JW, Shaw PJ (2005) Proteomic analysis of the Arabidopsis

    nucleolus suggests novel nucleolar functions. Mol Biol Cell 16: 260-269

    Petrasek J, Mravec J, Bouchard R, Blakeslee JJ, Abas M, Seifertova D, Wisniewska J,

    Tadele Z, Kubes M, Covanova M, Dhonukshe P, Skupa P, Benkova E, Perry L,

    Krecek P, Lee OR, Fink GR, Geisler M, Murphy AS, Luschnig C, Zazimalova E,

    Friml J (2006) PIN proteins perform a rate-limiting function in cellular auxin efflux.

    Science 312: 914-918

    Pollmann S, Springer A, Buhr F, Lahroussi A, Samol I, Bonneville JM, Tichtinsky G,

    von Wettstein D, Reinbothe C, Reinbothe S (2007) A plant porphyria related to

    defects in plastid import of protochlorophyllide oxidoreductase A. Proc Natl Acad Sci

    U S A 104: 2019-2023

    Poulsen LR, Lopez-Marques RL, McDowell SC, Okkeri J, Licht D, Schulz A, Pomorski

    T, Harper JF, Palmgren MG (2008) The Arabidopsis P4-ATPase ALA3 localizes to

    the golgi and requires a beta-subunit to function in lipid translocation and secretory

    vesicle formation. Plant Cell 20: 658-676

    Pracharoenwattana I, Zhou W, Keech O, Francisco PB, Udomchalothorn T, Tschoep H,

    Stitt M, Gibon Y, Smith SM (2010) Arabidopsis has a cytosolic fumarase required

    for the massive allocation of photosynthate into fumaric acid and for rapid plant

    growth on high nitrogen. Plant J 62: 785-795

  • Qbadou S, Becker T, Bionda T, Reger K, Ruprecht M, Soll J, Schleiff E (2007) Toc64--a

    preprotein-receptor at the outer membrane with bipartide function. J Mol Biol 367:

    1330-1346

    Quint M, Barkawi LS, Fan KT, Cohen JD, Gray WM (2009) Arabidopsis IAR4

    modulates auxin response by regulating auxin homeostasis. Plant Physiol 150: 748-

    758

    Renna L, Hanton SL, Stefano G, Bortolotti L, Misra V, Brandizzi F (2005) Identification

    and characterization of AtCASP, a plant transmembrane Golgi matrix protein. Plant

    Mol Biol 58: 109-122

    Reumann S, Quan S, Aung K, Yang P, Manandhar-Shrestha K, Holbrook D, Linka N,

    Switzenberg R, Wilkerson CG, Weber AP, Olsen LJ, Hu J (2009) In-depth

    proteome analysis of Arabidopsis leaf peroxisomes combined with in vivo subcellular

    targeting verification indicates novel metabolic and regulatory functions of

    peroxisomes. Plant Physiol 150: 125-143

    Rigas S, Daras G, Laxa M, Marathias N, Fasseas C, Sweetlove LJ, Hatzopoulos P (2009)

    Role of Lon1 protease in post-germinative growth and maintenance of mitochondrial

    function in Arabidopsis thaliana. New Phytol 181: 588-600

    Robert S, Bichet A, Grandjean O, Kierzkowski D, Satiat-Jeunemaitre B, Pelletier S,

    Hauser MT, Hofte H, Vernhettes S (2005) An Arabidopsis endo-1,4-beta-D-

    glucanase involved in cellulose synthesis undergoes regulated intracellular cycling.

    Plant Cell 17: 3378-3389

    Sadowski PG, Groen AJ, Dupree P, Lilley KS (2008) Sub-cellular localization of

    membrane proteins. Proteomics 8: 3991-4011

    Saint-Jore-Dupas C, Nebenfuhr A, Boulaflous A, Follet-Gueye ML, Plasson C, Hawes

    C, Driouich A, Faye L, Gomord V (2006) Plant N-glycan processing enzymes

    employ different targeting mechanisms for their spatial arrangement along the

    secretory pathway. Plant Cell 18: 3182-3200

    Sakamoto W, Zaltsman A, Adam Z, Takahashi Y (2003) Coordinated regulation and

    complex formation of yellow variegated1 and yellow variegated2, chloroplastic FtsH

    metalloproteases involved in the repair cycle of photosystem II in Arabidopsis

    thylakoid membranes. Plant Cell 15: 2843-2855

    Sarafian V, Kim Y, Poole RJ, Rea PA (1992) Molecular cloning and sequence of cDNA

    encoding the pyrophosphate-energized vacuolar membrane proton pump of

    Arabidopsis thaliana. Proc Natl Acad Sci U S A 89: 1775-1779

  • Schnurr JA, Shockey JM, de Boer GJ, Browse JA (2002) Fatty acid export from the

    chloroplast. Molecular characterization of a major plastidial acyl-coenzyme A

    synthetase from Arabidopsis. Plant Physiol 129: 1700-1709

    Sedbrook JC, Carroll KL, Hung KF, Masson PH, Somerville CR (2002) The Arabidopsis

    SKU5 gene encodes an extracellular glycosyl phosphatidylinositol-anchored

    glycoprotein involved in directional root growth. Plant Cell 14: 1635-1648

    Shanklin J, DeWitt ND, Flanagan JM (1995) The stroma of higher plant plastids contain

    ClpP and ClpC, functional homologs of Escherichia coli ClpP and ClpA: an

    archetypal two-component ATP-dependent protease. Plant Cell 7: 1713-1722

    Sidler M, Hassa P, Hasan S, Ringli C, Dudler R (1998) Involvement of an ABC

    transporter in a developmental pathway regulating hypocotyl cell elongation in the

    light. Plant Cell 10: 1623-1636

    Song WY, Choi KS, Kim do Y, Geisler M, Park J, Vincenzetti V, Schellenberg M, Kim

    SH, Lim YP, Noh EW, Lee Y, Martinoia E (2010) Arabidopsis PCR2 is a zinc

    exporter involved in both zinc extrusion and long-distance zinc transport. Plant Cell

    22: 2237-2252

    Speth EB, Imboden L, Hauck P, He SY (2009) Subcellular localization and functional

    analysis of the Arabidopsis GTPase RabE. Plant Physiol 149: 1824-1837

    Stein M, Dittgen J, Sanchez-Rodriguez C, Hou BH, Molina A, Schulze-Lefert P, Lipka

    V, Somerville S (2006) Arabidopsis PEN3/PDR8, an ATP binding cassette

    transporter, contributes to nonhost resistance to inappropriate pathogens that enter by

    direct penetration. Plant Cell 18: 731-746

    Strasser R, Schoberer J, Jin C, Glossl J, Mach L, Steinkellner H (2006) Molecular

    cloning and characterization of Arabidopsis thaliana Golgi alpha-mannosidase II, a

    key enzyme in the formation of complex N-glycans in plants. Plant J 45: 789-803

    Sunderhaus S, Dudkina NV, Jansch L, Klodmann J, Heinemeyer J, Perales M, Zabaleta

    E, Boekema EJ, Braun HP (2006) Carbonic anhydrase subunits form a matrix-

    exposed domain attached to the membrane arm of mitochondrial complex I in plants.

    J Biol Chem 281: 6482-6488

    Sung DY, Vierling E, Guy CL (2001) Comprehensive expression profile analysis of the

    Arabidopsis Hsp70 gene family. Plant Physiol 126: 789-800

    Suwastika IN, Uemura T, Shiina T, M HS, Takeyasu K (2008) SYP71, a plant-specific

    Qc-SNARE protein, reveals dual localization to the plasma membrane and the

    endoplasmic reticulum in Arabidopsis. Cell Struct Funct 33: 185-192

  • Sweetlove LJ, Mowday B, Hebestreit HF, Leaver CJ, Millar AH (2001) Nucleoside

    diphosphate kinase III is localized to the inter-membrane space in plant mitochondria.

    FEBS Lett 508: 272-276

    Takeuchi M, Ueda T, Sato K, Abe H, Nagata T, Nakano A (2000) A dominant negative

    mutant of sar1 GTPase inhibits protein transport from the endoplasmic reticulum to

    the Golgi apparatus in tobacco and Arabidopsis cultured cells. Plant J 23: 517-525

    Tamura K, Shimada T, Kondo M, Nishimura M, Hara-Nishimura I (2005)

    KATAMARI1/MURUS3 Is a novel golgi membrane protein that is required for

    endomembrane organization in Arabidopsis. Plant Cell 17: 1764-1776

    Tamura T, Asakura T, Uemura T, Ueda T, Terauchi K, Misaka T, Abe K (2008) Signal

    peptide peptidase and its homologs in Arabidopsis thaliana--plant tissue-specific

    expression and distinct subcellular localization. FEBS J 275: 34-43

    Tarutani Y, Morimoto T, Sasaki A, Yasuda M, Nakashita H, Yoshida S, Yamaguchi I,

    Suzuki Y (2004) Molecular characterization of two highly homologous receptor-like

    kinase genes, RLK902 and RKL1, in Arabidopsis thaliana. Biosci Biotechnol

    Biochem 68: 1935-1941

    Tateda C, Watanabe K, Kusano T, Takahashi Y (2011) Molecular and genetic

    characterization of the gene family encoding the voltage-dependent anion channel in

    Arabidopsis. J Exp Bot 62: 4773-4785

    Thole JM, Vermeer JE, Zhang Y, Gadella TW, Jr., Nielsen E (2008) Root hair defective4

    encodes a phosphatidylinositol-4-phosphate phosphatase required for proper root hair

    development in Arabidopsis thaliana. Plant Cell 20: 381-395

    Thuswaldner S, Lagerstedt JO, Rojas-Stutz M, Bouhidel K, Der C, Leborgne-Castel N,

    Mishra A, Marty F, Schoefs B, Adamska I, Persson BL, Spetea C (2007)

    Identification, expression, and functional analyses of a thylakoid ATP/ADP carrier

    from Arabidopsis. J Biol Chem 282: 8848-8859

    Tsai LY, Tu SL, Li HM (1999) Insertion of atToc34 into the chloroplastic outer membrane

    is assisted by at least two proteinaceous components in the import system. J Biol

    Chem 274: 18735-18740

    Tsegaye Y, Richardson CG, Bravo JE, Mulcahy BJ, Lynch DV, Markham JE, Jaworski

    JG, Chen M, Cahoon EB, Dunn TM (2007) Arabidopsis mutants lacking long chain

    base phosphate lyase are fumonisin-sensitive and accumulate trihydroxy-18:1 long

    chain base phosphate. J Biol Chem 282: 28195-28206

  • Ueda T, Uemura T, Sato MH, Nakano A (2004) Functional differentiation of endosomes in

    Arabidopsis cells. Plant J 40: 783-789

    Uemura T, Ueda T, Ohniwa RL, Nakano A, Takeyasu K, Sato MH (2004) Systematic

    analysis of SNARE molecules in Arabidopsis: dissection of the post-Golgi network in

    plant cells. Cell Struct Funct 29: 49-65

    Van Aken O, Zhang B, Carrie C, Uggalla V, Paynter E, Giraud E, Whelan J (2009)

    Defining the mitochondrial stress response in Arabidopsis thaliana. Mol Plant 2:

    1310-1324

    Velasquez SM, Ricardi MM, Dorosz JG, Fernandez PV, Nadra AD, Pol-Fachin L,

    Egelund J, Gille S, Harholt J, Ciancia M, Verli H, Pauly M, Bacic A, Olsen CE,

    Ulvskov P, Petersen BL, Somerville C, Iusem ND, Estevez JM (2011) O-

    glycosylated cell wall proteins are essential in root hair growth. Science 332: 1401-

    1403

    Vitha S, Froehlich JE, Koksharova O, Pyke KA, van Erp H, Osteryoung KW (2003)

    ARC6 is a J-domain plastid division protein and an evolutionary descendant of the

    cyanobacterial cell division protein Ftn2. Plant Cell 15: 1918-1933

    Wang H, Boavida LC, Ron M, McCormick S (2008) Truncation of a protein disulfide

    isomerase, PDIL2-1, delays embryo sac maturation and disrupts pollen tube guidance

    in Arabidopsis thaliana. Plant Cell 20: 3300-3311

    Wang HX, Weerasinghe RR, Perdue TD, Cakmakci NG, Taylor JP, Marzluff WF,

    Jones AM (2006) A Golgi-localized hexose transporter is involved in heterotrimeric

    G protein-mediated early development in Arabidopsis. Mol Biol Cell 17: 4257-4269

    Wang P, Hummel E, Osterrieder A, Meyer AJ, Frigerio L, Sparkes I, Hawes C (2011)

    KMS1 and KMS2, two plant endoplasmic reticulum proteins involved in the early

    secretory pathway. Plant J 66: 613-628

    Weiss CA, White E, Huang H, Ma H (1997) The G protein alpha subunit (GP alpha1) is

    associated with the ER and the plasma membrane in meristematic cells of Arabidopsis

    and cauliflower. FEBS Lett 407: 361-367

    Werhahn W, Niemeyer A, Jansch L, Kruft V, Schmitz UK, Braun H (2001) Purification

    and characterization of the preprotein translocase of the outer mitochondrial

    membrane from Arabidopsis. Identification of multiple forms of TOM20. Plant

    Physiol 125: 943-954

    Witthoft J, Caesar K, Elgass K, Huppenberger P, Kilian J, Schleifenbaum F, Oecking

    C, Harter K (2011) The activation of the Arabidopsis P-ATPase 1 by the

  • brassinosteroid receptor BRI1 is independent of threonine 948 phosphorylation. Plant

    Signal Behav 6: 1063-1066

    Wulfetange K, Lomin SN, Romanov GA, Stolz A, Heyl A, Schmulling T (2011) The

    cytokinin receptors of Arabidopsis are located mainly to the endoplasmic reticulum.

    Plant Physiol 156: 1808-1818

    Yamazaki T, Takata N, Uemura M, Kawamura Y (2010) Arabidopsis synaptotagmin

    SYT1, a type I signal-anchor protein, requires tandem C2 domains for delivery to the

    plasma membrane. J Biol Chem 285: 23165-23176

    Yu B, Wakao S, Fan J, Benning C (2004) Loss of plastidic lysophosphatidic acid

    acyltransferase causes embryo-lethality in Arabidopsis. Plant Cell Physiol 45: 503-

    510

    Zabotina OA, van de Ven WT, Freshour G, Drakakaki G, Cavalier D, Mouille G, Hahn

    MG, Keegstra K, Raikhel NV (2008) Arabidopsis XXT5 gene encodes a putative

    alpha-1,6-xylosyltransferase that is involved in xyloglucan biosynthesis. Plant J 56:

    101-115

    Zhang WK, Shen YG, He XJ, Du BX, Xie ZM, Luo GZ, Zhang JS, Chen SY (2005)

    Characterization of a novel cell cycle-related gene from Arabidopsis. J Exp Bot 56:

    807-816

    Zhang Y, He J, Lee D, McCormick S (2010) Interdependence of endomembrane trafficking

    and actin dynamics during polarized growth of Arabidopsis pollen tubes. Plant

    Physiol 152: 2200-2210

    Zrenner R, Riegler H, Marquard CR, Lange PR, Geserick C, Bartosz CE, Chen CT,

    Slocum RD (2009) A functional analysis of the pyrimidine catabolic pathway in

    Arabidopsis. New Phytol 183: 117-132