fourier sine and cosine transform

Upload: tanmayee

Post on 10-Jan-2016

41 views

Category:

Documents


3 download

DESCRIPTION

notes

TRANSCRIPT

  • Fourier Cosine and Sine transforms

    Consider the Fourier cosine integral representation of a function f(x)

    0 0

    2( ) ( )cos cos , 0f x f t st sxdtds x

    0 0

    2 2( )cos cosf t st dt sxds

    0

    0

    2( ) ( )cos ( )....(1)

    2( ) ( ) cos .......(2)

    c c

    c

    Let F f x f t st dt F s

    Then f x F f x sxds

    The transform { ( )}cF f x defined by (1) is called the Fourier cosine transform of

    f(x).The formula (2) is called the inverse Fourier cosine transform of

    { ( )} ( )c cF f x F s and is denoted by 1( ) ( ) .c cf x F F s

    Similarly, using the

    Fourier sine integral representation of f(x) given by

    0 0

    2( ) ( )sin sin ,f x f t st sxdt ds

    we can define the Fourier sine transform of f(x)

    denoted by ( )sF f x as 0

    2( ) ( )sin ( )s sF f x f t st dt F s

    Then the inverse Fourier sine transform of ( )sF s is defined as

    1

    0

    2( ) { ( )} ( )sins s sf x F F s F s sxds

    Definition: A function f(x) is said to be self reciprocal under Fourier cosine (sine)

    transform if ( ) ( ) ( ) ( )cF f x f s Fs f x f s

    Properties of Fourier cosine/ sine transforms

    (1) Both Fourier cosine and sine transforms are linear.

  • c 1 2 1 c 2 c

    s 1 2 1 s 2 s 1 2

    F {c f (x) c g(x)} c F {f (x)} c F {g(x)}

    F{c f (x) c g(x)} c F{f (x)} c F{g(x)} where c and c are cons tan ts

    c c c

    c s s

    s s s

    s c s

    1(2). F {f (x)cosax} F (s a) F (s a)

    2

    1F {f (x)sin ax} F (s a) F (a s)

    2

    1(3). F{f (x)cosax} F (s a) F (s a)

    2

    1F{f (x)sin ax} F (s a) F (s a)

    2

    The proof of (2) and (3) follows directly from trigonometric identities.

    c c

    s s

    c s

    s c

    1(4). F {f (ax)} F (s / a)

    a

    1F{f (ax)} F (s / a)

    a

    (5). If f (x) 0 as x , then

    2F {f (x)} f (0) s F (s)

    F{f (x)} s F (s)

    c

    0

    2Proof : Consider F {f (x)} f (x)cossx dx

    Integrating by parts, we get

    00

    2'( ) ( )cos | ( )sin ( )CF f x f x sx f x sx s dx

    0

    20 (0) ( )sin f s f x sx dx

    2

    ( ) (0)SsF f x f

    provided ( ) 0 as f x x

  • Also,

    0

    2'( ) '( )sin SF f x f x sx dx

    Integrating by parts, we get

    00

    2'( ) ( )sin | ( ) cos ( )SF f x f x sx f x sx s dx

    2

    0 0 ( ) ( ).2

    C CsF s sF s

    (6) 22

    ''( ) '(0) ( )C CF f x f s F s

    22

    ''( ) (0) ( )S SF f x sf s F s

    provided ( ) and '( ) 0 f x f x as x

    (7) ( ) and ( )S CC SdF dF

    F xf x F xf xds ds

    (8)

    ( ) (s), ( ) ( ),

    ( ) (s) and ( ) ( ) exist,

    C C C C

    S S S S

    If F f x F F g x G s

    F f x F F g x G s

    then 0

    0 0

    ( ) ( ) ( ) ( ) ( ) ( )C C S SF s G s ds F s G s ds f x g x dx

    and 2 2 2

    C C

    0 0 0

    F ( ) F ( ) ( )s ds s ds f x dx

    which is called Parsivals identity.

  • Problems:

    (1) Find C SF , Fax axe e and hence find C SF and Fax axxe xe

    Solution: By definition,

    C0

    2F cos ax axe e sx dx

    2 2 2 20

    2 2cos sin , 0

    axe aa sx s sx a

    a s a s

    S0

    2F sin ax axe e sx dx

    2 2 2 20

    2 2sin cos , 0.

    axe sa sx s sx a

    a s a s

    Therefore,

    2 2

    C 2 2 2 2 2

    2 2F

    ( )

    ax ax

    S

    d d s a sxe F e

    ds ds a s a s

    S 2 2 2 2 22 2 2

    F( )

    ax ax

    C

    d d a asxe F e

    ds ds a s a s

    2). Find 2 2 2 2

    &a x a xc sF e F xe

    .

    Solution : We have from definition,

  • 2 2 2 2 2 2 2 2

    2

    2

    2 2

    2 2 2 2 2 2

    0 0

    4

    4 4

    3

    2 2cos

    1

    2

    1

    2 2 2

    a x a x a x isx a x

    c

    s

    a

    s s

    a x a x a as c

    F e e sxdx e e dx F e

    ea

    d d sF xe F e e e

    ds ds a a

    Note that

    2 2

    2 2

    2 2

    2 2

    2 2

    2 2

    1for ,

    2

    & .

    x s

    a x

    c c

    x s

    a x

    s s

    a F e F e e

    F xe F xe xe

    2

    2

    2

    2

    is self reciprocal under Fourier cosine transform and

    is self reciprocal under Fourier sine transform .

    x

    x

    e

    xe

    3) Find 1 1& ,0 1.a ac sF x F x a

    1

    0

    1 1 2

    0 0

    Consider ;

    Let or . Then

    1 ( ) ( ) ( )( )

    ( ) ( )cos sin

    2 2

    a isx

    ai

    a isx a y a

    a a a a a

    a a

    x e dx

    dyisx y dx

    is

    a a ax e dx y e dy i e

    i s s sis

    a a a ai

    s s

  • 1 1

    0 0

    1 1

    0

    1 1

    0

    Thus

    ( ) ( )cos cos cos sin

    2 2

    Equating real and imaginary parts, we get

    2 2 ( )cos cos and

    2

    2 2 ( )sin sin

    a a

    a a

    a a

    c a

    a a

    s a

    a a a ax sxdx i x sxdx i

    s s

    a aF x x sxdx

    s

    a aF x x sxdx

    s

    .2

    Note:

    11 1 1 1 1 For , 2 2

    1 is self reciprocal under Fourier sine and cosine transforms.

    a

    c c sa F x F Fx s x

    x

    Note:

    0

    1

    0

    0

    2Consider ( ) ( )cos ( ).

    2 Then ( ) ( ) ( )cos (1)

    Interchanging and in (1), we get

    2( ) ( )cos ( )

    Similarly, if ( ) ( ) then, ( ) ( ).

    c c

    c c c

    c c c

    s s s s

    F f x f x sxdx F s

    f x F F s F s sxds

    s x

    f s F x sxdx F F s

    F f x F s F F s f s

  • 4) Find

    2 2

    2 2

    2 2

    2 2

    -

    2

    - -

    2

    1 and .

    1 1

    Solution: We have shown that

    2( ).

    2( ) .

    Or .2

    1For 1, .

    1 2

    1 2 2

    c s

    ax

    c c

    as

    c c c

    as

    c

    s

    c

    s

    s

    xF F

    x x

    aF e F s

    a s

    aF F x F e

    a x

    aF e

    a x

    a F es

    x dF e e

    x ds

    .s

    Exercises:

    1) Find the Fourier cosine transform of cos , sinax axe ax e ax and hence find the

    Fourier cosine transforms of

    2

    4 4 4 4

    1 and .

    x

    x k x k

    2) Find the Fourier sine transform of 1

    and , 0.axe

    ax x