f(r) modified gravitydark/2010/materials/je-an gu.pdf · 2010/09/27 cosmo/cospa @ tokyo univ. f(r)...

40
2010/11/06 DM-DE-BA Workshop @ NTHU f(R) Modified Gravity Cosmological & Solar-System Tests Je-An Gu 顧哲安 臺灣大學梁次震宇宙學與粒子天文物理學研究中心 Leung Center for Cosmology and Particle Astrophysics (LeCosPA), NTU Collaborators : Wei-Ting Lin 林韋廷 @ Phys, NTU Dark Energy Working Group @ LeCosPA & NCTS-FGCPA arXiv:1009.3488

Upload: others

Post on 04-Oct-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

  • 2010/11/06 DM-DE-BA Workshop @ NTHU

    f(R) Modified GravityCosmological & Solar-System Tests

    Je-An Gu 顧哲安臺灣大學梁次震宇宙學與粒子天文物理學研究中心

    Leung Center for Cosmology and Particle Astrophysics (LeCosPA), NTU

    Collaborators : Wei-Ting Lin 林韋廷 @ Phys, NTU Dark Energy Working Group @ LeCosPA & NCTS-FGCPA

    arXiv:1009.3488

  • 2010/09/27 COSMO/CosPA @ Tokyo Univ.

    f(R) Modified GravityCosmological & Solar-System Tests

    Je-An Gu 顧哲安臺灣大學梁次震宇宙學與粒子天文物理學研究中心

    Leung Center for Cosmology and Particle Astrophysics (LeCosPA), NTU

    Collaborators : Wei-Ting Lin 林韋廷 @ Phys, NTU Dark Energy Working Group @ LeCosPA & NCTS-FGCPA

    arXiv:1009.3488

  • Friends & "historically" active members:

    Feng-Yin Chang (LeCosPA, NTU)Pisin Chen (LeCosPA Director, NTU)Fei-Hung Ho (NCU)Pei-Min Ho (NTU)Qing-Guo Huang (KIAS, Korea)Kwang-Chang Lai (NCTU)Seokcheon (Sky) Lee (IoPAS)Guo-Chin Liu (TKU)Debaprasad Maity (LeCosPA, NTU)Kin-Wang Ng (IoPAS) (DE WG Leader)Hau-Yu Liu (NTU & ASIAA)Yen-Wei Liu (NTU)Tao-Tao Qiu (CYCU)Yong Tian (NCU)Keiichi Umetsu (ASIAA)I-Chin Wang (NTNU)

    Current active members: [ NTU ]Je-An Gu (LeCosPA) (DE WG server)Chien-Wen Chen (LeCosPA)(DE)A. E. Romano (LeCosPA)(Inhomog., Inflation)Huitzu Tu (LeCosPA)(DM)Florian Borchers (Germany)Wei-Ting Lin (MG key worker)Pao-Yu Wang (DE)Tse-Chun Wang (MG)Yen-Tin Wu (MG)[ NTNU ]Wolung LeeChia-Chun Chang (DE & Structures)Wetty Chao (DE)Vincent Chu (Inhomogeneous Cosmo.)[ NCTU ]Tzuu-Kang Chyi

    Dark Energy (Modified Gravity) Working Group

    2008.09 - present

    2008.03-08

    [ NDHU ]Tao-Mao Chuang (MG)

  • Introduction

  • Concordance: = 0.73 , M = 0.27

    Accelerating Expansion

    (homogeneous & isotropic)Based on FLRW Cosmology

    Observations (which are driving Modern Cosmology)

  • Candidates: Dark Gravity vs. Dark Energy

    Einstein Equations

    Geometry Matter/Energy

    Gμν = 8πGNTμν

    • (from vacuum energy)Many success factors: fit data connections: - to famous person: Einstein- to well known theory: QFT- to nature of creator: simple

  • Candidates: Dark Gravity vs. Dark Energy

    Einstein Equations

    Geometry Matter/Energy

    Gμν = 8πGNTμν

    • (from vacuum energy)Many success factors: fit data connections: - to famous person: Einstein- to well known theory: QFT- to nature of creator: simple

    Issues: (why small) problem (why now) coincidence problem

    To avoid the issues,necessary condition: Energy density changes with time.

  • Candidates: Dark Gravity vs. Dark Energy

    Einstein Equations

    Geometry Matter/Energy

    Gμν = 8πGNTμν

    • (from vacuum energy)

    Issues: (why small) problem (why now) coincidence problem

    • Quintessence / Phantom(a simple realization)

    To avoid the issues,necessary condition: Energy density changes with time.

  • Candidates: Dark Gravity vs. Dark Energy

    Einstein Equations

    Geometry Matter/Energy

    Gμν = 8πGNTμν

    • (from vacuum energy)

    • Quintessence / Phantom

    Dark Energy↑

    1. Einstein GR2. 3+1 space-time3. RW metric

    FLRWbased on

  • Candidates: Dark Gravity vs. Dark Energy

    Einstein Equations

    Geometry Matter/Energy

    Gμν = 8πGNTμν

    • (from vacuum energy)

    • Quintessence / Phantomminimal coupling to gravity

    Dark Energy↑

    VgxdS 4(min)

  • Candidates: Dark Gravity vs. Dark Energy

    Einstein Equations

    Geometry Matter/Energy

    Gμν = 8πGNTμν

    • (from vacuum energy)

    • Quintessence / Phantomminimal coupling to gravity

    non-minimal coupling to gravity

    (inevitably?)

    Einstein GR + Non-Min. Scalar Field

    Dark Energy↑

    VgxdS 4(min)

    VRgxdS 24)nm( 2

    1

  • Candidates: Dark Gravity vs. Dark Energy

    Einstein Equations

    Geometry Matter/Energy

    Gμν = 8πGNTμν

    • (from vacuum energy)

    • Quintessence / Phantomminimal coupling to gravity

    non-minimal coupling to gravity

    (inevitably?)

    Einstein GR + Non-Min. Scalar Field

    Brans-Dicke gravityScalar-Tensor gravity

    special case: f(R)

    Dark Energy↑

    RfgxdRgxdSG 44 :actiongravity

  • Candidates: Dark Gravity vs. Dark Energy

    Einstein Equations

    Geometry Matter/Energy

    Gμν = 8πGNTμν

    • (from vacuum energy)

    • Quintessence / Phantomminimal coupling to gravity

    non-minimal coupling to gravity

    (inevitably?)

    Einstein GR + Non-Min. Scalar Field

    Brans-Dicke gravityScalar-Tensor gravity

    1. Modified Gravity (MG)

    special case: f(R)

    Dark Energy↑

    MG ~

  • Candidates: Dark Gravity vs. Dark Energy

    Einstein Equations

    Geometry Matter/Energy

    Gμν = 8πGNTμν

    • (from vacuum energy)

    • Quintessence / Phantom

    1. Modified Gravity (MG)

    Dark Energy↑

    MG ~

    1. Einstein GR2. 3+1 space-time3. RW metric

    FLRW

  • Candidates: Dark Gravity vs. Dark Energy

    Einstein Equations

    Geometry Matter/Energy

    Gμν = 8πGNTμν

    • (from vacuum energy)

    • Quintessence / Phantom

    1. Modified Gravity (MG)

    Dark Energy↑

    1. Einstein GR2. 3+1 space-time3. RW metric

    FLRW

    2. Extra Dimensions

  • Candidates: Dark Gravity vs. Dark Energy

    Einstein Equations

    Geometry Matter/Energy

    Gμν = 8πGNTμν

    • (from vacuum energy)

    • Quintessence / Phantom

    1. Modified Gravity (MG)

    Dark Energy↑

    1. Einstein GR2. 3+1 space-time3. RW metric

    FLRW

    2. Extra Dimensions

    ? Is FLRW a good approximation ??

    isotropichomogeneous

  • Candidates: Dark Gravity vs. Dark Energy

    Einstein Equations

    Geometry Matter/Energy

    Gμν = 8πGNTμν

    • (from vacuum energy)

    • Quintessence / Phantom

    1. Modified Gravity (MG)

    Dark Energy↑

    1. Einstein GR2. 3+1 space-time3. RW metric

    FLRW

    2. Extra Dimensions

    3. Averaging Einstein Equationsfor an inhomogeneous universe

    ? Is FLRW a good approximation ??

  • Candidates: Dark Gravity vs. Dark Energy

    Einstein Equations

    Geometry Matter/Energy

    Dark Geometry↑

    Gμν = 8πGNTμν

    3. Averaging Einstein Equations

    2. Extra Dimensions

    Non-FLRWfor an inhomogeneous universe

    • (from vacuum energy)

    (Gravity)

    • Quintessence

    1. Modified Gravity (MG)

    Dark Energy↑

    1. Einstein GR2. 3+1 space-time3. RW metric

    FLRW

  • Candidates: Dark Gravity vs. Dark Energy

    Einstein Equations

    Geometry Matter/Energy

    Dark Geometry↑

    Gμν = 8πGNTμν

    • Extra Dimensions

    • (from vacuum energy)

    • Quintessence• Averaging Einstein Equationsfor an inhomogeneous universeBack reaction of inhomogeneities

    (Gravity)

    Gu and Hwang, Phy.Rev.D (2002); Gu, Hwang and Tsai, Nucl.Phys.B (2004)

    Chuang, Gu and Hwang, Class.Quant.Grav (2008)

    Gu and Hwang, Phys.Rev.D (2006)Chen and Gu, arXiv:0712.2441Gu, arXiv:0801.4737Gu, Nucl.Phys.A (2010)Shao, Chen and Gu, Phys.Rev.D (2009)

    Gu and Hwang, Phys.Lett.B (2001)Gu, Mod.Phys.Lett.A (2008)Gu, arXiv:0711.36

    Dark Energy↑

    • Modified Gravity (MG)DE/MG WGLeCosPA

  • vs.Cosmological Models

    Dark EnergyModified Gravity

    Dark MatterInflation

    Observations

    SNe IaLSS

    LensingCMB

    Inter-medium(physical quantities)

    dL(z)

    matter power spectrum

    CMB A&P spectrum

    Theoretical prediction Observational info

    Technique / Know-how

    (Dark Energy & Modified Gravity) Phenomenology

    (not limited to DE models)

  • (Dark Energy & Modified Gravity) Phenomenology Je-An Gu, Chien-Wen Chen, and Pisin Chen,

    “A new approach to testing dark energy models by observations,”New Journal of Physics 11 (2009) 073029 [arXiv:0803.4504].

    Chien-Wen Chen, Je-An Gu, and Pisin Chen,“Consistency test of dark energy models,”Modern Physics Letters A 24 (2009) 1649 [arXiv:0903.2423].

    Chien-Wen Chen, Pisin Chen, and Je-An Gu,“Constraints on the phase plane of the dark energy equation of state,”Physics Letters B 682 (2009) 267 [arXiv:0905.2738].

    Chien-I Chiang, Je-An Gu, and Pisin Chen,“Constraining the Detailed Balance Condition in Hořava Gravitywith Cosmic Accelerating Expansion,”

    to appear in JCAP [arXiv:1007.0543].

    Wei-Ting Lin, Je-An Gu, and Pisin Chen,“Cosmological and Solar-System Tests of f (R) Modified Gravity,”submitted for publication [arXiv:1009.3488].

  • f(R) Modified GravityCosmological & Solar-System Tests

    (our work)

  • f(R) Modified Gravity (MG): RfRgxdGSg4

    161

    Cosmic Expansion Cosmic Structure Solar-System Test

    Cosmological Test Local Test

    as an essence of cosmology, need to pass

    Purposes

    as a theory of modified gravity, need to pass

    Explain cosmic acceleration

    Model (parameterize)deviation from GR

  • f(R) Modified Gravity (MG): RfRgxdGSg4

    161

    Cosmic Expansion Cosmic Structure Solar-System Test

    Cosmological Test Local Test

    For a given expansion history H(t),one can reconstruct f(R) which generates the required H(t).

    FACT

    “designer f(R)”

    OUR APPROACHConsider the expansion H(t) parametrized viathe Chevallier-Polarski-Linder weff(z):

    zzwwzw aCPL 10

    withcurrent observational constraints (WMAP7+BAO+SN):

    72.071.00 41.0,13.093.0

    053.0980.0

    a

    eff

    ww

    w

    (2)

    constant (1)

    jinia qfwwRf ,,,; 0 constructqj : other cosmological parametersfini : initial condition of f(R)

  • f(R) Modified Gravity (MG): RfRgxdGSg4

    161

    Cosmic Expansion Cosmic Structure Solar-System Test

    Cosmological Test Local Test

    qj : other cosmological parametersfini : initial condition of f(R)

    Exampleweff = 1

    For a given expansion history H(t),one can reconstruct f(R) which generates the required H(t).

    FACT

    “designer f(R)”

    OUR APPROACHConsider the expansion H(t) parametrized viathe Chevallier-Polarski-Linder weff(z):

    zzwwzw aCPL 10

    jinia qfwwRf ,,,; 0 construct

    f/H

    02+

    6D

    E20HR

  • f(R) Modified Gravity (MG): RfRgxdGSg4

    161

    Cosmic Expansion Cosmic Structure Solar-System Test

    Cosmological Test Local Test

    qj : other cosmological parametersfini : initial condition of f(R)

    Then, proceed to the other two tests of jinia qfwwRf ,,,; 0“designer f(R)”

    OUR APPROACHConsider the expansion H(t) parametrized viathe Chevallier-Polarski-Linder weff(z):

    zzwwzw aCPL 10

    withobservational constraints (WMAP7+BAO+SN):

    72.071.00 41.0,13.093.0

    053.0980.0

    a

    eff

    ww

    w

    (2)

    constant (1)

    jinia qfwwRf ,,,; 0 construct

  • f(R) Modified Gravity (MG): RfRgxdGSg4

    161

    Cosmic Expansion Cosmic Structure Solar-System Test

    Cosmological Test Local Test

    Key quantities distinguishing GR & MG

    GGeff

    Perturbed metric: jiij dxdxadtds 2121 222

    Evolution eqn. of matter density perturbation:

    defined in :

    042 mmeffmm GH late-time,sub-horizon

  • f(R) Modified Gravity (MG): RfRgxdGSg4

    161

    Cosmic Expansion Cosmic Structure Solar-System Test

    Cosmological Test Local Test

    GR

    1

    1G

    Geff

    R

    RR

    R

    RR

    R

    eff

    ff

    ak

    ff

    ak

    fGakG

    131

    141

    11,

    2

    2

    2

    2

    R

    RR

    R

    RR

    ff

    ak

    ff

    ak

    ak

    121

    141

    ,

    2

    2

    2

    2f(R) MG

    initial ; , 22

    RRiRRR ffRff

    Rff

    late-time,sub-horizon

  • f(R) Modified Gravity (MG): RfRgxdGSg4

    161

    Cosmic Expansion Cosmic Structure Solar-System Test

    Cosmological Test Local Test

    GR

    1

    1G

    Geff

    R

    RR

    R

    RR

    R

    eff

    ff

    ak

    ff

    ak

    fGakG

    131

    141

    11,

    2

    2

    2

    2

    R

    RR

    R

    RR

    ff

    ak

    ff

    ak

    ak

    121

    141

    ,

    2

    2

    2

    2f(R) MG

    initial ; , 22

    RRiRRR ffRff

    Rff

    late-time,sub-horizon

    jinia qfwwRf ,,,; 0“designer f(R)”

    ;,, ; ; , 0

    jRia qfwwRfak function of

  • f(R) Modified Gravity (MG): RfRgxdGSg4

    161

    Cosmic Expansion Cosmic Structure Solar-System Test

    Cosmological Test Local Test

    E.g. weff = 1

    For the present timeand k = 0.01h / Mpc.

    1Mpc 01.0 hk Rif3110

    /

    (now

    )

    403.11 GGeff 996.11

    Observational constraint (Giannantonio et al, 2009):

    initial2

    2

    RRi

    RR

    R

    ffR

    ff

    Rff

    73.027.0

    eff

    m

  • f(R) Modified Gravity (MG): RfRgxdGSg4

    161

    Cosmic Expansion Cosmic Structure Solar-System Test

    Cosmological Test Local Test

    E.g. weff = 1

    For the present timeand k = 0.01h / Mpc.

    1Mpc 01.0 hk Rif3110

    /

    (now

    )

    403.11 GGeff 996.11

    Observational constraint (Giannantonio et al, 2009):

    initial2

    2

    RRi

    RR

    R

    ffR

    ff

    Rff

    GR

    mostf (R)

    Similarbehaviorfor other weff(z).

    73.027.0

    eff

    m

  • f(R) Modified Gravity (MG): RfRgxdGSg4

    161

    Cosmic Expansion Cosmic Structure Solar-System Test

    Cosmological Test Local Test

    initial2

    2

    RRi

    RR

    R

    ffR

    ff

    Rff

    E.g. weff = constant

    /

    (now

    )

    GR

    mostf (R)

    Similarbehaviorfor other weff(z).

  • f(R) Modified Gravity (MG): RfRgxdGSg4

    161

    Cosmic Expansion Cosmic Structure Solar-System Test

    Cosmological Test Local Test

    initial2

    2

    RRi

    RR

    R

    ffR

    ff

    Rff

    E.g. weff = CPL best fit

    /

    (now

    )

    GR

    mostf (R)

    Similarbehaviorfor other weff(z).

  • f(R) Modified Gravity (MG): RfRgxdGSg4

    161

    Cosmic Expansion Cosmic Structure Solar-System Test

    Cosmological Test Local Test

    Rif viable

    effwconstant initial

    2

    2

    RRi

    RR

    R

    ffR

    ff

    Rff

  • f(R) Modified Gravity (MG): RfRgxdGSg4

    161

    Cosmic StructureCosmic Expansion Solar-System Test

    Cosmological Test Local Test

    Constraint on

    520

    520

    15

    10 ,52 010 ,010

    HRRfHRf

    RR

    R

    f(R) MG withChameleon Mechanism

  • f(R) Modified Gravity (MG): RfRgxdGSg4

    161

    Cosmic StructureCosmic Expansion Solar-System Test

    Cosmological Test Local Test

    parameter space

    survey around GR point

    f = constant 0 , 1

    Viable inieff fwRf ,;

    Constraint on

    520

    520

    15

    10 ,52 010 ,010

    HRRfHRf

    RR

    R

    f(R) MG withChameleon Mechanism

    (constant weff)

  • f(R) Modified Gravity (MG): RfRgxdGSg4

    161

    Cosmic StructureCosmic Expansion Solar-System Test

    Cosmological Test Local Test

    36

    9

    10 101

    Ri

    eff

    fw

    parameter space

    survey around GR point

    f = constant 0 , 1

    Viable inieff fwRf ,;

    6

    6

    10 1

    10 1

    GGeff

    very small viable region

    Constraint on

    520

    520

    15

    10 ,52 010 ,010

    HRRfHRf

    RR

    R

    f(R) MG withChameleon Mechanism

    (constant weff)

  • f(R) Modified Gravity (MG): RfRgxdGSg4

    161

    Cosmic StructureCosmic Expansion Solar-System Test

    Cosmological Test Local Test

    36

    9

    10 101

    Ri

    eff

    fw closely

    mimicking GR +

    parameter space

    survey around GR point

    f = constant 0 , 1

    Viable inieff fwRf ,;

    6

    6

    10 1

    10 1

    GGeff

    indistinguishable from GR !!

    very small viable region

    Constraint on

    520

    520

    15

    10 ,52 010 ,010

    HRRfHRf

    RR

    R

    f(R) MG withChameleon Mechanism

    (constant weff)

  • f(R) Modified Gravity (MG): RfRgxdGSg4

    161

    Cosmic StructureCosmic Expansion Solar-System Test

    Cosmological Test Local Test

    The viable f(R) models in the parameter space (weff, fRi) around the GR point (1,0) for constant weff.

    effw1

    f Ri

    GR

    Constraint on

    520

    520

    15

    10 ,52 010 ,010

    HRRfHRf

    RR

    R

    f(R) MG withChameleon Mechanism

  • ConclusionCosmic Expansion

    Solar-System Test

    Cosmic Structure The existence of the designer models

    which pass the cosmic-structure testwould require fine-tuning of initial condition fini.

    inia fwwRf ,,; 0

    Designer w.r.t. the constraint on {w0,wa} (by design) can pass the cosmic-expansion test.

    inia fwwRf ,,; 0(observational)

    Among the designer models,only those closely mimicking GR + (in all the 3 tests)can pass the solar-system test.

    inia fwwRf ,,; 0

    As a result, the solar-system test rules outthe frequently studied modelsthat are distinct from CDM in .

    inifRf ; 1effwGGeff ,

    投影片編號 1投影片編號 2投影片編號 3投影片編號 4投影片編號 5投影片編號 6投影片編號 7投影片編號 8投影片編號 9投影片編號 10投影片編號 11投影片編號 12投影片編號 13投影片編號 14投影片編號 15投影片編號 16投影片編號 17投影片編號 18投影片編號 19投影片編號 20投影片編號 21投影片編號 22投影片編號 23投影片編號 24投影片編號 25投影片編號 26投影片編號 27投影片編號 28投影片編號 29投影片編號 30投影片編號 31投影片編號 32投影片編號 33投影片編號 34投影片編號 35投影片編號 36投影片編號 37投影片編號 38投影片編號 39投影片編號 40