fractional l evy processes: capturing stylized facts of ......logo1 logo2 fractional l evy...

40
logo1 logo2 Fractional L´ evy processes: capturing stylized facts of empirical data Jeannette Woerner Technische Universit¨ at Dortmund partly joint work with Sebastian Engelke and Alexander Schnurr - Empirical evidence for correlation in financial data - Possibilities beyond Brownian-semimartingale models - Fractional Brownian motion models - Fractional L´ evy models - Well-balanced Ornstein-Uhlenbeck models J.H.C. Woerner (TU Dortmund) 1 / 40

Upload: others

Post on 15-Sep-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Fractional L evy processes: capturing stylized facts of ......logo1 logo2 Fractional L evy processes: capturing stylized facts of empirical data Jeannette Woerner Technische Universit

logo1

logo2

Fractional Levy processes: capturing stylized facts ofempirical data

Jeannette WoernerTechnische Universitat Dortmund

partly joint work withSebastian Engelke and Alexander Schnurr

- Empirical evidence for correlation in financial data- Possibilities beyond Brownian-semimartingale models

- Fractional Brownian motion models- Fractional Levy models- Well-balanced Ornstein-Uhlenbeck models

J.H.C. Woerner (TU Dortmund) 1 / 40

Page 2: Fractional L evy processes: capturing stylized facts of ......logo1 logo2 Fractional L evy processes: capturing stylized facts of empirical data Jeannette Woerner Technische Universit

logo1

logo2

Motivation

01.0

1.73

23.0

7.74

12.0

2.76

05.0

9.77

28.0

3.79

17.1

0.80

11.0

5.82

01.1

2.83

24.0

6.85

14.0

1.87

05.0

8.88

27.0

2.90

19.0

9.91

12.0

4.93

02.1

1.94

24.0

5.96

16.1

2.97

08.0

7.99

29.0

1.01

21.0

8.02

12.0

3.04

04.1

0.05

0

1000

2000

3000

4000

5000

6000

7000

8000

EWI104s (USA)

Time

Inde

x va

lue

J.H.C. Woerner (TU Dortmund) 2 / 40

Page 3: Fractional L evy processes: capturing stylized facts of ......logo1 logo2 Fractional L evy processes: capturing stylized facts of empirical data Jeannette Woerner Technische Universit

logo1

logo2

0 50 100 150 200 250 300 350 400

0.00

50.00

100.00

150.00

200.00

250.00

EEX daily data 2007

day

pri

ce

J.H.C. Woerner (TU Dortmund) 3 / 40

Page 4: Fractional L evy processes: capturing stylized facts of ......logo1 logo2 Fractional L evy processes: capturing stylized facts of empirical data Jeannette Woerner Technische Universit

logo1

logo2

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

5,1150005,1175005,1200005,1225005,1250005,1275005,1300005,1325005,1350005,1375005,1400005,1425005,1450005,1475005,150000

SAP 2.1.2006

trades

log­

pric

es

J.H.C. Woerner (TU Dortmund) 4 / 40

Page 5: Fractional L evy processes: capturing stylized facts of ......logo1 logo2 Fractional L evy processes: capturing stylized facts of empirical data Jeannette Woerner Technische Universit

logo1

logo2

Classical Modelling

discrete data Xtn,0 , · · · ,Xtn,n

tn,n = t =fixed, ∆n,i → 0 as n→∞Classical stochastic volatility model

Xt =

∫ t

0µsds +

∫ t

0σsdBs + Jt

Question:

Do we have to go beyond Brownian semimartingales in some situations?

J.H.C. Woerner (TU Dortmund) 5 / 40

Page 6: Fractional L evy processes: capturing stylized facts of ......logo1 logo2 Fractional L evy processes: capturing stylized facts of empirical data Jeannette Woerner Technische Universit

logo1

logo2

Empirical observation in financial data versusclassical modelTwo important characteristics of Brownian semimartingales:

Correlation between neighbouring increments is zero.

[nt]∑i=1

(X i+1n− X i

n)(X i

n− X i−1

n)→ 0

Not satisfied in many situations:- typically high frequency data and electricity data possess short rangedependence- some stock indices possess long range dependence

Quadratic variation is finite or realized volatility settles down to anon-trivial limit when the sampling frequency increases.Not satisfied in many situations:- typically for high frequency data it increases (market microstructure)for electricity it increases- for some stock indices it decreases

J.H.C. Woerner (TU Dortmund) 6 / 40

Page 7: Fractional L evy processes: capturing stylized facts of ......logo1 logo2 Fractional L evy processes: capturing stylized facts of empirical data Jeannette Woerner Technische Universit

logo1

logo2

Fractional Brownian Motion

A fractional Brownian motion (fBm) with Hurst parameter H ∈ (0, 1),BH = {BH

t , t ≥ 0} is a zero mean Gaussian process with the covariancefunction

E (BHt BH

s ) =1

2(t2H + s2H − |t − s|2H), s, t ≥ 0.

The fBm is a self-similar process, that is, for any constant a > 0, theprocesses{a−HBH

at , t ≥ 0} and {BHt , t ≥ 0} have the same distribution.

For H = 12 , BH coincides with the classical Brownian motion. For

H ∈ (12 , 1) the process possesses long memory and for H ∈ (0, 1

2) thebehaviour is chaotic.

J.H.C. Woerner (TU Dortmund) 7 / 40

Page 8: Fractional L evy processes: capturing stylized facts of ......logo1 logo2 Fractional L evy processes: capturing stylized facts of empirical data Jeannette Woerner Technische Universit

logo1

logo2

Modelling of jumps

Xt Levy process with distribution function Pt .

Ee iuXt = Pt(u) = et(iµu−σ2

2u2+

R(e iuz−1−iuh(z))ν(dz))

Levy triplet (µ, σ2, ν(dx))

A measure for the activity of the jump component of a Levy process is theBlumenthal-Getoor index β,

β = inf{δ > 0 :

∫(1 ∧ |x |δ)ν(dx) <∞}.

This index ensures, that for p > β the sum of the p-th power of jumps willbe finite.

J.H.C. Woerner (TU Dortmund) 8 / 40

Page 9: Fractional L evy processes: capturing stylized facts of ......logo1 logo2 Fractional L evy processes: capturing stylized facts of empirical data Jeannette Woerner Technische Universit

logo1

logo2

Estimation of Correlation:

Assuming a model of the type

Xt = Yt +

∫ t

0σsdBH

s

we look at the quantity:

Sn =

∑[nT ]−1i=1 (X i+1

n− X i

n)(X i

n− X i−1

n)∑[nT ]

i=1 (X in− X i−1

n)2

→ CH =1

2(22H − 2)

confidence interval for Brownian motion based model:−cγ

√√√√√∑[nt]

i=1 |X in− X i−1

n|4

3(∑[nt]

i=1 |X in− X i−1

n|2)2, cγ

√√√√√∑[nt]

i=1 |X in− X i−1

n|4

3(∑[nt]

i=1 |X in− X i−1

n|2)2

,where cγ denotes the γ-quantile of a N(0, 1)-distributed random variable.

J.H.C. Woerner (TU Dortmund) 9 / 40

Page 10: Fractional L evy processes: capturing stylized facts of ......logo1 logo2 Fractional L evy processes: capturing stylized facts of empirical data Jeannette Woerner Technische Universit

logo1

logo2

Robust Bipower Version:

Rn =

∑[nt]−1i=1 (X i+1

n− X i

n)(X i

n− X i−1

n)∑[nt]−1

i=1 |X i+1n− X i

n||X i

n− X i−1

n|

p→ CH

KH,

where KH = E (|B2 − B1||B1 − B0|) = 2π (CH arcsin(CH) +

√1− C 2

H)CH

KH− cγ

√√√√√v2∑[nt]−2

i=1 |X i+2n− X i+1

n|4/3|X i+1

n− X i

n|4/3|X i

n− X i−1

n|4/3

µ34/3

(∑[nt]−1i=1 |X i+1

n− X i

n||X i

n− X i−1

n|)2

,

CH

KH+ cγ

√√√√√v2∑[nt]−2

i=1 |X i+2n− X i+1

n|4/3|X i+1

n− X i

n|4/3|X i

n− X i−1

n|4/3

µ34/3

(∑[nt]−1i=1 |X i+1

n− X i

n||X i

n− X i−1

n|)2

.

J.H.C. Woerner (TU Dortmund) 10 / 40

Page 11: Fractional L evy processes: capturing stylized facts of ......logo1 logo2 Fractional L evy processes: capturing stylized facts of empirical data Jeannette Woerner Technische Universit

logo1

logo2

Comparison of Sn and Rn

Inverting SN and Rn we get estimates for H.If no jumps are present Sn and Rn lead to the same estimate for H

If jumps are present Rn leads to the true H, whereas for Sn thedenominator gets larger hence H is closer to 0.5 than the true one.

Hence we can use both to distinguish between pureBrownian-semimartingale and possible non-semimartingales and acomparison of both to detect jumps even in the non-smimartingale case.

J.H.C. Woerner (TU Dortmund) 11 / 40

Page 12: Fractional L evy processes: capturing stylized facts of ......logo1 logo2 Fractional L evy processes: capturing stylized facts of empirical data Jeannette Woerner Technische Universit

logo1

logo2

J.H.C. Woerner (TU Dortmund) 12 / 40

Page 13: Fractional L evy processes: capturing stylized facts of ......logo1 logo2 Fractional L evy processes: capturing stylized facts of empirical data Jeannette Woerner Technische Universit

logo1

logo2

● ●

● ●

● ●

● ●

5 10 15 20

0.0

0.2

0.4

0.6

0.8

1.0

Estimators R_n inverted and S_n inverted for US

values omitted

estim

ated

H

● ●

● ●

● ●

● ●

J.H.C. Woerner (TU Dortmund) 13 / 40

Page 14: Fractional L evy processes: capturing stylized facts of ......logo1 logo2 Fractional L evy processes: capturing stylized facts of empirical data Jeannette Woerner Technische Universit

logo1

logo2

J.H.C. Woerner (TU Dortmund) 14 / 40

Page 15: Fractional L evy processes: capturing stylized facts of ......logo1 logo2 Fractional L evy processes: capturing stylized facts of empirical data Jeannette Woerner Technische Universit

logo1

logo2

2 4 6 8 10 12 14

0.2

0.3

0.4

0.5

0.6

high frequency data

sampling frequency

H

SnRnconfidence bounds Snconfidence bounds Rn

J.H.C. Woerner (TU Dortmund) 15 / 40

Page 16: Fractional L evy processes: capturing stylized facts of ......logo1 logo2 Fractional L evy processes: capturing stylized facts of empirical data Jeannette Woerner Technische Universit

logo1

logo2

2 4 6 8 10 12 14

−0.

3−

0.2

−0.

10.

00.

10.

2

EEX hourly data

sampling frequency

H

SnRn

J.H.C. Woerner (TU Dortmund) 16 / 40

Page 17: Fractional L evy processes: capturing stylized facts of ......logo1 logo2 Fractional L evy processes: capturing stylized facts of empirical data Jeannette Woerner Technische Universit

logo1

logo2

Results:

- We certainly have a correlation structure in all of the data sets, henceclassical Brownian semimartingales are not sufficient.- The index-data exhibits long range dependence with H about 0.6 andjumps in small economies.- The electricity data and high frequency data exhibits negativecorrelations.- It is not clear if a Brownian motion based component is present.

J.H.C. Woerner (TU Dortmund) 17 / 40

Page 18: Fractional L evy processes: capturing stylized facts of ......logo1 logo2 Fractional L evy processes: capturing stylized facts of empirical data Jeannette Woerner Technische Universit

logo1

logo2

−1e−03 −5e−04 0e+00 5e−04 1e−03

010

0020

0030

0040

0050

00

high frequency data

log−returns

dens

ity

empirical ditributionnormal distribution

J.H.C. Woerner (TU Dortmund) 18 / 40

Page 19: Fractional L evy processes: capturing stylized facts of ......logo1 logo2 Fractional L evy processes: capturing stylized facts of empirical data Jeannette Woerner Technische Universit

logo1

logo2

−0.0040 −0.0035 −0.0030 −0.0025 −0.0020 −0.0015 −0.0010

020

4060

80

high frequency data

log−returns

dens

ity

empirical ditributionnormal distribution

J.H.C. Woerner (TU Dortmund) 19 / 40

Page 20: Fractional L evy processes: capturing stylized facts of ......logo1 logo2 Fractional L evy processes: capturing stylized facts of empirical data Jeannette Woerner Technische Universit

logo1

logo2

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Phelix Day Peak

log−returns

dens

ity

empirical distributionnormal distribution

J.H.C. Woerner (TU Dortmund) 20 / 40

Page 21: Fractional L evy processes: capturing stylized facts of ......logo1 logo2 Fractional L evy processes: capturing stylized facts of empirical data Jeannette Woerner Technische Universit

logo1

logo2

−0.03 −0.02 −0.01 0.00 0.01 0.02 0.03

020

4060

Borsenindex (1973−2006)

Differenz aufeinanderfolgender logarithmierter Werte

Dic

hte

empirische DichteDichte der Normalverteilung

J.H.C. Woerner (TU Dortmund) 21 / 40

Page 22: Fractional L evy processes: capturing stylized facts of ......logo1 logo2 Fractional L evy processes: capturing stylized facts of empirical data Jeannette Woerner Technische Universit

logo1

logo2

Problems

- log-returns are normally distributed in fractional Brownian motionbased models.- Does it make sense to use non-semimartingales?In classical theory this would allow for arbitrage unless transaction costsor specific trading rules are considered.

Questions:- Do we indeed have a to go beyond semimartingales?- How can we include semi-heavy tails in the log-returns?- How can we manage to produce peaks like in the energy data?

J.H.C. Woerner (TU Dortmund) 22 / 40

Page 23: Fractional L evy processes: capturing stylized facts of ......logo1 logo2 Fractional L evy processes: capturing stylized facts of empirical data Jeannette Woerner Technische Universit

logo1

logo2

Fractional Levy motion

Idea:Use the same moving average kernel as for fractional Brownian motion.

Linear fractional stable motion (Samorodnitsky and Taqqu (1994))

Lα,H(t) =

∫|t − s|H−1/α − |s|H−1/αSα(ds),

where Sα denotes an α-stable random measure α ∈ (0, 2) and H ∈ (0, 1).Moving average fractional Levy motion (Benassi et.al (2004),Marquardt (2006))

XH(t) =

∫|t − s|H−1/2 − |s|H−1/2L(ds),

where L denotes a Levy process with finite second moment, vanishing firstmoment and H ∈ (0, 1).

J.H.C. Woerner (TU Dortmund) 23 / 40

Page 24: Fractional L evy processes: capturing stylized facts of ......logo1 logo2 Fractional L evy processes: capturing stylized facts of empirical data Jeannette Woerner Technische Universit

logo1

logo2

Moving average fractional Levy motion

Aim: Find suitable conditions for a unifying approach.Questions:- What kind of moment conditions do we need?- What is the correct exponent in the kernel function?In the following we look at

X (t) =

∫ ∞−∞

f (t, s)L(ds),

where L denotes a Levy process with Blumenthal-Getoor index β, finitep-th moment and characteristic exponent∫

(e iuz − 1− iuz1|z|≤1(z))ν(dz)

and f (t, s) = |t − s|d − |s|d .

J.H.C. Woerner (TU Dortmund) 24 / 40

Page 25: Fractional L evy processes: capturing stylized facts of ......logo1 logo2 Fractional L evy processes: capturing stylized facts of empirical data Jeannette Woerner Technische Universit

logo1

logo2

Characteristic function

By Rajput and Rosinski (1989) the process is well defined if∫ ∫|xf (t, s)|2 ∧ 1ν(dx)ds <∞

∫ ∫|f (t, s)x(1|xf (t,s)|≤1 − 1|x |≤1)|ν(dx)ds <∞

then Xt is infinitely divisible with characteristic exponent

iu

∫ ∫f (t, s)x(1|xf (t,s)|≤1 − 1|x |≤1)ν(dx)ds

+

∫ ∫(e iuzf (t,s) − 1− iuzf (t, s)1|zf (t,s)|≤1(z))ν(dz)ds

Remark: If L is symmetric the drift vanishes.

J.H.C. Woerner (TU Dortmund) 25 / 40

Page 26: Fractional L evy processes: capturing stylized facts of ......logo1 logo2 Fractional L evy processes: capturing stylized facts of empirical data Jeannette Woerner Technische Universit

logo1

logo2

Conditions on d

Checking the integrability conditions we need

− 1

β< d < 1− 1

q

where q = min(p, 2).This unifies the two previous approaches:- for the linear fractional stable motion d = H − 1/α corresponds to−1/α < d < 1− 1/α- for the other one d = H − 1/2 corresponds to −1/2 < d < 1/2 wherethe lower bound is not optimal since no assumption on theBlumenthal-Getoor index is made.

J.H.C. Woerner (TU Dortmund) 26 / 40

Page 27: Fractional L evy processes: capturing stylized facts of ......logo1 logo2 Fractional L evy processes: capturing stylized facts of empirical data Jeannette Woerner Technische Universit

logo1

logo2

Correlation structure

Let L be square-integrable with vanishing first moment with−1

2 < d < 1/2, then the kernel function f is square integrable given by∫ ∞−∞‖f (t, s)‖2ds = C (d)|t|2d+1, ∀t ∈ R,

where

C (d) =

∫ ∞−∞

(|1− u|d − |u|d

)2du.

Moreover, the autocovariance function of X is given by

Cov(X (t),X (u)) =C (d)E [L(1)2]

2

[|t|2d+1 − |t − u|2d+1 + |u|2d+1

].

J.H.C. Woerner (TU Dortmund) 27 / 40

Page 28: Fractional L evy processes: capturing stylized facts of ......logo1 logo2 Fractional L evy processes: capturing stylized facts of empirical data Jeannette Woerner Technische Universit

logo1

logo2

Continuity

Similarly we obtain

E (Xt − Xs)2 = C (t − s)2d+1

which leads to Holder continuous sample paths of the order γ for γ < d ifd > 0.If d < 0 we do not obtain continuous paths:The paths of the moving average process cannot be more regular then thekernel.

J.H.C. Woerner (TU Dortmund) 28 / 40

Page 29: Fractional L evy processes: capturing stylized facts of ......logo1 logo2 Fractional L evy processes: capturing stylized facts of empirical data Jeannette Woerner Technische Universit

logo1

logo2

Are fractional Levy motion semimartingales?

Consider

X (t) =

∫|t − s|d − |s|dL(ds),

where L denotes a Levy process with finite second moment, vanishing firstmoment and Blumenthal-Getoor index β.X with d > 0 is a semimartingale if and only if

1

1− d> β.

(cf. Bender et.al (2010)) We can generalize this to finite p-th moment1 ≤ p ≤ 2 and obtain

max(0, 1− 1

β) < d < min(1− 1

p, 2).

J.H.C. Woerner (TU Dortmund) 29 / 40

Page 30: Fractional L evy processes: capturing stylized facts of ......logo1 logo2 Fractional L evy processes: capturing stylized facts of empirical data Jeannette Woerner Technische Universit

logo1

logo2

Remark

To produce a semimartingale we need: β < 1 ≤ p

This means we can model long range dependence also bysemimartingales. The long range dependence component is of finitevariation, hence the generalized drift in the semimartingalecharacteristic.

(At , 0, 0)

J.H.C. Woerner (TU Dortmund) 30 / 40

Page 31: Fractional L evy processes: capturing stylized facts of ......logo1 logo2 Fractional L evy processes: capturing stylized facts of empirical data Jeannette Woerner Technische Universit

logo1

logo2

Fractional Levy motion (two-sided exponential,d=0.2)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1−10

0

10

20

30

40

50

J.H.C. Woerner (TU Dortmund) 31 / 40

Page 32: Fractional L evy processes: capturing stylized facts of ......logo1 logo2 Fractional L evy processes: capturing stylized facts of empirical data Jeannette Woerner Technische Universit

logo1

logo2

Fractional Levy motion (truncated stable, α = 0.5,d=0.2)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

J.H.C. Woerner (TU Dortmund) 32 / 40

Page 33: Fractional L evy processes: capturing stylized facts of ......logo1 logo2 Fractional L evy processes: capturing stylized facts of empirical data Jeannette Woerner Technische Universit

logo1

logo2

Fractional Levy motion (truncated stable, α = 0.5,d=-0.4)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1−4

−3

−2

−1

0

1

2

3

4

5

J.H.C. Woerner (TU Dortmund) 33 / 40

Page 34: Fractional L evy processes: capturing stylized facts of ......logo1 logo2 Fractional L evy processes: capturing stylized facts of empirical data Jeannette Woerner Technische Universit

logo1

logo2

Fractional Levy motion (Poisson, d=0.1)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1−15

−10

−5

0

5

10

J.H.C. Woerner (TU Dortmund) 34 / 40

Page 35: Fractional L evy processes: capturing stylized facts of ......logo1 logo2 Fractional L evy processes: capturing stylized facts of empirical data Jeannette Woerner Technische Universit

logo1

logo2

Fractional Levy motion (Poisson, d=-0.1)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1−10

−5

0

5

J.H.C. Woerner (TU Dortmund) 35 / 40

Page 36: Fractional L evy processes: capturing stylized facts of ......logo1 logo2 Fractional L evy processes: capturing stylized facts of empirical data Jeannette Woerner Technische Universit

logo1

logo2

Further Questions

- Do we need stationary processes like Ornstein-Uhlenbeck processes orprocesses with stationary increments?- Is a polynomialy decaying correlation function good or do we need abehaviour which lies between polynomial and exponential decay?

A natural candidate is the well-balanced Levy drivenOrnstein-Uhlenbeck process.

Xt =

∫exp(−λ|t − s|)dLs

with λ > 0.

Xt =

∫ t

−∞exp(−λ(t − s))dLs +

∫ ∞t

exp(−λ(s − t))dLs .

J.H.C. Woerner (TU Dortmund) 36 / 40

Page 37: Fractional L evy processes: capturing stylized facts of ......logo1 logo2 Fractional L evy processes: capturing stylized facts of empirical data Jeannette Woerner Technische Universit

logo1

logo2

Properties

- stationary process and semimartingale- Holder continuous of the order γ < 1/2.- Cov(Xt+h,Xt) = E (L1)2(exp(−λh)/λ+ h exp(−λh))

- Corr(Xk+1 − Xk ,X1 − X0) = exp(−λk)(12 + 1

21−exp(λ)+λ exp(λ)

1−exp(−λ)−λ exp(−λ)) +

λk exp(−λk)(12 + 1

21−exp(λ)+λ exp(−λ)

1−exp(−λ)−λ exp(−λ))- we can construct process with stationary increments and samecorrelation structure by

Xt =

∫ ∞−∞

exp(−λ|t − s|)− exp(−λ|s|)dLs .

J.H.C. Woerner (TU Dortmund) 37 / 40

Page 38: Fractional L evy processes: capturing stylized facts of ......logo1 logo2 Fractional L evy processes: capturing stylized facts of empirical data Jeannette Woerner Technische Universit

logo1

logo2

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 500 1000 1500 2000 2500

0.4

0.6

0.8

1.0

Borsenindex (1973−2006)

k

Kor

rela

tion

i) lambda=0.0003568 RSS=10.67ii) lambda=0.0009278 RSS= 1.631

J.H.C. Woerner (TU Dortmund) 38 / 40

Page 39: Fractional L evy processes: capturing stylized facts of ......logo1 logo2 Fractional L evy processes: capturing stylized facts of empirical data Jeannette Woerner Technische Universit

logo1

logo2

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 200 400 600 800 1000

0.6

0.7

0.8

0.9

1.0

SAP

k

Kor

rela

tion

i) lambda=0.0004528 RSS=1.076ii) lambda=0.001465 RSS= 0.097

J.H.C. Woerner (TU Dortmund) 39 / 40

Page 40: Fractional L evy processes: capturing stylized facts of ......logo1 logo2 Fractional L evy processes: capturing stylized facts of empirical data Jeannette Woerner Technische Universit

logo1

logo2

Conclusion

- Various types of financial data exhibit a correlation structure.

- Fractional Brownian motion models may explain this behaviour, but lieoutside the class of semimartingales.

- Fractional Levy motions behave similarly, but additional allow for moreflexibility in the distributions and may reproduce peaks as in energy data.

- Fractional Levy motions might lead to semimartingales with a correlationstructure. - Well-balanced Ornstein-Uhlenbeck processes also lead to acorrelation structure, which is in between polynomial and exponentialdecay.

J.H.C. Woerner (TU Dortmund) 40 / 40