free algebras via a functor on partial...

46

Upload: others

Post on 28-Jan-2020

14 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

Free algebras via a functoron partial algebras

Dion Coumans and Sam van Gool

Topology, Algebra and Categoriesin Logic (TACL)

26 – 30 July 2011Marseilles, France

1 / 16

Page 2: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

Logic via algebra

• Algebraic logic L, signature σ, variety VL of σ-algebras

• Studying the logic L! Studying finitely generated freeVL-algebras

LanguageFσ(x1, . . . , xm)

[·]a`L

LogicFVL(x1, . . . , xm)

2 / 16

Page 3: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

Logic via algebra

• Algebraic logic L, signature σ, variety VL of σ-algebras

• Studying the logic L! Studying finitely generated freeVL-algebras

LanguageFσ(x1, . . . , xm)

[·]a`L

LogicFVL(x1, . . . , xm)

2 / 16

Page 4: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

Logic via algebra

• Algebraic logic L, signature σ, variety VL of σ-algebras

• Studying the logic L! Studying finitely generated freeVL-algebras

LanguageFσ(x1, . . . , xm)

[·]a`L

LogicFVL(x1, . . . , xm)

2 / 16

Page 5: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

Logic via algebra

• Algebraic logic L, signature σ, variety VL of σ-algebras

• Studying the logic L! Studying finitely generated freeVL-algebras

LanguageFσ(x1, . . . , xm)

[·]a`L

LogicFVL(x1, . . . , xm)

2 / 16

Page 6: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

Free algebra as colimit of a chain

• In many cases, a variety (VL)− of reducts iswell-understood and locally finite, e.g.:

• Modal algebras = Boolean algebras + ^,

• Heyting algebras = Distributive lattices +→,

• . . .

• Regard FVL(x1, . . . , xn) as colimit of a chain of finitealgebras in the reduced signature, and add the additionaloperation(s) step-by-step:

3 / 16

Page 7: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

Free algebra as colimit of a chain

• In many cases, a variety (VL)− of reducts iswell-understood and locally finite, e.g.:

• Modal algebras = Boolean algebras + ^,

• Heyting algebras = Distributive lattices +→,

• . . .

• Regard FVL(x1, . . . , xn) as colimit of a chain of finitealgebras in the reduced signature, and add the additionaloperation(s) step-by-step:

3 / 16

Page 8: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

Free algebra as colimit of a chain

• In many cases, a variety (VL)− of reducts iswell-understood and locally finite, e.g.:

• Modal algebras = Boolean algebras + ^,

• Heyting algebras = Distributive lattices +→,

• . . .

• Regard FVL(x1, . . . , xn) as colimit of a chain of finitealgebras in the reduced signature, and add the additionaloperation(s) step-by-step:

3 / 16

Page 9: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

Free algebra as colimit of a chain

• In many cases, a variety (VL)− of reducts iswell-understood and locally finite, e.g.:

• Modal algebras = Boolean algebras + ^,

• Heyting algebras = Distributive lattices +→,

• . . .

• Regard FVL(x1, . . . , xn) as colimit of a chain of finitealgebras in the reduced signature, and add the additionaloperation(s) step-by-step:

3 / 16

Page 10: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

Free algebra as colimit of a chain

• In many cases, a variety (VL)− of reducts iswell-understood and locally finite, e.g.:

• Modal algebras = Boolean algebras + ^,

• Heyting algebras = Distributive lattices +→,

• . . .

• Regard FVL(x1, . . . , xn) as colimit of a chain of finitealgebras in the reduced signature, and add the additionaloperation(s) step-by-step:

3 / 16

Page 11: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

Free algebra as colimit of a chain

Language

· · ·Tn· · ·T1T0

[·]a`L

Logic

fff

· · ·Bn· · ·B1B0fff

• Tn: formulas in variables x1, . . . , xm of rank ≤ n inoperation f

• Bn: L-equivalence classes of formulas in Tn

FVL(x1, . . . , xm) = colimn≥0 Bn

4 / 16

Page 12: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

Free algebra as colimit of a chain

Language

· · ·Tn· · ·T1

T0

[·]a`L

Logic

fff

· · ·Bn· · ·B1B0fff

• Tn: formulas in variables x1, . . . , xm of rank ≤ n inoperation f

• Bn: L-equivalence classes of formulas in Tn

FVL(x1, . . . , xm) = colimn≥0 Bn

4 / 16

Page 13: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

Free algebra as colimit of a chain

Language

· · ·Tn· · ·T1

T0

[·]a`L

Logic

fff

· · ·Bn· · ·B1

B0

fff

• Tn: formulas in variables x1, . . . , xm of rank ≤ n inoperation f

• Bn: L-equivalence classes of formulas in Tn

FVL(x1, . . . , xm) = colimn≥0 Bn

4 / 16

Page 14: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

Free algebra as colimit of a chain

Language

· · ·Tn· · ·

T1T0

[·]a`L

Logic

fff

· · ·Bn· · ·B1

B0

fff

• Tn: formulas in variables x1, . . . , xm of rank ≤ n inoperation f

• Bn: L-equivalence classes of formulas in Tn

FVL(x1, . . . , xm) = colimn≥0 Bn

4 / 16

Page 15: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

Free algebra as colimit of a chain

Language

· · ·Tn· · ·

T1T0

[·]a`L

Logic

fff

· · ·Bn· · ·

B1B0

fff

• Tn: formulas in variables x1, . . . , xm of rank ≤ n inoperation f

• Bn: L-equivalence classes of formulas in Tn

FVL(x1, . . . , xm) = colimn≥0 Bn

4 / 16

Page 16: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

Free algebra as colimit of a chain

Language

· · ·Tn

· · ·T1T0

[·]a`L

Logic

fff

· · ·Bn

· · ·B1B0

fff

• Tn: formulas in variables x1, . . . , xm of rank ≤ n inoperation f

• Bn: L-equivalence classes of formulas in Tn

FVL(x1, . . . , xm) = colimn≥0 Bn

4 / 16

Page 17: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

Free algebra as colimit of a chain

Language

· · ·

Tn· · ·T1T0

[·]a`L

Logic

fff

· · ·

Bn· · ·B1B0

fff

• Tn: formulas in variables x1, . . . , xm of rank ≤ n inoperation f

• Bn: L-equivalence classes of formulas in Tn

FVL(x1, . . . , xm) = colimn≥0 Bn

4 / 16

Page 18: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

Free algebra as colimit of a chain

Language· · ·Tn· · ·T1T0

[·]a`L

Logic

fff

· · ·Bn· · ·B1B0

fff

• Tn: formulas in variables x1, . . . , xm of rank ≤ n inoperation f

• Bn: L-equivalence classes of formulas in Tn

FVL(x1, . . . , xm) = colimn≥0 Bn

4 / 16

Page 19: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

Free algebra as colimit of a chain

Language· · ·Tn· · ·T1T0

[·]a`L

Logic

f

ff

· · ·Bn· · ·B1B0

fff

• Tn: formulas in variables x1, . . . , xm of rank ≤ n inoperation f

• Bn: L-equivalence classes of formulas in Tn

FVL(x1, . . . , xm) = colimn≥0 Bn

4 / 16

Page 20: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

Free algebra as colimit of a chain

Language· · ·Tn· · ·T1T0

[·]a`L

Logic

f

ff

· · ·Bn· · ·B1B0f

ff

• Tn: formulas in variables x1, . . . , xm of rank ≤ n inoperation f

• Bn: L-equivalence classes of formulas in Tn

FVL(x1, . . . , xm) = colimn≥0 Bn

4 / 16

Page 21: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

Free algebra as colimit of a chain

Language· · ·Tn· · ·T1T0

[·]a`L

Logic

fff

· · ·Bn· · ·B1B0fff

• Tn: formulas in variables x1, . . . , xm of rank ≤ n inoperation f

• Bn: L-equivalence classes of formulas in Tn

FVL(x1, . . . , xm) = colimn≥0 Bn

4 / 16

Page 22: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

Free algebra as colimit of a chain

Language· · ·Tn· · ·T1T0

[·]a`L

Logic

fff

· · ·Bn· · ·B1B0fff

• Tn: formulas in variables x1, . . . , xm of rank ≤ n inoperation f

• Bn: L-equivalence classes of formulas in Tn

FVL(x1, . . . , xm) = colimn≥0 Bn

4 / 16

Page 23: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

Research Question

· · ·Bn· · ·B1B0

Can Bn+1 be obtained from Bn by a uniform method?

• Yes, if the variety is defined by pure rank 1 equations[N. Bezhanishvili, Kurz]

• Yes, in some particular cases outside this class: S4 modalalgebras [Ghilardi], Heyting algebras [Ghilardi, N.Bezhanishvili & Gehrke].

• Not always, since logics can be undecidable.

• We give general sufficient conditions under which this ispossible (known cases follow as particular instances).

5 / 16

Page 24: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

Research Question

· · ·Bn· · ·B1B0

Can Bn+1 be obtained from Bn by a uniform method?

• Yes, if the variety is defined by pure rank 1 equations[N. Bezhanishvili, Kurz]

• Yes, in some particular cases outside this class: S4 modalalgebras [Ghilardi], Heyting algebras [Ghilardi, N.Bezhanishvili & Gehrke].

• Not always, since logics can be undecidable.

• We give general sufficient conditions under which this ispossible (known cases follow as particular instances).

5 / 16

Page 25: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

Research Question

· · ·Bn· · ·B1B0

Can Bn+1 be obtained from Bn by a uniform method?

• Yes, if the variety is defined by pure rank 1 equations[N. Bezhanishvili, Kurz]

• Yes, in some particular cases outside this class: S4 modalalgebras [Ghilardi], Heyting algebras [Ghilardi, N.Bezhanishvili & Gehrke].

• Not always, since logics can be undecidable.

• We give general sufficient conditions under which this ispossible (known cases follow as particular instances).

5 / 16

Page 26: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

Research Question

· · ·Bn· · ·B1B0

Can Bn+1 be obtained from Bn by a uniform method?

• Yes, if the variety is defined by pure rank 1 equations[N. Bezhanishvili, Kurz]

• Yes, in some particular cases outside this class: S4 modalalgebras [Ghilardi], Heyting algebras [Ghilardi, N.Bezhanishvili & Gehrke].

• Not always, since logics can be undecidable.

• We give general sufficient conditions under which this ispossible (known cases follow as particular instances).

5 / 16

Page 27: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

Research Question

· · ·Bn· · ·B1B0

Can Bn+1 be obtained from Bn by a uniform method?

• Yes, if the variety is defined by pure rank 1 equations[N. Bezhanishvili, Kurz]

• Yes, in some particular cases outside this class: S4 modalalgebras [Ghilardi], Heyting algebras [Ghilardi, N.Bezhanishvili & Gehrke].

• Not always, since logics can be undecidable.

• We give general sufficient conditions under which this ispossible (known cases follow as particular instances).

5 / 16

Page 28: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

Partial algebras

• In the chain, Bn+1 is a partial algebra, where the domainof the operation f is Bn.

• The variety V is contained in a category pV of partialalgebras for the variety V.

• A homomorphism h : A → B of partial algebras is afunction which preserves all total operations, andpreserves the partial operation f whenever defined.

• A homomorphism h : A → B is image-total if the image ofh is contained in the domain of fB .

6 / 16

Page 29: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

Partial algebras

• In the chain, Bn+1 is a partial algebra, where the domainof the operation f is Bn.

• The variety V is contained in a category pV of partialalgebras for the variety V.

• A homomorphism h : A → B of partial algebras is afunction which preserves all total operations, andpreserves the partial operation f whenever defined.

• A homomorphism h : A → B is image-total if the image ofh is contained in the domain of fB .

6 / 16

Page 30: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

Partial algebras

• In the chain, Bn+1 is a partial algebra, where the domainof the operation f is Bn.

• The variety V is contained in a category pV of partialalgebras for the variety V.

• A homomorphism h : A → B of partial algebras is afunction which preserves all total operations, andpreserves the partial operation f whenever defined.

• A homomorphism h : A → B is image-total if the image ofh is contained in the domain of fB .

6 / 16

Page 31: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

Partial algebras

• In the chain, Bn+1 is a partial algebra, where the domainof the operation f is Bn.

• The variety V is contained in a category pV of partialalgebras for the variety V.

• A homomorphism h : A → B of partial algebras is afunction which preserves all total operations, andpreserves the partial operation f whenever defined.

• A homomorphism h : A → B is image-total if the image ofh is contained in the domain of fB .

6 / 16

Page 32: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

Free image-total functorDefinition

DefinitionA functor F : pV→ pV is free image-total if there is acomponent-wise image-total natural transformation η : 1pV → Fsuch that, for all image-total h : A → B, there exists a uniqueh̄ : FA → B making the following diagram commute:

AηA - FA

B

?

h-

7 / 16

Page 33: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

Free image-total functorMain theorem

TheoremLet η : 1→ F be a free image-total functor and A0 ∈ pV. Let Aω

be the partial algebra-colimit of the image-total chain{ηFn(A0) : Fn(A0)→ Fn+1(A0)}n≥0.If Aω is in V, then Aω is the free total V-algebra over A0.

Proof.Category-theoretic arguments. �

Now, to apply this theorem:

• We construct a free image-total functor for any set ofquasi-equations,

• We give sufficient conditions under which Aω ∈ V.

8 / 16

Page 34: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

Free image-total functorMain theorem

TheoremLet η : 1→ F be a free image-total functor and A0 ∈ pV. Let Aω

be the partial algebra-colimit of the image-total chain{ηFn(A0) : Fn(A0)→ Fn+1(A0)}n≥0.If Aω is in V, then Aω is the free total V-algebra over A0.

Proof.Category-theoretic arguments. �

Now, to apply this theorem:

• We construct a free image-total functor for any set ofquasi-equations,

• We give sufficient conditions under which Aω ∈ V.

8 / 16

Page 35: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

Free image-total functorMain theorem

TheoremLet η : 1→ F be a free image-total functor and A0 ∈ pV. Let Aω

be the partial algebra-colimit of the image-total chain{ηFn(A0) : Fn(A0)→ Fn+1(A0)}n≥0.If Aω is in V, then Aω is the free total V-algebra over A0.

Proof.Category-theoretic arguments. �

Now, to apply this theorem:

• We construct a free image-total functor for any set ofquasi-equations,

• We give sufficient conditions under which Aω ∈ V.

8 / 16

Page 36: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

Free image-total functorMain theorem

TheoremLet η : 1→ F be a free image-total functor and A0 ∈ pV. Let Aω

be the partial algebra-colimit of the image-total chain{ηFn(A0) : Fn(A0)→ Fn+1(A0)}n≥0.If Aω is in V, then Aω is the free total V-algebra over A0.

Proof.Category-theoretic arguments. �

Now, to apply this theorem:

• We construct a free image-total functor for any set ofquasi-equations,

• We give sufficient conditions under which Aω ∈ V.

8 / 16

Page 37: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

Free image-total functorMain theorem

TheoremLet η : 1→ F be a free image-total functor and A0 ∈ pV. Let Aω

be the partial algebra-colimit of the image-total chain{ηFn(A0) : Fn(A0)→ Fn+1(A0)}n≥0.If Aω is in V, then Aω is the free total V-algebra over A0.

Proof.Category-theoretic arguments. �

Now, to apply this theorem:

• We construct a free image-total functor for any set ofquasi-equations,

• We give sufficient conditions under which Aω ∈ V.

8 / 16

Page 38: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

Free image-total functorConstruction

• Let E be a set of quasi-equations (of rank at most 1)axiomatizing the variety V.

• For A ∈ pV, define

FE(A) := [A + FV−(fA)]/θA

• V−: reduct of V to the signature of total operations,• fA : formal elements {fa : a ∈ A }, yielding partial operation

a 7→ fa for a ∈ A ,• θA : smallest pV-congruence on A + FV−(fA) containing〈fA a, fa〉, for all a ∈ dom(fA ).

• ηA is the composite

A � A + FV−(fA)� FE(A).

9 / 16

Page 39: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

Free image-total functorConstruction

• Let E be a set of quasi-equations (of rank at most 1)axiomatizing the variety V.

• For A ∈ pV, define

FE(A) := [A + FV−(fA)]/θA

• V−: reduct of V to the signature of total operations,• fA : formal elements {fa : a ∈ A }, yielding partial operation

a 7→ fa for a ∈ A ,• θA : smallest pV-congruence on A + FV−(fA) containing〈fA a, fa〉, for all a ∈ dom(fA ).

• ηA is the composite

A � A + FV−(fA)� FE(A).

9 / 16

Page 40: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

Free image-total functorConstruction

• Let E be a set of quasi-equations (of rank at most 1)axiomatizing the variety V.

• For A ∈ pV, define

FE(A) := [A + FV−(fA)]/θA

• V−: reduct of V to the signature of total operations,

• fA : formal elements {fa : a ∈ A }, yielding partial operationa 7→ fa for a ∈ A ,

• θA : smallest pV-congruence on A + FV−(fA) containing〈fA a, fa〉, for all a ∈ dom(fA ).

• ηA is the composite

A � A + FV−(fA)� FE(A).

9 / 16

Page 41: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

Free image-total functorConstruction

• Let E be a set of quasi-equations (of rank at most 1)axiomatizing the variety V.

• For A ∈ pV, define

FE(A) := [A + FV−(fA)]/θA

• V−: reduct of V to the signature of total operations,• fA : formal elements {fa : a ∈ A }, yielding partial operation

a 7→ fa for a ∈ A ,

• θA : smallest pV-congruence on A + FV−(fA) containing〈fA a, fa〉, for all a ∈ dom(fA ).

• ηA is the composite

A � A + FV−(fA)� FE(A).

9 / 16

Page 42: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

Free image-total functorConstruction

• Let E be a set of quasi-equations (of rank at most 1)axiomatizing the variety V.

• For A ∈ pV, define

FE(A) := [A + FV−(fA)]/θA

• V−: reduct of V to the signature of total operations,• fA : formal elements {fa : a ∈ A }, yielding partial operation

a 7→ fa for a ∈ A ,• θA : smallest pV-congruence on A + FV−(fA) containing〈fA a, fa〉, for all a ∈ dom(fA ).

• ηA is the composite

A � A + FV−(fA)� FE(A).

9 / 16

Page 43: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

Free image-total functorConstruction

• Let E be a set of quasi-equations (of rank at most 1)axiomatizing the variety V.

• For A ∈ pV, define

FE(A) := [A + FV−(fA)]/θA

• V−: reduct of V to the signature of total operations,• fA : formal elements {fa : a ∈ A }, yielding partial operation

a 7→ fa for a ∈ A ,• θA : smallest pV-congruence on A + FV−(fA) containing〈fA a, fa〉, for all a ∈ dom(fA ).

• ηA is the composite

A � A + FV−(fA)� FE(A).

9 / 16

Page 44: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

Free image-total functorLemma

LemmaFE is a free image-total functor with universal arrow η.Furthermore, if A0 ∈ pV is such that each componentηFnE(A0) : Fn

E(A0)→ Fn+1

E(A0) is an embedding, then Aω ∈ V.

Proof.Uses universal algebra for partial algebras. �

CorollaryIf A0 ∈ pV is such that each componentηFnE(A0) : Fn

E(A0)→ Fn+1

E(A0) is an embedding, then Aω is the

free total V-algebra over A0.

10 / 16

Page 45: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

Free image-total functorLemma

LemmaFE is a free image-total functor with universal arrow η.Furthermore, if A0 ∈ pV is such that each componentηFnE(A0) : Fn

E(A0)→ Fn+1

E(A0) is an embedding, then Aω ∈ V.

Proof.Uses universal algebra for partial algebras. �

CorollaryIf A0 ∈ pV is such that each componentηFnE(A0) : Fn

E(A0)→ Fn+1

E(A0) is an embedding, then Aω is the

free total V-algebra over A0.

10 / 16

Page 46: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

Free image-total functorLemma

LemmaFE is a free image-total functor with universal arrow η.Furthermore, if A0 ∈ pV is such that each componentηFnE(A0) : Fn

E(A0)→ Fn+1

E(A0) is an embedding, then Aω ∈ V.

Proof.Uses universal algebra for partial algebras. �

CorollaryIf A0 ∈ pV is such that each componentηFnE(A0) : Fn

E(A0)→ Fn+1

E(A0) is an embedding, then Aω is the

free total V-algebra over A0.

10 / 16

Page 47: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

The variety KB

• Signature = ⊥,>,∨,∧,¬,^

• Axioms = Boolean algebras +

^⊥ = ⊥

^(x ∨ y) = ^x ∨ ^y

x ≤ ¬^y → y ≤ ¬^x.

• (Finite) Duality theory:

• KB algebras↔ Sets with a symmetric relation• Partial KB algebras↔ Sets with an equivalence relation ∼

and a quasi-symmetric relation R satisfying R ◦ ∼⊆ R

11 / 16

Page 48: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

The variety KB

• Signature = ⊥,>,∨,∧,¬,^

• Axioms = Boolean algebras +

^⊥ = ⊥

^(x ∨ y) = ^x ∨ ^y

x ≤ ¬^y → y ≤ ¬^x.

• (Finite) Duality theory:

• KB algebras↔ Sets with a symmetric relation• Partial KB algebras↔ Sets with an equivalence relation ∼

and a quasi-symmetric relation R satisfying R ◦ ∼⊆ R

11 / 16

Page 49: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

The variety KB

• Signature = ⊥,>,∨,∧,¬,^

• Axioms = Boolean algebras +

^⊥ = ⊥

^(x ∨ y) = ^x ∨ ^y

x ≤ ¬^y → y ≤ ¬^x.

• (Finite) Duality theory:

• KB algebras↔ Sets with a symmetric relation• Partial KB algebras↔ Sets with an equivalence relation ∼

and a quasi-symmetric relation R satisfying R ◦ ∼⊆ R

11 / 16

Page 50: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

The variety KB

• Signature = ⊥,>,∨,∧,¬,^

• Axioms = Boolean algebras +

^⊥ = ⊥

^(x ∨ y) = ^x ∨ ^y

x ≤ ¬^y → y ≤ ¬^x.

• (Finite) Duality theory:• KB algebras↔ Sets with a symmetric relation

• Partial KB algebras↔ Sets with an equivalence relation ∼and a quasi-symmetric relation R satisfying R ◦ ∼⊆ R

11 / 16

Page 51: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

The variety KB

• Signature = ⊥,>,∨,∧,¬,^

• Axioms = Boolean algebras +

^⊥ = ⊥

^(x ∨ y) = ^x ∨ ^y

x ≤ ¬^y → y ≤ ¬^x.

• (Finite) Duality theory:• KB algebras↔ Sets with a symmetric relation• Partial KB algebras↔ Sets with an equivalence relation ∼

and a quasi-symmetric relation R satisfying R ◦ ∼⊆ R

11 / 16

Page 52: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

The functor FKB

• By definition, for a partial KB algebra A ,

FKB(A) = [A + FBA(_A)]/θA .

GKB(X)

A

Duality

X

FBA(_A)+

× P(X)

A FBA(_A)+/θA

• Using correspondence theory, one can explicitly calculatea first-order definition of the points in GKB(X ,R ,∼)

• These points are normal forms for KB.

12 / 16

Page 53: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

The functor FKB

• By definition, for a partial KB algebra A ,

FKB(A) = [A + FBA(_A)]/θA .

GKB(X)

A

Duality

X

FBA(_A)+

× P(X)

A FBA(_A)+/θA

• Using correspondence theory, one can explicitly calculatea first-order definition of the points in GKB(X ,R ,∼)

• These points are normal forms for KB.

12 / 16

Page 54: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

The functor FKB

• By definition, for a partial KB algebra A ,

FKB(A) = [A + FBA(_A)]/θA .

GKB(X)

A

Duality

X

FBA(_A)+

× P(X)

A FBA(_A)+/θA

• Using correspondence theory, one can explicitly calculatea first-order definition of the points in GKB(X ,R ,∼)

• These points are normal forms for KB.

12 / 16

Page 55: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

The functor FKB

• By definition, for a partial KB algebra A ,

FKB(A) = [A + FBA(_A)]/θA .

GKB(X)

A

Duality

X

FBA(_A)+

× P(X)

A FBA(_A)+/θA

• Using correspondence theory, one can explicitly calculatea first-order definition of the points in GKB(X ,R ,∼)

• These points are normal forms for KB.

12 / 16

Page 56: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

The functor FKB

• By definition, for a partial KB algebra A ,

FKB(A) = [A + FBA(_A)]/θA .

GKB(X)

A

Duality

X

FBA(_A)+

× P(X)

A FBA(_A)+/θA

• Using correspondence theory, one can explicitly calculatea first-order definition of the points in GKB(X ,R ,∼)

• These points are normal forms for KB.

12 / 16

Page 57: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

The functor FKB

• By definition, for a partial KB algebra A ,

FKB(A) = [A + FBA(_A)]/θA .

GKB(X)

A

Duality

X

FBA(_A)+

× P(X)

A FBA(_A)+/θA

• Using correspondence theory, one can explicitly calculatea first-order definition of the points in GKB(X ,R ,∼)

• These points are normal forms for KB.12 / 16

Page 58: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

The chain for KBFirst steps

X0

p ¬p

GKB(X0)

p ∧ ^p ∧ ^¬p

p ∧ ^p ∧ ¬^¬p

p ∧ ¬^p ∧ ^¬p

p ∧ ¬^p ∧ ¬^¬p

¬p ∧ ^p ∧ ^¬p

¬p ∧ ^p ∧ ¬^¬p

¬p ∧ ¬^p ∧ ^¬p

¬p ∧ ¬^p ∧ ¬^¬p

13 / 16

Page 59: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

The chain for KBFirst steps

X0

p ¬p

GKB(X0)

p ∧ ^p ∧ ^¬p

p ∧ ^p ∧ ¬^¬p

p ∧ ¬^p ∧ ^¬p

p ∧ ¬^p ∧ ¬^¬p

¬p ∧ ^p ∧ ^¬p

¬p ∧ ^p ∧ ¬^¬p

¬p ∧ ¬^p ∧ ^¬p

¬p ∧ ¬^p ∧ ¬^¬p

13 / 16

Page 60: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

The chain for KB(part of) G2

KB(X0)

14 / 16

Page 61: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

The chain for S4First steps

X0

GS4(X0)

G2S4(X0)

(...)

15 / 16

Page 62: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

The chain for S4First steps

X0

GS4(X0)

G2S4(X0)

(...)

15 / 16

Page 63: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

The chain for S4First steps

X0

GS4(X0)

G2S4(X0)

(...)

15 / 16

Page 64: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

The chain for S4First steps

X0

GS4(X0)

G2S4(X0)

(...)

15 / 16

Page 65: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

Free algebras via a functoron partial algebras

Dion Coumans and Sam van Gool

Topology, Algebra and Categoriesin Logic (TACL)

26 – 30 July 2011Marseilles, France

16 / 16