free metal and metaloxide clusters: beyond the static

39
Free metal and metal-oxide clusters: beyond the static, monostructure description Luca M. Ghiringhelli Fritz Haber Institute of the Max Planck Society, Berlin CECAM/Psi-k Research Conference: Multi-scale Modeling from First-Principles Platja d'Aro, Spain, September 08-13, 2013

Upload: others

Post on 10-Apr-2022

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Free metal and metaloxide clusters: beyond the static

Free metal and metal­oxide clusters: beyond the static, 

monostructure description

Luca M. GhiringhelliFritz Haber Institute of the Max Planck Society, Berlin

CECAM/Psi­k Research Conference:Multi­scale Modeling from First­Principles

Platja d'Aro, Spain, September 08­13, 2013

Page 2: Free metal and metaloxide clusters: beyond the static

The big picture

Materials under operative conditions. E.g., catalysts for heterogeneous catalysis

The widespread description and modeling of heterogeneous catalysis got stuck in the concepts and methods of the last century. 

Most  (nearly  all)  catalysis  researchers  focus  on  energies  and  energy barriers, however free energy and kinetics are also important. 

A catalyst  is usually not working efficiently  from the very moment  that the  process  starts,  but  a  macroscopic  “induction  period”  must  rather elapse. 

The  catalytically  active  phase  may  exist  only  in  a  narrow  range  of  the external conditions. 

Page 3: Free metal and metaloxide clusters: beyond the static

Materials under operative conditions. E.g., catalysts for heterogeneous catalysis

Not  only  the  surface  composition  but  also  surface  morphology  can change in the course of a catalytic process. 

Nanostructures of various shapes, point defects, extended defects such as steps,  dislocations,  and  stacking  faults,  can  result  from  and  will  be modified by interaction of the surface with the reactive environment. 

The  difference  between  “real­life  catalysis”  and  “UHV  surface  chemical reactions” reflects the so­called “materials” and “pressure gap”.

A catalyst will never be the pristine material that is initially introduced in the reactor. 

The big picture

Page 4: Free metal and metaloxide clusters: beyond the static

System as collection of well separated minima:

Ab initio atomistic thermodynamics

System in a fluxional or liquid state:

Ab initioReplica exchange 

molecular dynamics

Validation of the total­energy method(accuracy of the potential­energy surface)

Road map

Page 5: Free metal and metaloxide clusters: beyond the static

System as collection of well separated minima:

Ab initio atomistic thermodynamics

Page 6: Free metal and metaloxide clusters: beyond the static

Extending the scale

{Ri}

E

Potential Energy Surface: E{Ri}

(3N    → 1) dimensons 

10­9

10­6

10­3

1

10­15 10­9 10­3 1

Length(m)

Time (s)

Microscopicregime

Mesoscopicregime

elementary processes

few atoms

many atoms

interplay amongprocesses

continuum

average overall processesmore 

details

more proc

esses

Thermodynamics:p, T, V, N, some q

Macroscopicregime

Page 7: Free metal and metaloxide clusters: beyond the static

Ab initio atomistic thermodynamics

Consider several structuresfor our system

Which ones are preferredas a function of (T,p)?

PES information@DFT Free energy

Microscopic MacroscopicAverage over time

A surface is coupled to the gas (or liquid) above it

mkT

p

πν

2=

For     = 300 K,     = 1 atm =>     ~ 108 site­1 s­1ν

Requires          10­12 atm to keep a “clean” surface clean; surface can also lose atoms

T p

≤p

Page 8: Free metal and metaloxide clusters: beyond the static

Ab initio atomistic thermodynamics

C.M. Weinert and M.Scheffler, Mat. Sci. Forum 10-12, 25 (1986).K. Reuter, C. Stampfl, and M.S., in: Handbook of Materials Modeling, Vol. 1. (Ed. Sid Yip), Springer 2005.R. Fowler and E.A. Guggenheim, Statistical thermodynamics (Cambridge Press, Cambridge, 1949)

Formation free energy Free energy of pristine surface/cluster

Free energy of surface/cluster + ligand Chemical potential of ligand

Showcase: Mg clusters in oxygen (­containing) atmosphere

Page 9: Free metal and metaloxide clusters: beyond the static

- random initial pool; care for including diversity- local geometry optimization with classical force field (e.g., reaxFF [1])- evaluation of the fitness function - selection of two parents, crossover, mutation

Why? Creation of a “pre-digested” initial pool for DFT-based GA

- initial pool from previous step- local geometry optimization @ PBE+vdW / light settings;- structure recognition, early rejection if “similar” to known structure.- in cascade, local geometry optimization @ PBE+vdW / tight settings- structure recognition, rejection if “similar” to known structure.- energy evaluation with PBE0+vdW; evaluation of the fitness function- selection of two parents, crossover, mutation

Parallel version: all replicas draw initial structures from a common pool and update the common pool. - no idling time: perfectly linearly scaling parallelization.

[1] A. van Duin et al., J. Chem. Phys. A 105, 9396 (2001); Q. Zhang et al., Phys. Rev. B 69, 045423 (2004)

Which structures? Unbiased search: cascade genetic algorithm

A

B

Page 10: Free metal and metaloxide clusters: beyond the static

Ab initio atomistic thermodynamics

C.M. Weinert and M.Scheffler, Mat. Sci. Forum 10-12, 25 (1986).K. Reuter, C. Stampfl, and M.S., in: Handbook of Materials Modeling, Vol. 1. (Ed. Sid Yip), Springer 2005.R. Fowler and E.A. Guggenheim, Statistical thermodynamics (Cambridge Press, Cambridge, 1949)

Formation free energy Free energy of pristine surface/cluster

Free energy of surface/cluster + ligand Chemical potential of ligand

Showcase: Mg clusters in oxygen (­containing) atmosphere

Page 11: Free metal and metaloxide clusters: beyond the static

Free energy? Harmonic, beyond, and further beyond

● Disjointed minima, harmonic PES (low T): analytic expression

● Disjointed minima, non­harmonic PES (higher T):

Input: evaluation of harmonic spectrum

Total energy

Potentialenergy

Kinetic energy

Input: from NVT molecular dynamics

Harmonic FDFT total energy of 0K structure

Page 12: Free metal and metaloxide clusters: beyond the static

Free energy? Harmonic, beyond, and further beyond

● Disjointed minima, harmonic PES (low T): analytic expression

● Multiple minima: multi­canonical methods, replica exchange 

● Disjointed minima, non­harmonic PES (higher T):

Input: evaluation of harmonic spectrum

Total energy

Potentialenergy

Kinetic energy

Input: from NVT molecular dynamics

Harmonic FDFT total energy of 0K structure

It works only if ­ there is only one reference structure and 

­ the integration path is reversible

Page 13: Free metal and metaloxide clusters: beyond the static

Ab initio atomistic thermodynamics

μO(T,p) = ½ μO2(T,p0) + ½ kT ln (p/p0)

C.M. Weinert and M.Scheffler, Mat. Sci. Forum 10-12, 25 (1986).K. Reuter, C. Stampfl, and M.S., in: Handbook of Materials Modeling, Vol. 1. (Ed. Sid Yip), Springer 2005.R. Fowler and E.A. Guggenheim, Statistical thermodynamics (Cambridge Press, Cambridge, 1949)

Formation free energy Free energy of pristine surface/cluster

Free energy of surface/cluster + ligand Chemical potential of ligand

Showcase: Mg clusters in oxygen (­containing) atmosphere

Page 14: Free metal and metaloxide clusters: beyond the static

Ab initio atomistic thermodynamics: phase diagrams

ΔμO (eV)­1.5 ­1 ­0.5 0

ΔG

f (eV

) pO2 (atm)

­8

­4

0

1E­40 1E­20 1E­10 1 1E10

Page 15: Free metal and metaloxide clusters: beyond the static

Validation of the total­energy method(accuracy of the potential energy surface)

Case study one:  reaxFF vs DFT for MgMOx clusters

Case study two: out­of­water “bio” force fields vs DFT for gas phase poly­peptides 

Page 16: Free metal and metaloxide clusters: beyond the static

Case study one:  reaxFF vs DFT for MgMOx clusters

reaxFFPBE+vdWPBE0+vdWrPT2@PBE

rPT2  renormalized second order perturbation theory= EX+cRPA + rSE+SOSEX

EX exact exchangecRPA  random phase approximation for e­ correlationrSE renormalized single excitationsSOSEX second­order screened exchange

X. Ren, P. Rinke, C. Joas, and M. Scheffler, J. Mater. Sci. (2012)X. Ren, P. Rinke, G.E. Scuseria, and M. Scheffler, PRB (2013) 

Page 17: Free metal and metaloxide clusters: beyond the static

Benchmarking GGA and hybrid functionals

PBE+vdW quality deteriorates with increasing O2 coverage

reaxFFPBE+vdWPBE0+vdWrPT2@PBE

Page 18: Free metal and metaloxide clusters: beyond the static

Benchmarking GGA and hybrid functionals

Among the (reactive) force fields designed for a wide class of elements, reaxFF is possibly the best.

However the "range of validity" of the reaxFF is narrow and only covering those situations that were used to fit its parameters. 

Information about the bulk and (some) surface situations are not sufficient for describing small clusters. 

Among the (reactive) force fields designed for a wide class of elements, reaxFF is possibly the best.

However the "range of validity" of the reaxFF is narrow and only covering those situations that were used to fit its parameters. 

Information about the bulk and (some) surface situations are not sufficient for describing small clusters. 

reaxFFPBE+vdWPBE0+vdWrPT2@PBE

Page 19: Free metal and metaloxide clusters: beyond the static

PBE+vdW / light

Benchmarking GGA and hybrid functionalsCondensation of oxygen droplets

PBE+vdW / tight

reaxFF

Page 20: Free metal and metaloxide clusters: beyond the static

Benchmarking GGA and hybrid functionalsCondensation of oxygen droplets

reaxFFPBE+vdW / tight

Page 21: Free metal and metaloxide clusters: beyond the static

PBE+vdW / tight

rPT2@PBE 

Benchmarking GGA and hybrid functionalsCondensation of oxygen droplets

PBE0+vdWPBE0+vdW

reaxFF

Page 22: Free metal and metaloxide clusters: beyond the static

Thermodynamic stability of MgMOx clusters

S. Bhattacharya,  S. Levchenko, LMG, and M. Scheffler, PRL (2013)

Non stoichiometric Competition / coexistence

Page 23: Free metal and metaloxide clusters: beyond the static

Offset: ­1.60 eVMAE:   0.20 eV

Offset: 0.04 eVMAE:  0.04 eV

Accuracy of a reactive force field vs DFT

Cohesion/formation energy, referred to atomic Mg and half of O2 total energy

Stochiometric (MgO)M clusters, global minima; 1 ≤ M ≤ 15 

O2

MgObulk

eV

O2

MgObulk

eVeV

eV

Page 24: Free metal and metaloxide clusters: beyond the static

Offset: ­1.91 eVMAE:   0.48 eV

Offset: 0.03 eVMAE:  0.03 eV

Accuracy of a reactive force field vs DFT

Cohesion/formation energy, referred to atomic Mg and half of O2 total energy

Stochiometric + non­stochiometric MgMOx clusters, global minima; 1≤M≤15

MgObulk

eV

O2

MgObulk

eVeV

eV

O2

Page 25: Free metal and metaloxide clusters: beyond the static

Mg1Ox

Mg2Ox

Mg3Ox

Offset: ­0.07 eVMAE:   0.09 eV

Accuracy of a reactive force field vs DFT

Stochiometric + non­stochiometric MgMOx clusters, global minima; 1≤M≤3

eV

eV

PBE0+vdW

PBE+vdW favors high O­coverage: the phase diagram a higher p is totally unreliable

PBE+vdW / tight

Page 26: Free metal and metaloxide clusters: beyond the static

Offset: ­2.46 eVMAE:   0.38 eV

Offset: 0.05 eVMAE:  0.05 eV

Cohesion/formation energy, referred to atomic Mg and half of O2 total energy

Stochiometric and non­stochiometric MgMOx clusters, all isomers; 1≤M≤15

Accuracy of a reactive force field vs DFT

O2

MgObulk

eV

O2

MgObulk

eVeV

eV

Page 27: Free metal and metaloxide clusters: beyond the static

Sampling a huge conformational spaceDFT as post­production applied to force field?

Missed!

GA@ReaxFFoptimization@PBE

GA@DFT GA@ReaxFFoptimization@PBE

GA@DFT

Mg2O2 Mg2O6

PBE after GA@reaxFF: OK   PBE after GA@reaxFF: GM missed  

Page 28: Free metal and metaloxide clusters: beyond the static

B is found by reaxFF, but not AAfter optimization@reaxFF, A becomes C'After optimization@PBE, C' becomes C ≠ A

Sampling a huge conformational spaceDFT as post­production applied to force field? NO !

B

Mg2O6

C'

C

GA@ReaxFFoptimization@PBE

GA@DFTAΔ

A

B

Δ

C'

B

Δ

A

  C    almost same 

geometry as C'

Page 29: Free metal and metaloxide clusters: beyond the static

System in a fluxional or liquid state:

Ab initioreplica­exchange 

molecular dynamics

Page 30: Free metal and metaloxide clusters: beyond the static

Extending the scale

{Ri}

E

Potential Energy Surface: E{Ri}

(3N    → 1) dimensons 

10­9

10­6

10­3

1

10­15 10­9 10­3 1

Length(m)

Time (s)

Microscopicregime

Mesoscopicregime

elementary processes

few atoms

many atoms

interplay amongprocesses

continuum

average overall processesmore 

details

more proc

esses

Thermodynamics:p, T, V, N, some q

Macroscopicregime

Page 31: Free metal and metaloxide clusters: beyond the static

T1

T2

T3

T4

some coordinates

Ener

gyParallel tempering: the concept

Exchange rule, ensuring canonical sampling at all temperatures:

Energy distribution

Energy (arb. units)

T1T2

TN

. . .

Replica exchange: the concept

Page 32: Free metal and metaloxide clusters: beyond the static

Swap 2

Swap 1M

D r

un 1

MD

 run

 2

T3

T1

MD

 run

 3T2

T4

T5

Parallel tempering: the implementationReplica exchange: the implementation

To be tuned for efficient sampling: number of temperatures, list of temperatures, attempted swap frequency

Page 33: Free metal and metaloxide clusters: beyond the static

Swap 2

Swap 1M

D r

un 1

MD

 run

 2

T3

T1

MD

 run

 3T2

T4

T5

Parallel tempering: the implementationReplica exchange: the implementation

To be tuned for efficient sampling: number of temperatures, list of temperatures, attempted swap frequency

Parallel (over replicas,

and more)

Page 34: Free metal and metaloxide clusters: beyond the static

Pote

ntia

l Ene

rgy 

(eV

)

 (degree)

  100—620 K  100 K PT (100 ps)  100 K serial (100 ps)

Au4: coexistence of several isomers

0.00 eV

0.04 eV

0.36 eV

Page 35: Free metal and metaloxide clusters: beyond the static

Temperature­weighted Histogram Analysis Method:

Iterative, self consistent solution of:

IMPORTANT: “q“ is a “post­production“ (collective) variable

Replica exchange: free energy?

Un­biased probability at temperature β0

Sampled probability Re­weighting coefficients

q is chosen a posteriorinormalization

, in case

# of observations of q in bin i

# of total observations in bin i

Page 36: Free metal and metaloxide clusters: beyond the static

Angle [degree]Angle [degree]

Free

 Ene

rgy 

[eV

]Pr

obab

ility

Part

itio

n Fu

ncti

on 

(int

egra

ted 

prob

abili

ty) 0.00 eV

0.04 eV(PBE+vdW)

Au4, relative population (T­WHAM)

Page 37: Free metal and metaloxide clusters: beyond the static

Au4, relative population, coordination based descriptor

Page 38: Free metal and metaloxide clusters: beyond the static

unbiased search for local minima

(ab initio)replica­exchange 

molecular dynamics

validation / tuning of possibly biased 

local­minima search algorithms(e.g., genetic algorithm)

seamlessly multiscale:bridges vibrational timescalewith state­hopping timescale

a posteriori evaluation of free­energy

(can be refined)

Page 39: Free metal and metaloxide clusters: beyond the static

Conclusions

Temperature  and  other  environmental  (macroscopic)  parameters  affects the microscopic structure of a functional material

If the system is safely described as a collection of local minima:a list of local minima is only a (necessary) starting point for understanding the thermodynamic stability 

 → ab initio atomistic thermodynamics using ab initio dataBeware of anharmonic effects!

If the system is fluxional or liquid:   → ab initio replica­exchange molecular dynamics (REMD)

(Configurational) entropy may be  important not only  in the “soft” colloidal and bio­molecular world, but also in the “hard” atomic (nano)worldChallenge: grand­canonical molecular dynamics scheme

The  accurate  (ab  initio,  but  is  also  important  which  level  of  ab  initio) description of the PES is necessary: temperature and time­average do not necessarily smear out the inaccuracies! Nonetheless, (good) force field are valuable (time­saving) starting points for an ab initio structural scanning.