frequency domain modeling and multidisciplinary design ... · pdf file frequency domain...
Post on 12-Jun-2020
4 views
Embed Size (px)
TRANSCRIPT
Frequency Domain Modeling and
Multidisciplinary Design Optimization of Floating
Offshore Wind Turbines
by
Meysam Karimi
B.Sc., Persian Gulf University, 2010
M.Sc., Amirkabir University of Technology, 2012
A Dissertation Submitted in Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY
in the Department of Mechanical Engineering
c© Meysam Karimi, 2018
University of Victoria
All rights reserved. This dissertation may not be reproduced in whole or in part, by
photocopying or other means, without the permission of the author.
ii
Frequency Domain Modeling and Multidisciplinary Design Optimization
of Floating Offshore Wind Turbines
by
Meysam Karimi
B.Sc., Persian Gulf University, 2010
M.Sc., Amirkabir University of Technology, 2012
Supervisory Committee
Dr. C. Crawford, Supervisor
(Department of Mechanical Engineering)
Dr. B. Buckham, Supervisor
(Department of Mechanical Engineering)
Dr. R. Dewey, External Member
(Ocean Networks Canada)
iii
ABSTRACT
Offshore floating wind turbine technology is growing rapidly and has the poten-
tial to become one of the main sources of affordable renewable energy. However, this
technology is still immature owing in part to complications from the integrated de-
sign of wind turbines and floating platforms, aero-hydro-servo-elastic responses, grid
integrations, and offshore wind resource assessments. This research focuses on devel-
oping methodologies to investigate the technical and economic feasibility of a wide
range of floating offshore wind turbine support structures. To achieve this goal, inter-
disciplinary interactions among hydrodynamics, aerodynamics, structure and control
subject to constraints on stresses/loads, displacements/rotations, and costs need to
be considered. Therefore, a multidisciplinary design optimization approach for min-
imum levelized cost of energy executed using parameterization schemes for floating
support structures as well as a frequency domain dynamic model for the entire cou-
pled system. This approach was based on a tractable framework and models (i.e. not
too computationally expensive) to explore the design space, but retaining required
fidelity/accuracy.
In this dissertation, a new frequency domain approach for a coupled wind turbine,
floating platform, and mooring system was developed using a unique combination of
the validated numerical tools FAST and WAMIT. Irregular wave and turbulent wind
loads were incorporated using wave and wind power spectral densities, JONSWAP
and Kaimal. The system submodels are coupled to yield a simple frequency domain
model of the system with a flexible moored support structure. Although the model
framework has the capability of incorporating tower and blade structural DOF, these
components were considered as rigid bodies for further simplicity here. A collective
blade pitch controller was also defined for the frequency domain dynamic model to
increase the platform restoring moments. To validate the proposed framework, pre-
dicted wind turbine, floating platform and mooring system responses to the turbulent
wind and irregular wave loads were compared with the FAST time domain model.
iv
By incorporating the design parameterization scheme and the frequency domain
modeling the overall system responses of tension leg platforms, spar buoy platforms,
and semisubmersibles to combined turbulent wind and irregular wave loads were de-
termined. To calculate the system costs, a set of cost scaling tools for an offshore
wind turbine was used to estimate the levelized cost of energy. Evaluation and com-
parison of different classes of floating platforms was performed using a Kriging-Bat
optimization method to find the minimum levelized cost of energy of a 5 MW NREL
offshore wind turbine across standard operational environmental conditions. To show
the potential of the method, three baseline platforms including the OC3-Hywind spar
buoy, the MIT/NREL TLP, and the OC4-DeepCwind semisubmersible were compared
with the results of design optimization. Results for the tension leg and spar buoy case
studies showed 5.2% and 3.1% decrease in the levelized cost of energy of the opti-
mal design candidates in comparison to the MIT/NREL TLP and the OC3-Hywind
respectively. Optimization results for the semisubmersible case study indicated that
the levelized cost of energy decreased by 1.5% for the optimal design in comparison
to the OC4-DeepCwind.
v
Contents
Supervisory Committee ii
Abstract iii
Contents v
List of Tables ix
List of Figures xiii
Acknowledgements xix
Dedication xxi
1 Introduction 1
1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 FOWT System Components . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Dissertation Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2 A Multi-Objective Design Optimization Approach For Floating
Offshore Wind Turbine Support Structures 11
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Design analysis methodology . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.1 Inviscid platform hydrodynamics . . . . . . . . . . . . . . . . 18
vi
2.2.2 Viscid platform hydrodynamics . . . . . . . . . . . . . . . . . 18
2.2.3 Wind turbine properties . . . . . . . . . . . . . . . . . . . . . 21
2.2.4 Mooring line loads . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.5 Frequency-domain dynamic model . . . . . . . . . . . . . . . . 22
2.3 Support structure parameterization . . . . . . . . . . . . . . . . . . . 24
2.3.1 Platform topology . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.2 Mooring system . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3.3 Platform mass and ballast . . . . . . . . . . . . . . . . . . . . 30
2.4 Optimization problem methodology . . . . . . . . . . . . . . . . . . . 31
2.4.1 Objective functions . . . . . . . . . . . . . . . . . . . . . . . . 33
2.4.2 Design constraints . . . . . . . . . . . . . . . . . . . . . . . . 35
2.5 Time-domain verification of dynamic model . . . . . . . . . . . . . . 38
2.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.6.1 Environmental conditions . . . . . . . . . . . . . . . . . . . . 40
2.6.2 Single-body platforms . . . . . . . . . . . . . . . . . . . . . . 40
2.6.3 Multi-body platforms . . . . . . . . . . . . . . . . . . . . . . . 43
2.6.4 Full design space exploration . . . . . . . . . . . . . . . . . . . 46
2.6.5 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . 47
2.7 Conclusions and future work . . . . . . . . . . . . . . . . . . . . . . . 52
3 A Fully Coupled Frequency Domain Model for Floating Offshore
Wind Turbines 54
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.1.1 Time domain models for FOWTs . . . . . . . . . . . . . . . . 57
3.1.2 Simplified FOWT modeling techniques . . . . . . . . . . . . . 58
3.1.3 Proposed model . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.1.4 Chapter outline . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.2 Frequency domain model framework . . . . . . . . . . . . . . . . . . . 61
3.2.1 Wind turbine and platform description . . . . . . . . . . . . . 62
vii
3.2.2 Wave and wind inputs . . . . . . . . . . . . . . . . . . . . . . 64
3.2.3 Linearizing FOWT dynamics using FAST . . . . . . . . . . . 65
3.2.4 Assembling the frequency domain model . . . . . . . . . . . . 68
3.3 Fatigue load analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.4.1 Environmental and simulation conditions . . . . . . . . . . . . 77
3.4.2 System DOF reduction . . . . . . . . . . . . . . . . . . . . . . 79
3.4.3 OC3-Hywind spar buoy case study . . . . . . . . . . . . . . . 81
3.4.4 MIT/NREL TLP case study . . . . . . . . . . . . . . . . . . . 86
3.4.5 OC4-DeepCwind semisubmersible case study . . . . . . . . . . 88
3.4.6 Comparison of 22 DOF FAST and 6 DOF frequency domain
model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.5 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . 95
4 Multidisciplinary Design Optimization of Floating Offshore Wind
Turbine Support Structures For Levelized Cost of Energy 98
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.1.1 FOWT time domain dynamics modeling . . . . . . . . . . . . 101
4.1.2 FOWT frequency domain dynamics modeling . . . . . . . . . 102
4.1.3 Design optimization studies . . . . . . . . . . . . . . . . . . . 102
4.1.4 Cost models . . . . . . . . . . . . . . . . . . . . .