friedermugele - universiteit twente in enschede: high … · 2017-05-16 · friedermugele physics...

38
1 Frieder Mugele Physics of Complex Fluids University of Twente coorganizers: Jacco Snoeier Physics of Fluids / UT Anton Darhuber Mesoscopic Transport Phenomena / Tu/e speakers: José Bico (ESPCI Paris) Daniel Bonn (UvA) Michiel Kreutzer (TUD) Ralph Lindken (TUD)

Upload: vanthu

Post on 18-Jul-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

1

Frieder MugelePhysics of Complex Fluids

University of Twente

coorganizers:

Jacco SnoeierPhysics of Fluids / UT

Anton DarhuberMesoscopic Transport Phenomena / Tu/e

speakers:José Bico (ESPCI Paris)Daniel Bonn (UvA)Michiel Kreutzer (TUD)Ralph Lindken (TUD)

2

program

Monday:12:00 – 13:00h registration + lunch13:00h welcome: Frieder Mugele13:15h – 14:00h Frieder Mugele: Wetting basics (Young-Laplace equation; Young equation; examples)14:10-15:25h Jacco Snoeijer: Wetting flows: the lubrication approximation15:25-15:50h coffee break15:50-16:35h Jacco Snoeijer: Coating flows: the Landau-Levich problem and its solution using asymptotic matching16:45-17:30h Anton Darhuber: Surface tension, capillary forces and disjoining pressure I

Tuesday: 9:00h-9:45h Frieder Mugele: Dewetting9:5510:40 Anton Darhuber: Surface tension, capillary forces and disjoining pressure II10:40-11:05h coffee break11:05h-11:50h Anton Darhuber: Surface tension-gradient-driven flows12:00h-12:45h Daniel Bonn: Evaporating drops12:45-14:00h lunch14:00h-14:45h Daniel Bonn: Drop impact15:55h-15:40h José Bico: Elastocapillarity (I)15:40-16:05h coffee break16:05h – 16:50h José Bico: Elasticity & Capillarity (II)18:30 - ... joint dinner & get together

3

programWednesday:9:00h-9:45h Michiel Kreutzer: Two-phase flow in microchannels: the Bretherton problem9:55h-10:40h Michiel Kreutzer: Drop generation& emulsification in microchannels10:40h-11:05h coffee break11:05h-11:50h Michiel Kreutzer: Jet instabilities in microchannels12:00h-12:45h Ralph Lindken: PiV characterization of capillarity-driven flows12:45-14:00h lunch14:00h-15:00h: occasion for excercises15:00h-17:00h lab tour (Physics of Complex Fluids / Physics of Fluids)

Thursday:9:00h-9:45h Jacco Snoeijer: Contact line dynamics(I)9:55h-10:40h Jacco Snoeijer: Contact line dynamics (II)10:40h-11:05h coffee break11:05h-11:50h Frieder Mugele: Wetting of heterogeneous surfaces: Wenzel, Cassie-Baxter12:00h-12:45h: Jacco Snoeijer: Contact angle hysteresis12:45-14:00h lunch14:00h-14:45h José Bico: Sperhydrophobicity14:55h-15:40h Anton Darhuber: Thermocapillary flows15:40h-16:05h coffee break16:05h-16:50h Anton Darhuber: Surfactant-driven and solutocapillary flows

Friday:9:00h-9:45h Frieder Mugele: Electrowetting: basic principles9:55h-10:40h Frieder Mugele: Eectrowetting applications. 10:40h-11:05h coffee break11:05-12:00h round up – highlights / short summaries by students 12:00h closure

4

principles of wetting and capillarity

lv

slsvY σ

σσθ

−=cos

Young equationcapillary (Laplace) equation

κσσ lvlv RRp =

+=∆

21

11

5

capillarity-induced instabilities

driving force:minimization of surface energy

time

Rayleigh-Plateau instability

6

drops in microchannels

Anna et al. APL 2003

drop generation drop dynamics

7

wetting and dewetting flows

coating technology dewetting of paint

e.g. heating

Landau-Levich films

8

fundamental flow properties

lubrication flows contact line motion

v

9

wetting & molecular interactions

vertical scale: 100 nm

nanoscale drop

θY

x0

disjoining pressure

10

capillary forces

capillary bridges exert mechanical forces

11

wetting of complex surfaces

superhydrophobic surfaces: the Lotus effect

θ

12

switching wettability

voltage

electrowetting & thermocapillarity

13

lecture 1:

basics of wetting

14

wetting & liquid microdroplets

50 µm

H. Gau et al. Science 1999lvLpp κσ2==∆lv

slsvY σ

σσθ

−=cos

capillary equation Young equation

15

origin of interfacial energy

range of interactions (O(nm))

‘unhappy‘ molecules at interfaces 22aU coh

lv ≈→ σ

O(Å)

surface tension is excess energy w.r.t. bulk cohesive energy

width à 0: sharp interface model(will be handled throughout this course)

16

interfacial tension

interfacial tensions (of immiscible fluids) are always positive

liquid A

liquid B

σAB: interfacial tension

17

interfacial tensions matter at small scales

fraction of molecules close to the surface:

⋅==

⋅−

3

7

103

1033rdr

VdrA for r=1 cm

for r=1 µm

r

à capillarity is crucial for micro- and nanofluidics

18

mechanical definition of surface tension

dAW σδ =

definition A: The mechanical work δ W required to create an additional surface area dA (e.g. by deforming a drop) is given by the surface tension σ

thermodynamically:VNTA

F

,,∂∂

[ ] ;area

energy=σdimension and units: 1J/m2 (typically: mJ/m2)

19

mechanical definition of surface tension

[ ] ;lengthforce

=σdimension and units: 1N/m = 1J/m2 (typically: mN/m)

definition

soap film

lσ⋅2

definition B:σ is a force per unit length acting along the liquid-vapor interface aiming to shrink the interfacial area

connection to definition A xlW δσδ 2=work required to move the rod:

force per unit length per interface: σδ

δ=

−−=

xW

lf

21

20

surface tension of selected liquids

≈ 50water/oil485mercury24acetone63glycerol27.6hexadecane23.9decane19.4hexane

2328.5

ethanoldecanol

58water (100°C)73water (25°C)surface tension [mJ/m2]material

T-coefficient: (-0.07 … -0.15) mJ / m2K

21

consequences: the Laplace pressure

spherical dropR

δRPdrop

Pext

dAdVpdVpU extextdropdrop σδ +−−=variation of internal energy:

mechanical equilibrium: 0)(!=+−= dAdVppU dropdropext σδ

dropextdropL dV

dAppp σ=−=∆

dropext dVdV −=

Laplace pressure:R

pLσ2

=∆

22

generalization to arbitrary surfaces

upon crossing an interface between two fluids with an interfacial tension s, the pressure increases by

Young-Laplace lawσκσ

+==∆

21

112RR

pL

κ: mean curvature

+=

21

1121

RRκ

R1, R2: principal radii of curvature (sphere: R1=R2)

23

principle radii of curvature

nr

R1 > 0R2 < 0

liquid

air

+=

21

1121

RRκ

mean curvature:

nrϕ

(κ is independent of azimuthal angle φ)

sign convention:

24

generalization to arbitrary surfaces

upon crossing an interface between two fluids with an interfacial tension s, the pressure increases by

Young-Laplace lawσκσ

+==∆

21

112RR

pL

κ: mean curvature

+=

21

1121

RRκ

R1, R2: principal radii of curvature (sphere: R1=R2)

consequence: liquid surfaces in mechanical equilibrium have a constant mean curvature(n the absence of other forces)

50 µm

H. Gau et al. Science 1999

50 µm

H. Gau et al. Science 1999

25

variational derivation of Laplace equation

equilibrium surface profile ↔ minimum of Gibbs free energy (at constant volume)

( ) min!=−= VpFG surf

Fsurf: functional of surface profile A: ∫= dAAFsurf σ][

explicit representation of surface: ),( yxzz =

yx ssAddA rrr∆×∆== || ( ) ( ) yxzz yx ∆∆∂+∂+= 221

pressure: Lagrange multiplier

( ) ( ) dydxzzdAAF yxsurf ∫∫∫ ∂+∂+== 221][ σσ

volume: dydxyxzV ∫∫= ),(

∆∂

∆=∆

xz

xs

x

x 0r

∆∂∆=∆

yzys

y

y

0r

26

functional minimization

( ) ( ){ } min!

1)],([ 22 =−∂+∂+= ∫∫ dydxzpzzyxzG yxσ

),,( zzzf yx ∂∂

Euler-Lagrange equation: ( ) ( ) 0=∂∂

−∂∂∂

+∂∂∂

zf

zf

dyd

zf

dxd

yx

( ) Szz

zf xx

x

∂=

∂=

∂∂∂

%22

( )2

/S

SzzzzzSzS

zdxd xyyxxxxxxx ∂∂+∂∂∂−⋅∂

=

∂ ( ) ( )( ) ( )( )zzzzzzzzS xyyxxxxyxxx ∂∂+∂∂∂−∂+∂+⋅∂= − 223 1

( ) ( )( )( )zzzzzSz

fdxd

xyyxyxxx

∂∂∂−∂+⋅∂=∂∂∂ − 23 1

pzf

−=∂∂

( ) ( )( )( )zzzzzSz

fdyd

xyyxxyyy

∂∂∂−∂+⋅∂=∂∂∂ − 23 1

symmetrically:

27

Young Laplace equation

lvyx

xyyxyyxyxx pzz

zzzzzzzσ∆

=∂+∂+

∂+∂+∂∂∂−∂+∂2/322

22

))()(1())(1()()()(2))(1(

non-linear second order partial differential equation

=

+=

21

112RR

κ

2x mean curvature

two-dimensional version: 32)(1 z

zpx

xxlv

∂+

∂=∆ σ

28

cylindrical coordinates

surface parameterization: ),( zrr ϕ= ( )2211 rr

rS z∂+

∂+= ϕ

area: ∫ ∫∫ == ),( ϕϕ rSdrdzdAAvolume: ∫ ∫ ∫ ∫∫∫ === 2

21 rddzdrdrdzdVV ϕϕ

cylindrical symmetry: )(0 zrrr =→=∂ϕ

∂−=∆ r

SSrp zz3

11σ 2)(1 rS z∂+=

à ordinary differential equation

29

an examplefiber immersed in water (complete wetting; no gravity)

3

10S

rSr

zz∂−=

2)(1 rS z∂+=

322 '1

'''1

10r

rrr +

−+

=

+=

2'1'1

rr

dzd

r

Rconstr

r==

+.

'1 2( ) 01/' 2 >−= Rrr

radius R

rz

z=0

BCs: r à ∞: κ à 0r à R: r’à 0

)/cosh()( RzRzr = )/exp( RzRz

−∝>>

solution:

30

three phase equilibrium: wetting

σsl: solid-liquid interfacial energy; σsv (solid-vapor); σlv (liquid-vapor)

σlv

σsvσslθ

non-wetting partial wetting complete wetting

θ = π 0 < θ < π θ = 0

31

spreading parameter controls wetting behavior

partial wetting complete wetting

spreading parameter [ ] )(1lvslsvfinalinit FF

AS σσσ +−=−=

S > 0 : complete wettingS < 0 : partial wetting

32

contact angle in partial wetting situation

(horizontal) force balance

lv

slsvY σ

σσθ

−=cosYoung equation

‘v‘: vapor or second immiscible liquid

σlv

σsv σslθY

energy minimization

θY

dx cos θ

dx

Ylvslsv θσσσ cos+= { } 0cos =−+= dxW svYlvsl σθσσδ

33

connecting wetting behavior & surface properties

high energy surfaces (metals, ionic crystals, covalent materials…) are usually wetted

22 5000...500 mmJ

aEcoh

sv ≈≈σ

low energy surfaces (polymers, molecular crystals) are usually partially wetted

22 50...10 mmJ

aTkB

sv ≈≈σ

How to relate wetting behavior to microscopic interaction energies ?

<>

+−=wettingpartialwettingcomplete

S lvslsv :0:0

)( σσσ

34

Gedankenexperiment

A

d0

A

A

A

initfinal UUW −=δ

)()(02 0dVV AAAAAv −∞=−= σ

B

A

B

A

)(2 0dVAAAv −=→ σ (I)

( ))(2 0dVBBBv −=σ (II)

)()( 0dVV

W

ABAB

ABBvAv

−∞=

−+= σσσδ (III)

)( 0dVAB−=

35

Gedankenexperiment (II))(2 0dVAAAv −=→ σ (I)

)(2 0dVBBBv −=σ (II)

)( 0dVABABBvAv −=−+ σσσ (III)

A: solid; B: liquid

(III)-(II) )()()( 00 dVdVS slllsllvsv −==+− σσσbinding energies: <0

0<⇒> SVV slll

0>⇒> SVV llsl

à partial wetting

à complete wetting

van der Waals interaction: lsslV αα∝ 2lllV α∝

)( lslS ααα −∝ à complete wetting if solid more polarisable than liquid

36

wetting and gravity

)( 0 zhgplv −∆+∆= ρκσlv

slsvY σ

σσθ

−=cos

dAzhgp ⋅−∆+∆ ))(( 0ρ

dAlv ⋅κσ

h0 - zg

x

z

hydrostatic pressure

capillary equationYoung equation

à now κ=κ(z)

37

non-dimensionalization

dimensionless variables: zRz ~= xx R~

1∂=∂ κκ ~1

R=→

)~~(~)~~(~~00

2

zhBopzhRgplv

−+∆=−∆

+∆=σ

ρκ

pR

p lv ~σ=

Bo: Bond number Bo << 1 à gravity negligible

equivalently: capillary length lvc g σρλ /∆=

R << λc à gravity negligible

water in air: λ ≈ 2.7mm à gravity is usually negligible in microfluidics

38

summary

n equilibrium shape of wetting structures is determined by minimum of surface energy

n variation of free energy functional results in

lv

slsvY σ

σσθ

−=cos

Young equationcapillary (Laplace) equation

κσσ lvlv RRp =

+=∆

21

11

n occurrence of complete vs. partial wetting is determined by relative strength of adhesive vs. cohesive forces

n gravity is negligible on length scales << capillary length

)(/ mmOg lvc ≈∆= σρλ