fss 2017-thobile nxumalo · 2017-08-02 · ì í l ì ô l î ì í ó î 8urp\fodglxp dfdfldh olih...
Embed Size (px)
TRANSCRIPT
![Page 1: FSS 2017-Thobile Nxumalo · 2017-08-02 · ì í l ì ô l î ì í ó î 8URP\FODGLXP DFDFLDH OLIH F\FOH ^ µ & U î ì í ó d o ] ... ì í l ì ô l î ì í ó ï ì í î ï](https://reader033.vdocuments.net/reader033/viewer/2022041606/5e3420cd0a8b6e582772a94c/html5/thumbnails/1.jpg)
01/08/2017
1
© ICFR 2017
Environmental triggers and impact assessment of a new rust disease caused by
Uromycladium acaciae on black wattle in South Africa
Thobile Nxumalo, Ilaria Germishuizen and Andrew MorrisForest Science Symposium-18-20 July 2017
© ICFR 2017
Background (Acacia mearnsii)
Acacia mearnsii De Wild (black wattle) is one of the importantplantation species in South Africa (SA)
It is native in Australia and grown in SA for timber and tanninproduction (Searl,1991)
Black wattle occupies about 110 000ha of plantation area out of1.3M ha of planted forests
85% of the revenue is from timber and the other 15% from bark(Chan et al. 2015)
Therefore, it is economically important plantation species and anyrisk factors needs to be managed
Searl S. 1991. The rise and demise of the black wattle bark industry in Australia. Technical paper no. 1. Canberra: CSIRO Division of Forestry
Smith CW. 2002. Growth and yield prediction. In: Dunlop RW, MacLennan LA (eds), Black wattle: the South African research experience.Pietermaritzburg: Institute for commercial Forestry Research. P93-99
Background (risk factors)
Few pests and disease have been reported on black wattle inSouth Africa such as:
Currently, is the new Uromycladium acaciae which is causingdisease on Acacia mearnsii
Photo by Benice Sivparsad
Species distribution
• Nine species of Uromycladium infect Australian acacias• All Uromycladium species are autoecious (Fraser et al. 2017)• Three have been described in the country
• U tepperianum (Morris, 1987)• U. alpinum (Morris and Wingfield, 1988)• U. acaciae (McTaggart et al. 2015)
![Page 2: FSS 2017-Thobile Nxumalo · 2017-08-02 · ì í l ì ô l î ì í ó î 8URP\FODGLXP DFDFLDH OLIH F\FOH ^ µ & U î ì í ó d o ] ... ì í l ì ô l î ì í ó ï ì í î ï](https://reader033.vdocuments.net/reader033/viewer/2022041606/5e3420cd0a8b6e582772a94c/html5/thumbnails/2.jpg)
01/08/2017
2
Uromycladium acaciae life cycle
Dr Stuart Fraser, 2017
TeliaTeliospores
Spermogonia
Basidiospores
© ICFR 2017
Background and Objectives
Due to the disease outbreak, a multi-faceted project wasinitiated to manage the pathogen- integrated approach
IPM, defines economic injury levels, it developspreventative management and monitoring systems thatwill allow curative control measures are economical andenvironmentally sustainableBiology (taxonomy, epidemiology and
population dynamics) of the pathogen
(ICFR & FABI)
Monitoring sitesMonitoring the disease outbreaks
(ICFR, NCT & FABI)
Wattle rust exclusion plot trialsQuantify growth impacts
(ICFR,NMMU & FABI)
Monitoring sitesRemote sensing work
(ICFR, NCT,FABI & UKZN)
Relate the levels of infestations to environmental factors and identify triggers of outbreaks; and
Provide ground-truthing points for developing a remote sensing based system for detecting and monitoring wattle rust
![Page 3: FSS 2017-Thobile Nxumalo · 2017-08-02 · ì í l ì ô l î ì í ó î 8URP\FODGLXP DFDFLDH OLIH F\FOH ^ µ & U î ì í ó d o ] ... ì í l ì ô l î ì í ó ï ì í î ï](https://reader033.vdocuments.net/reader033/viewer/2022041606/5e3420cd0a8b6e582772a94c/html5/thumbnails/3.jpg)
01/08/2017
3
0
1
2
3
4Mean DS in the warm-wet (Hilton
College)
0
1
2
3
4
Date of assessment
Mean DS in the warm-wet (World‘s view)
0
1
2
3
4Mean DS in the warm-moist Harden
Heights
0
1
2
3
4
Mea
n D
S (0
-4)
Date of assessment
Mean DS in the warm-dry (Bloemendal)
0
1
2
3
4
Date of assessment
Mean DS in the warm-dry site Eston
0
1
2
3
4M
ean
DS
(0-4
)Mean DS in the warm-wet (Cramond)
0
1
2
3
4
Mea
n D
S (0
-4)
Mean DS in the warm-moist site Seven Oaks
0
1
2
3
4
0
40
80
120
160
Mea
n D
S (0
-4)
Mon
thly
rain
fall(
mm
)
Months
Monthly rainfall(mm) and mean DS (warm-moist Seven Oaks)
Rainfall Mean DS
0
1
2
3
4
0
5
10
15
20
25
Mea
n D
S (0
-4)
Mon
thly
tem
p (°
C)
Months
Monthly temp (°C) and mean DS (warm-moist Seven Oaks)
Temp Mean DS
0
1
2
3
4
0
50
100
150
200
250
Mea
n D
S (0
-4)
Mon
thly
rain
fall
(mm
)
Months
Monthly rainfall(mm) and mean DS (warm-wet Cramond)
Rainfall Mean DS
0
1
2
3
4
0
5
10
15
20
25
Mea
n D
S (0
-4)
Mon
thly
tem
p (°
C)
Months
Monthly temp (°C) and DS (warm-wet Cramond)
Temp Mean DS
• Disease severity increased even with minimal amount of rainfall
• Disease severity increased around March- April in all the site type classes with the exception of two sites in the warm-wet site where the symptoms were observed earlier
• No major differences in RH were observed during the study.
• Temperatures between 18 -25 °C had an effect on disease severity
0
1
2
3
4
0
5
10
15
20
25
Mea
n D
S (0
-4)
Mon
thly
tem
p (°
C)
Months
Monthly temp (°C) and mean DS (warm-dry Eston)
Temp Mean DS
0
1
2
3
4
0
20
40
60
80
100
120
140
Mea
n D
S (0
-4)
Mon
thly
rain
fall
(mm
)
Months
Monthly rainfall(mm) and mean DS (warm-dry Eston)
Rainfall(mm) Mean DS
KZN-weather data- (slide provided by Dr Stuart Fraser)
Based on the preliminary work done at FABI, March and October months have conducive weather for Uromycladium acaciae• Night time temperature averages
12-17°C• Evening rainfall and fog – wet
conditions overnight
0
5
10
15
20
25
30
0
20
40
60
80
100
120
Jan
Feb
Mar
Apr
May Jun Jul
Aug
Sep
Oct
Nov Dec
Mea
n te
mpe
ratu
re (
°C)
Mea
n ra
infa
ll (m
m)
KZN
Rainfall Tmin Tmax
![Page 4: FSS 2017-Thobile Nxumalo · 2017-08-02 · ì í l ì ô l î ì í ó î 8URP\FODGLXP DFDFLDH OLIH F\FOH ^ µ & U î ì í ó d o ] ... ì í l ì ô l î ì í ó ï ì í î ï](https://reader033.vdocuments.net/reader033/viewer/2022041606/5e3420cd0a8b6e582772a94c/html5/thumbnails/4.jpg)
01/08/2017
4
Results
0
1
2
3
4
Feb Mar Apr May Jun
Mea
n D
S (0
-4)
Months
Comparing mean DS in MPU areas
Mool(a) Zoonstr norm
0
1
2
3
4
01-Feb 01-Mar 01-Apr 01-May
Mea
n D
S (0
-4)
Months
Comparing mean DS in KZN areas
Baynes HC Bloem
• The decrease in disease severity in Baynesfield maybe the high infestation of mirid damage on the site
© ICFR 2017
Conclusion
The study showed that disease spread or severity is driven by moisture and temperature
Rainfall and temperatures between 18 and 25 °C can trigger the disease infection
The data will be used to develop a bioclimatic risk model to evaluate the geographic extent of the disease and potential hotspots
© ICFR 2017
Acknowledgements
Dr Kabir Peerbay (ICFR), Craig Norris (NCT), Johan Nel (TWK), Prof Jolanda Roux (SAPPI), Dr Alistar McTaggart (FABI),Dr Stuart Fraser (FABI)
Forest Protection Technical team (ICFR)
Marilyn Bezuidenhout and Enos Ngubo
Hardus Hatting (contractor in Piet Retief)